Needle lost in the haystack: multiple reaction monitoring fails to detect Treponema pallidum candidate protein biomarkers in plasma and urine samples from individuals with syphilis

Geert A Van Raemdonck, Kara K Osbak, Xaveer Van Ostade, Chris R Kenyon, Geert A Van Raemdonck, Kara K Osbak, Xaveer Van Ostade, Chris R Kenyon

Abstract

Background: Current syphilis diagnostic strategies are lacking a sensitive manner of directly detecting Treponema pallidum antigens. A diagnostic test that could directly detect T. pallidum antigens in individuals with syphilis would be of considerable clinical utility, especially for the diagnosis of reinfections and for post-treatment serological follow-up. Methods: In this study, 11 candidate T. pallidum biomarker proteins were chosen according to their physiochemical characteristics, T. pallidum specificity and predicted abundance. Thirty isotopically labelled proteotypic surrogate peptides (hPTPs) were synthesized and incorporated into a scheduled multiple reaction monitoring assay. Protein extracts from undepleted/unenriched plasma (N = 18) and urine (N = 4) samples from 18 individuals with syphilis in various clinical stages were tryptically digested, spiked with the hPTP mixture and analysed with a triple quadruple mass spectrometer. Results: No endogenous PTPs corresponding to the eleven candidate biomarkers were detected in any samples analysed. To estimate the Limit of Detection (LOD) of a comparably sensitive mass spectrometer (LTQ-Orbitrap), two dilution series of rabbit cultured purified T. pallidum were prepared in PBS. Polyclonal anti- T. pallidum antibodies coupled to magnetic Dynabeads were used to enrich one sample series; no LOD improvement was found compared to the unenriched series. The estimated LOD of MS instruments is 300 T. pallidum/ml in PBS. Conclusions: Biomarker protein detection likely failed due to the low (femtomoles/liter) predicted concentration of T. pallidum proteins. Alternative sample preparation strategies may improve the detectability of T. pallidum proteins in biofluids.

Trial registration: ClinicalTrials.gov NCT02059525.

Keywords: MRM; Multiple Reaction Monitoring; Treponema pallidum; antigen test; biomarker discovery; plasma; syphilis; targeted proteomics.

Conflict of interest statement

No competing interests were disclosed.

Figures

Figure 1.. Intensity plots displaying MRM experiments…
Figure 1.. Intensity plots displaying MRM experiments on plasma from an individual with secondary stage syphilis.
(a) synthetic hPTPs, even numbers and (b) endogenous (T. pallidum) PTPs, odd numbers; gradient 1 of 3. For each peptide the number of selected transitions (channels) is reported. The x-axis shows the chromatographic retention time of the corresponding peptide while the y-axis shows the relative intensity of the MS2 signal. Note: Signal fluctuations present in the ‘endogenous’ PTP chromatogram are always the result of just one transition, often coupled with a shift in retention time and differing m/z-values differ from the hPTP run, thus these are considered to be noise.
Figure 2.. Work-flow diagram describing the estimation…
Figure 2.. Work-flow diagram describing the estimation of T. pallidum protein MS LOD experiments.
In total, eight different concentrations ofT. pallidum (from 10 4 to 0 bacteria/ml PBS) were treated in three different ways i)T. pallidum was enriched using magnetic beads coated with polyclonal anti-T. pallidum antibodies and lysed by sonication for release ofT. pallidum proteins in the supernatant. Acetone precipitated proteins were trypsinized; ii) In order to detect any remaining protein on the beads, the beads were also trypsinized (retentant on-bead trypsinization); iii) As a control, non-enriched samples were sonicated and immediately trypsinized. *-proteins selected as candidate biomarkers in this study. All samples were analysed by an LTQ-Orbitrap mass spectrometer.
Figure 3.. T. pallidum proteins detected in…
Figure 3.. T. pallidum proteins detected in LOD magnetic bead coupled polyclonal anti- T. pallidum antibody enrichment experiments (protein and peptide identification threshold of 95 %).
*-proteins selected as candidate biomarkers in this study.

References

    1. Edmondson DG, Hu B, Norris SJ: Long-Term In Vitro Culture of the Syphilis Spirochete Treponema pallidum subsp. pallidum. mBio. 2018;9(3): pii: e01153-18. 10.1128/mBio.01153-18
    1. Newman L, Rowley J, Vander Hoorn S, et al. : Global Estimates of the Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and Global Reporting. PLoS One. 2015;10(12):e0143304. 10.1371/journal.pone.0143304
    1. Van de Laar M, Spiteri G: Increasing trends of gonorrhoea and syphilis and the threat of drug-resistant gonorrhoea in Europe. Euro Surveill. 2012;17(29): pii: 20225.
    1. Peterman TA, Su J, Bernstein KT, et al. : Syphilis in the United States: on the rise? Expert Rev Anti Infect Ther.Informa UK, Ltd;2015;13(2):161–8. 10.1586/14787210.2015.990384
    1. Kenyon C, Lynen L, Florence E, et al. : Syphilis reinfections pose problems for syphilis diagnosis in Antwerp, Belgium - 1992 to 2012. Euro Surveill. 2014;19(45):20958. 10.2807/1560-7917.ES2014.19.45.20958
    1. Ogilvie GS, Taylor DL, Moniruzzaman A, et al. : A population-based study of infectious syphilis rediagnosis in British Columbia, 1995-2005. Clin Infect Dis. 2009;48(11):1554–8. 10.1086/598997
    1. Seña AC, White BL, Sparling PF: Novel Treponema pallidum serologic tests: a paradigm shift in syphilis screening for the 21st century. Clin Infect Dis.Oxford University Press;2010;51(6):700–8. 10.1086/655832
    1. Belisle JT, Brandt ME, Radolf JD, et al. : Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J Bacteriol. 1994;176(8):2151–7. 10.1128/jb.176.8.2151-2157.1994
    1. Joyanes P, Borobio MV, Arquez JM, et al. : The association of false-positive rapid plasma reagin results and HIV infection. Sex Transm Dis. 1998;25(10):569–71. 10.1097/00007435-199811000-00013
    1. Monath TP, Frey SE: Possible autoimmune reactions following smallpox vaccination: the biologic false positive test for syphilis. Vaccine. 2009;27(10):1645–50. 10.1016/j.vaccine.2008.10.084
    1. Seña AC, Wolff M, Martin DH, et al. : Predictors of serological cure and Serofast State after treatment in HIV-negative persons with early syphilis. Clin Infect Dis.Oxford University Press;2011;53(11):1092–9. 10.1093/cid/cir671
    1. Gayet-Ageron A, Lautenschlager S, Ninet B, et al. : Sensitivity, specificity and likelihood ratios of PCR in the diagnosis of syphilis: a systematic review and meta-analysis. Sex Transm Infect. 2013;89(3):251–6. 10.1136/sextrans-2012-050622
    1. Tipple C, Hanna MO, Hill S, et al. : Getting the measure of syphilis: qPCR to better understand early infection. Sex Transm Infect. 2011;87(6):479–85. 10.1136/sti.2011.049494
    1. Castro R, Prieto E, Aguas MJ, et al. : Detection of Treponema pallidum sp pallidum DNA in latent syphilis. Int J STD AIDS. 2007;18(12):842–5. 10.1258/095646207782716901
    1. Pětrošová H, Pospíšilová P, Strouhal M, et al. : Resequencing of Treponema pallidum ssp. pallidum Strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS One. 2013;8(9):e74319. 10.1371/journal.pone.0074319
    1. McGill MA, Edmondson DG, Carroll JA, et al. : Characterization and serologic analysis of the Treponema pallidum proteome. Infect Immun. 2010;78(6):2631–43. 10.1128/IAI.00173-10
    1. Osbak KK, Houston S, Lithgow KV, et al. : Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry. PLoS Negl Trop Dis. 2016;10(9):e0004988. 10.1371/journal.pntd.0004988
    1. Smajs D, McKevitt M, Howell JK, et al. : Transcriptome of Treponema pallidum: gene expression profile during experimental rabbit infection. J Bacteriol.American Society for Microbiology;2005;187(5):1866–74. 10.1128/JB.187.5.1866-1874.2005
    1. Salazar JC, Rathi A, Michael NL, et al. : Assessment of the kinetics of Treponema pallidum dissemination into blood and tissues in experimental syphilis by real-time quantitative PCR. Infect Immun.American Society for Microbiology (ASM);2007;75(6):2954–8. 10.1128/IAI.00090-07
    1. Vaira D, Malfertheiner P, Mégraud F, et al. : Diagnosis of Helicobacter pylori infection with a new non-invasive antigen-based assay. HpSA European study group. Lancet. 1999;354(9172):30–3. 10.1016/S0140-6736(98)08103-3
    1. Jarvis JN, Percival A, Bauman S: Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis. 2011;53(10):1019–23. 10.1093/cid/cir613
    1. Parisi MT, Tierno PM, Jr: Evaluation of new rapid commercial enzyme immunoassay for detection of Cryptosporidium oocysts in untreated stool specimens. J Clin Microbiol. 1995;33(7):1963–5.
    1. Haque R, Ali IK, Akther S, et al. : Comparison of PCR, isoenzyme analysis, and antigen detection for diagnosis of Entamoeba histolytica infection. J Clin Microbiol. 1998;36(2):449–52.
    1. Cross RW, Boisen ML, Millett MM, et al. : Analytical Validation of the ReEBOV Antigen Rapid Test for Point-of-Care Diagnosis of Ebola Virus Infection. J Infect Dis. 2016;214(suppl 3):S210–7. 10.1093/infdis/jiw293
    1. Flores LL, Steingart KR, Dendukuri N, et al. : Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis. Clin Vaccine Immunol. 2011;18(10):1616–27. 10.1128/CVI.05205-11
    1. Tramont E, Mandell GL, Bennett JE, et al. : Princ. Pract. Infect. Dis.8th ed. Churchill Livingstone Inc.2015.
    1. Sabbagh B, Mindt S, Neumaier M, et al. : Clinical applications of MS-based protein quantification. Proteomics Clin Appl. 2016;10(4):323–45. 10.1002/prca.201500116
    1. Cheng K, Chui H, Domish L, et al. : Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics Clin Appl. 2016;10(4):346–57. 10.1002/prca.201500086
    1. Gerber SA, Rush J, Stemman O, et al. : Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A.National Academy of Sciences;2003;100(12):6940–5. 10.1073/pnas.0832254100
    1. Kettenbach AN, Rush J, Gerber SA: Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat Protoc.Nature Research;2011;6(2):175–86. 10.1038/nprot.2010.196
    1. Mermelekas G, Vlahou A, Zoidakis J: SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine. Expert Rev Mol Diagn. 2015;15(11):1441–54. 10.1586/14737159.2015.1093937
    1. Pernemalm M, Lehtiö J: Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics. 2014;11(4):431–48. 10.1586/14789450.2014.901157
    1. Domanski D, Percy AJ, Yang J, et al. : MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma. Proteomics. 2012;12(8):1222–43. 10.1002/pmic.201100568
    1. Percy AJ, Chambers AG, Yang J, et al. : Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma. Proteomics. 2013;13(14):2202–15. 10.1002/pmic.201200316
    1. Kuzyk MA, Smith D, Yang J, et al. : Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics. 2009;8(8):1860–77. 10.1074/mcp.M800540-MCP200
    1. Percy AJ, Yang J, Hardie DB, et al. : Precise quantitation of 136 urinary proteins by LC/MRM-MS using stable isotope labeled peptides as internal standards for biomarker discovery and/or verification studies. Methods.Elsevier Inc.;2015;81:24–33. 10.1016/j.ymeth.2015.04.001
    1. Abeijon C, Kashino SS, Silva FO, et al. : Identification and diagnostic utility of Leishmania infantum proteins found in urine samples from patients with visceral leishmaniasis. Clin Vaccine Immunol. 2012;19(6):935–43. 10.1128/CVI.00125-12
    1. Abeijon C, Campos-Neto A: Potential non-invasive urine-based antigen (protein) detection assay to diagnose active visceral leishmaniasis. PLoS Negl Trop Dis. 2013;7(5):e2161. 10.1371/journal.pntd.0002161
    1. Kruh-Garcia NA, Wolfe LM, Chaisson LH, et al. : Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS.Koomen JM, editor. PLoS One. 2014;9(7):e103811. 10.1371/journal.pone.0103811
    1. Young BL, Mlamla Z, Gqamana PP, et al. : The identification of tuberculosis biomarkers in human urine samples. Eur Respir J. 2014;43(6):1719–29. 10.1183/09031936.00175113
    1. Kashino SS, Pollock N, Napolitano DR, et al. : Identification and characterization of Mycobacterium tuberculosis antigens in urine of patients with active pulmonary tuberculosis: an innovative and alternative approach of antigen discovery of useful microbial molecules. Clin Exp Immunol.Wiley-Blackwell;2008;153(1):56–62. 10.1111/j.1365-2249.2008.03672.x
    1. Kim SH, Lee NE, Lee JS, et al. : Identification of Mycobacterial Antigens in Human Urine by Use of Immunoglobulin G Isolated from Sera of Patients with Active Pulmonary Tuberculosis.Land GA, editor. J Clin Microbiol. 2016;54(6):1631–7. 10.1128/JCM.00236-16
    1. Workowski KA, Berman S, Centers for Disease Control and Prevention (CDC) : Sexually transmitted diseases treatment guidelines, 2010. MMWR Recomm Rep. 2010;59(RR–12):1–110.
    1. French P, Gomberg M, Janier M, et al. : IUSTI: 2008 European Guidelines on the Management of Syphilis. Int J STD AIDS. 2009;20(5):300–9. 10.1258/ijsa.2008.008510
    1. Liu H, Rodes B, Chen CY, et al. : New tests for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol. 2001;39(5):1941–6. 10.1128/JCM.39.5.1941-1946.2001
    1. Flasarová M, Pospíšilová P, Mikalová L, et al. : Sequencing-based molecular typing of Treponema pallidum strains in the Czech Republic: all identified genotypes are related to the sequence of the SS14 strain. Acta Derm Venereol. 2012;92(6):669–74. 10.2340/00015555-1335
    1. Tipple C, Jones R, McClure M, et al. : Rapid Treponema pallidum clearance from blood and ulcer samples following single dose benzathine penicillin treatment of early syphilis.Vinetz JM, editor. PLoS Negl Trop Dis. 2015;9(2):e0003492. 10.1371/journal.pntd.0003492
    1. Rai AJ, Gelfand CA, Haywood BC, et al. : HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics. 2005;5(13):3262–77. 10.1002/pmic.200401245
    1. Aguilar-Mahecha A, Kuzyk MA, Domanski D, et al. : The effect of pre-analytical variability on the measurement of MRM-MS-based mid- to high-abundance plasma protein biomarkers and a panel of cytokines.Krauss-Etschmann S, editor. PLoS One. 2012;7(6):e38290. 10.1371/journal.pone.0038290
    1. Schuchard MD, Mehigh RJ, Cockrill SL, et al. : Artifactual isoform profile modification following treatment of human plasma or serum with protease inhibitor, monitored by 2-dimensional electrophoresis and mass spectrometry. Biotechniques. 2005;39(2):239–47. 10.2144/05392RR01
    1. Human Proteome Organizaton: Human Kidney and Urine Proteome Project.Standard Protocol for Urine Collection and Storage.
    1. Fusaro VA, Mani DR, Mesirov JP, et al. : Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat Biotechnol. 2009;27(2):190–8. 10.1038/nbt.1524
    1. Altschul SF, Gish W, Miller W, et al. : Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. 10.1016/S0022-2836(05)80360-2
    1. Desiere F, Deutsch EW, King NL, et al. : The PeptideAtlas project. Nucleic Acids Res.Oxford University Press;2006;34(Database issue):D655–8. 10.1093/nar/gkj040
    1. Lukehart SA, Marra CM: Isolation and laboratory maintenance of Treponema pallidum. Curr Protoc Microbiol. 2007;Chapter 12: Unit 12A.1. 10.1002/9780471729259.mc12a01s7
    1. Hanff PA, Norris SJ, Lovett MA, et al. : Purification of Treponema pallidum, Nichols strain, by Percoll density gradient centrifugation. Sex Transm Dis. 1984;11(4):275–86. 10.1097/00007435-198410000-00003
    1. Fraser CM, Norris SJ, Weinstock GM, et al. : Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science.American Association for the Advancement of Science.1998;281(5375):375–88. 10.1126/science.281.5375.375
    1. Keller A, Nesvizhskii AI, Kolker E, et al. : Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002;74(20):5383–92. 10.1021/ac025747h
    1. Desrosiers DC, Anand A, Luthra A, et al. : TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol. 2011;80(6):1496–515. 10.1111/j.1365-2958.2011.07662.x
    1. Cameron CE, Lukehart SA, Castro C, et al. : Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis. 2000;181(4):1401–13. 10.1086/315399
    1. Luthra A, Anand A, Hawley KL, et al. : A Homology Model Reveals Novel Structural Features and an Immunodominant Surface Loop/Opsonic Target in the Treponema pallidum BamA Ortholog TP_0326. J Bacteriol. 2015;197(11):1906–20. 10.1128/JB.00086-15
    1. Gayet-Ageron A, Laurent F, Schrenzel J, et al. : Performance of the 47-kilodalton membrane protein versus DNA polymerase I genes for detection of Treponema pallidum by PCR in ulcers. J Clin Microbiol. 2015;53(3):976–80. 10.1128/JCM.03444-14
    1. Centurion-Lara A, Giacani L, Godornes C, et al. : Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis.Public Library of Science;2013;7(5):e2222. 10.1371/journal.pntd.0002222
    1. Zhou L, Gong R, Lu X, et al. : Development of a Multiplex Real-Time PCR Assay for the Detection of Treponema pallidum, HCV, HIV-1, and HBV. Jpn J Infect Dis. 2015;68(6):481–7. 10.7883/yoken.JJID.2014.416
    1. Cruz AR, Pillay A, Zuluaga AV, et al. : Secondary syphilis in cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop Dis.Lukehart S, editor. Public Library of Science;2010;4(5):e690. 10.1371/journal.pntd.0000690
    1. Pinto M, Antelo M, Ferreira R, et al. : A retrospective cross-sectional quantitative molecular approach in biological samples from patients with syphilis. Microb Pathog. 2017;104:296–302. 10.1016/j.micpath.2017.01.059
    1. Lawn SD: Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect Dis.BioMed Central Ltd;2012;12:103. 10.1186/1471-2334-12-103
    1. Wu C, Duan J, Liu T, et al. : Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1021:57–68. 10.1016/j.jchromb.2016.01.015
    1. Percy AJ, Simon R, Chambers AG, et al. : Enhanced sensitivity and multiplexing with 2D LC/MRM-MS and labeled standards for deeper and more comprehensive protein quantitation. J Proteomics. 2014;106:113–24. 10.1016/j.jprot.2014.04.024
    1. Shi T, Su D, Liu T, et al. : Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics. 2012;12(8):1074–92. 10.1002/pmic.201100436
    1. Keshishian H, Addona T, Burgess M, et al. : Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics. 2007;6(12):2212–29. 10.1074/mcp.M700354-MCP200
    1. Yadav AK, Bhardwaj G, Basak T, et al. : A systematic analysis of eluted fraction of plasma post immunoaffinity depletion: implications in biomarker discovery. PLoS One.Public Library of Science;2011;6(9):e24442. 10.1371/journal.pone.0024442
    1. Cameron CE: Identification of a Treponema pallidum laminin-binding protein. Infect Immun.American Society for Microbiology (ASM);2003;71(5):2525–33. 10.1128/IAI.71.5.2525-2533.2003
    1. Cameron CE, Brown EL, Kuroiwa JM, et al. : Treponema pallidum fibronectin-binding proteins. J Bacteriol. 2004;186(20):7019–22. 10.1128/JB.186.20.7019-7022.2004
    1. Brinkman MB, McGill MA, Pettersson J, et al. : A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun.American Society for Microbiology;2008;76(5):1848–57. 10.1128/IAI.01424-07
    1. Penn CW, Cockayne A, Bailey MJ: The outer membrane of Treponema pallidum: biological significance and biochemical properties. J Gen Microbiol.Microbiology Society;1985;131(9):2349–57. 10.1099/00221287-131-9-2349
    1. Krastins B, Prakash A, Sarracino DA, et al. : Rapid development of sensitive, high-throughput, quantitative and highly selective mass spectrometric targeted immunoassays for clinically important proteins in human plasma and serum. Clin Biochem. 2013;46(6):399–410. 10.1016/j.clinbiochem.2012.12.019
    1. Nelson RW, Krone JR, Bieber AL, et al. : Mass Spectrometric Immunoassay. Anal Chem.American Chemical Society;1995;67(7):1153–8. 10.1021/ac00103a003
    1. Madian AG, Rochelle NS, Regnier FE: Mass-linked immuno-selective assays in targeted proteomics. Anal Chem.American Chemical Society;2013;85(2):737–48. 10.1021/ac302071k
    1. Brinkman MB, Mckevitt M, McLoughlin M, et al. : Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J Clin Microbiol.American Society for Microbiology;2006;44(3):888–91. 10.1128/JCM.44.3.888-891.2006
    1. Salazar JC, Hazlett KR, Radolf JD: The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect. 2002;4(11):1133–40. 10.1016/S1286-4579(02)01638-6
    1. Lafond RE, Lukehart SA: Biological basis for syphilis. Clin Microbiol Rev. 2006;19(1):29–49. 10.1128/CMR.19.1.29-49.2006
    1. Anderson NL, Anderson NG, Haines LR, et al. : Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res. 2004;3(2):235–44. 10.1021/pr034086h
    1. Whiteaker JR, Zhao L, Anderson L, et al. : An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol Cell Proteomics.American Society for Biochemistry and Molecular Biology;2010;9(1):184–96. 10.1074/mcp.M900254-MCP200
    1. Giacani L, Lukehart S, Centurion-Lara A: Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol Med Microbiol.The Oxford University Press;2007;51(2):289–301. 10.1111/j.1574-695X.2007.00303.x
    1. Giacani L, Molini BJ, Kim EY, et al. : Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol.American Association of Immunologists;2010;184(7):3822–9. 10.4049/jimmunol.0902788
    1. Molina H, Horn DM, Tang N, et al. : Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A. 2007;104(7):2199–204. 10.1073/pnas.0611217104
    1. Wyss C: Flagellins, but not endoflagellar sheath proteins, of Treponema pallidum and of pathogen-related oral spirochetes are glycosylated. Infect Immun. 1998;66(12):5751–4. 10.5167/uzh-1654
    1. Eshghi A, Pinne M, Haake DA, et al. : Methylation and in vivo expression of the surfaceexposed Leptospira interrogans outer-membrane protein OmpL32. Microbiology. 2012;158(Pt 3):622–35. 10.1099/mic.0.054767-0
    1. Witchell TD, Eshghi A, Nally JE, et al. : Post-translational modification of LipL32 during Leptospira interrogans infection.Small PLC, editor. PLoS Negl Trop Dis. 2014;8(10):e3280. 10.1371/journal.pntd.0003280
    1. Sell S, Salman J, Norris SJ: Reinfection of chancre-immune rabbits with Treponema pallidum. I. Light and immunofluorescence studies. Am J Pathol. 1985;118(2):248–55.
    1. Percy AJ, Chambers AG, Smith DS, et al. : Standardized protocols for quality control of MRM-based plasma proteomic workflows. J Proteome Res.American Chemical Society;2013;12(1):222–33. 10.1021/pr300893w
    1. Eyford BA, Ahmad R, Enyaru JC, et al. : Identification of Trypanosome proteins in Plasma from African sleeping sickness patients infected with T. b. rhodesiense. PLoS One. 2013;8(8):e71463. 10.1371/journal.pone.0071463
    1. Anjo SI, Santa C, Manadas B: SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics. 2017;17(3–4): 1600278. 10.1002/pmic.201600278
    1. Nigjeh EN, Chen R, Brand RE, et al. : Quantitative Proteomics Based on Optimized Data-Independent Acquisition in Plasma Analysis. J Proteome Res. 2017;16(2):665–76. 10.1021/acs.jproteome.6b00727
    1. Gillet LC, Navarro P, Tate S, et al. : Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics.American Society for Biochemistry and Molecular Biology;2012;11(6): O111.016717. 10.1074/mcp.O111.016717

Source: PubMed

3
Tilaa