Efficacy of a Binuclear Cyclopalladated Compound Therapy for Cutaneous Leishmaniasis in the Murine Model of Infection with Leishmania amazonensis and Its Inhibitory Effect on Topoisomerase 1B

Angela Maria Arenas Velásquez, Willian Campos Ribeiro, Vutey Venn, Silvia Castelli, Mariana Santoro de Camargo, Renata Pires de Assis, Rodrigo Alves de Souza, Aline Rimoldi Ribeiro, Thaís Gaban Passalacqua, João Aristeu da Rosa, Amanda Martins Baviera, Antonio Eduardo Mauro, Alessandro Desideri, Elmo Eduardo Almeida-Amaral, Marcia A S Graminha, Angela Maria Arenas Velásquez, Willian Campos Ribeiro, Vutey Venn, Silvia Castelli, Mariana Santoro de Camargo, Renata Pires de Assis, Rodrigo Alves de Souza, Aline Rimoldi Ribeiro, Thaís Gaban Passalacqua, João Aristeu da Rosa, Amanda Martins Baviera, Antonio Eduardo Mauro, Alessandro Desideri, Elmo Eduardo Almeida-Amaral, Marcia A S Graminha

Abstract

Leishmaniasis is a disease found throughout the (sub)tropical parts of the world caused by protozoan parasites of the Leishmania genus. Despite the numerous problems associated with existing treatments, pharmaceutical companies continue to neglect the development of better ones. The high toxicity of current drugs combined with emerging resistance makes the discovery of new therapeutic alternatives urgent. We report here the evaluation of a binuclear cyclopalladated complex containing Pd(II) and N,N'-dimethylbenzylamine (Hdmba) against Leishmania amazonensis The compound [Pd(dmba)(μ-N3)]2 (CP2) inhibits promastigote growth (50% inhibitory concentration [IC50] = 13.2 ± 0.7 μM) and decreases the proliferation of intracellular amastigotes in in vitro incubated macrophages (IC50 = 10.2 ± 2.2 μM) without a cytotoxic effect when tested against peritoneal macrophages (50% cytotoxic concentration = 506.0 ± 10.7 μM). In addition, CP2 was also active against T. cruzi intracellular amastigotes (IC50 = 2.3 ± 0.5 μM, selective index = 225), an indication of its potential for use in Chagas disease therapy. In vivo assays using L. amazonensis-infected BALB/c showed an 80% reduction in parasite load compared to infected and nontreated animals. Also, compared to amphotericin B treatment, CP2 did not show any side effects, which was corroborated by the analysis of plasma levels of different hepatic and renal biomarkers. Furthermore, CP2 was able to inhibit Leishmania donovani topoisomerase 1B (Ldtopo1B), a potentially important target in this parasite. (This study has been registered at ClinicalTrials.gov under identifier NCT02169141.).

Keywords: Chagas disease; Leishmania amazonensis; Leishmania donovani; Trypanosoma cruzi; cyclopalladated complex; leishmaniasis; topoisomerase 1B.

Copyright © 2017 Velásquez et al.

Figures

FIG 1
FIG 1
Structure of binuclear cyclopalladated complex CP2, [Pd(dmba)(μ-N3)]2 (61). A better model for [Pd(dmba)(N3)]2 is a blend of Lewis structures I and II with N1-N2 and N4-N5 intermediate in properties between a single and a double bond, with N2-N3 and N5-N6 between a double and a triple bond. This blending of structures is called resonance. The blended structure is a resonance hybrid of the contributing Lewis structures. A molecule does not flicker between different structures: a resonance hybrid is a blend of structures.
FIG 2
FIG 2
In vitro effect of CP2, pentamidine, and amphotericin B on L. amazonensis intracellular amastigotes (A) and in vitro effect of CP2 and benznidazole on T. cruzi intracellular amastigotes (B). The infection index was calculated after 72 h of treatment with the IC50s of each compounds. The negative control is L. amazonensis or T. cruzi intracellular amastigotes not treated with CP2. Data are expressed as averages plus the standard deviations (SD) for three independent experiments (P < 0.05).
FIG 3
FIG 3
In vivo efficacies of CP2 and amphotericin B treatment in BALB/c mice infected with L. amazonensis. Development of foot lesions in L. amazonensis-infected BALB/c mice treated with CP2. The treatment was started 60 days after infection and continued for 35 days. Data points represent the average measurements for seven groups of eight mice each. The development of foot lesions was monitored three times a week. Values indicate the mean volume (volume = D × d × e, where D is the larger diameter, d is the minor diameter, and e is the thickness) of lesions in each group, and bars represent the SD. α, statistically significant difference from infected, nontreated animals (P < 0.05); β, statistically significant difference from infected animals treated with PBS (P < 0.05).
FIG 4
FIG 4
Quantitation of tissue parasite load of L. amazonensis in skin lesions of infected BALB/c mice using the LDU index (i.e., the number of Leishmania amastigotes in 1,000 nucleated cells per organ weight). The data are expressed as averages plus the SD. *, α, statistically significant difference relative to the control group (P ≤ 0.001, P ≤ 0.01); β, statistically significant difference relative to the group treated with PBS (P < 0.05). The negative controls were infected animals not treated with CP2.
FIG 5
FIG 5
Plasma levels of biomarkers of liver and renal function in BALB/c mice noninfected and infected with L. amazonensis and treated with 0.20 or 0.35 mg/kg/day of CP2. (A) Total bilirubin and ALP levels; (B) ALT and AST levels; (C) urea and creatinine levels. The data are expressed as averages plus the SD. *, statistically significant difference with the noninfected animals (healthy animals) (P < 0.05); α, statistically significant difference with infected, untreated animals (P < 0.05); β, statistically significant difference with infected animals treated with PBS (P < 0.05).
FIG 6
FIG 6
(A) Relaxation of negative supercoiled plasmid DNA by L. donovani topoisomerase 1B (Ldtopo1B) in the presence of increasing concentrations of CP2 (lanes 4 to 13). Lane 1, only substrate; lane 2, substrate plus 300 μM CP2; lane 3, substrate plus Ldtopo1B enzyme. (B) Plasmid relaxation as a function of time in DMSO (at a concentration identical to that used to dissolve the CP2 compound) (lanes 2 to 5), 12.5 μM CP2 (lanes 6 to 9), 12.5 μM CP2 preincubated for 5 min with enzyme before DNA addition (lanes 10 to 13), 12.5 μM CP2 preincubated for 5 min with DNA before enzyme addition (lanes 14 to 17). NC, nicked circular plasmid DNA; SC, supercoiled plasmid DNA.
FIG 7
FIG 7
(A) CL1/CL2 suicide substrate used to measure the cleavage kinetics of the enzyme. *, preferential cleavage site (CL1); °, second cleavage site (CL2). (B) Gel analysis of Ldtopo1B cleavage kinetics in the absence (lanes 2 to 10) or presence (lanes 11 to 19) of 150 μM CP2 at various time points (0, 0.25, 0.5, 0.75, 1, 2, 4, 8, 16, and 30 min). CL1, DNA fragment cleaved at the preferred site; CL2, second cleavage site.

References

    1. Murray HW, Berman JD, Davies CR, Saravia NG. 2005. Advances in leishmaniasis. Lancet 366:1561–1577. doi:10.1016/S0140-6736(05)67629-5.
    1. Singh N, Kumar M, Singh RK. 2012. Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5:485–497. doi:10.1016/S1995-7645(12)60084-4.
    1. Torres FA, Passalacqua TG, Velásquez AM, de Souza RA, Colepicolo P, Graminha MA. 2014. New drugs with antiprotozoal activity from marine algae: a review. Braz J Pharmacogn 24:265–276. doi:10.1016/j.bjp.2014.07.001.
    1. Santos VA, Regasini LO, Nogueira CR, Passerini GD, Martinez I, Bolzani VS, Graminha MA, Cicarelli RM, Furlan M. 2012. Antiprotozoal sesquiterpene pyridine alkaloids from Maytenus ilicifolia. J Nat Prod 75:991–995. doi:10.1021/np300077r.
    1. Meheus F, Balasegaram M, Olliaro P, Sundar S, Rijal S, Faiz MA, Boelaert M. 2010. Cost-effectiveness analysis of combination therapies for visceral leishmaniasis in the Indian subcontinent. PLoS Negl Trop Dis 4:e818. doi:10.1371/journal.pntd.0000818.
    1. Van Griensven J, Diro E. 2012. Visceral leishmaniasis. Infect Dis Clin North Am 26:309–322. doi:10.1016/j.idc.2012.03.005.
    1. Sundar S, Rai M. 2002. Advances in the treatment of leishmaniasis. Curr Opin Infect Dis 15:593–598. doi:10.1097/00001432-200212000-00007.
    1. Singh S, Sivakumar R. 2004. Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 10:307–315. doi:10.1007/s10156-004-0348-9.
    1. Dorlo TPC, Balasegaram M, Beijnen JH, de Vries PJ. 2012. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67:2576–2597. doi:10.1093/jac/dks275.
    1. World Health Organization. 2010. Control of the leishmaniases: report of a meeting of the WHO Expert Committee on the Control of Leishmaniasis. World Health Organization, Geneva, Switzerland.
    1. Barrett MP, Croft SL. 2012. Management of trypanosomiasis and leishmaniasis. Br Med Bull 104:175–196. doi:10.1093/bmb/lds031.
    1. Farrell NP, Williamson J, McLaren DJM. 1984. Trypanocidal and antitumour activity of platinum-metal and platinum-metal-drug dual-function complexes. Biochem Pharmacol 33:961–971. doi:10.1016/0006-2952(84)90501-X.
    1. Zinsstag J, Brun R, Craciunescu DG, Parrondo Iglesias E. 1991. In vitro activity of organometallic complexes of iridium, platinum, and rhodium on Trypanosoma b. gambiense, T. b. rhodesiense, and T. b. brucei. Trop Med Parasitol 42:41–44.
    1. Sánchez-Delgado RA, Anzellotti A. 2004. Metal complexes as chemotherapeutic agents against tropical diseases: trypanosomiasis, malaria, and leishmaniasis. Mini-Reviews Med Chem 4:23–30. doi:10.2174/1389557043487493.
    1. Fricker SP, Mosi RM, Cameron BR, Baird I, Zhu Y, Anastassov V, Cox J, Doyle PS, Hansell E, Lau G, Langille J, Olsen M, Qin L, Skerlj R, Wong RSY, Santucci Z, McKerrow JH. 2008. Metal compounds for the treatment of parasitic diseases. J Inorg Biochem 102:1839–1845. doi:10.1016/j.jinorgbio.2008.05.010.
    1. Navarro M, Gabbiani C, Messori L, Gambino D. 2010. Metal-based drugs for malaria, trypanosomiasis, and leishmaniasis: recent achievements and perspectives. Drug Discov Today 15:1070–1078. doi:10.1016/j.drudis.2010.10.005.
    1. Matsuo AL, Silva LS, Torrecilhas AC, Pascoalino BS, Ramos TC, Rodrigues EG, Schenkman S, Caires AC, Travassos LR. 2010. In vitro and in vivo trypanocidal effects of the cyclopalladated compound 7a, a drug candidate for treatment of Chagas' disease. Antimicrob Agents Chemother 54:3318–3325. doi:10.1128/AAC.00323-10.
    1. Paladi CD, Pimentel IA, Katz S, Cunha RL, Judice WA, Caires AC, Barbiéri CL. 2012. In vitro and in vivo activity of a palladacycle complex on Leishmania amazonensis. PLoS Negl Trop Dis 6:e1626. doi:10.1371/journal.pntd.0001626.
    1. Casini A, Kelter G, Gabbiani C, Cinellu MA, Minghetti G, Fregona D, Fiebig HH, Messori L. 2009. Chemistry, antiproliferative properties, tumor selectivity, and molecular mechanisms of novel gold(III) compounds for cancer treatment: a systematic study. J Biol Inorg Chem 14:1139–1149. doi:10.1007/s00775-009-0558-9.
    1. Castelli S, Vassallo O, Katkar P, Che CM, Sun RW, Desideri A. 2011. Inhibition of human DNA topoisomerase IB by a cyclometalated gold III compound: analysis on the different steps of the enzyme catalytic cycle. Arch Biochem Biophys 516:108–112. doi:10.1016/j.abb.2011.10.008.
    1. Wu X, Yalowich JC, Hasinoff BB. 2011. Cadmium is a catalytic inhibitor of DNA topoisomerase II. J Inorg Biochem 105:833–838. doi:10.1016/j.jinorgbio.2011.02.007.
    1. Neves AP, Pereira MX, Peterson EJ, Kipping R, Vargas MD, Silva FP Jr, Carneiro JW, Farrell NP. 2013. Exploring the DNA binding/cleavage, cellular accumulation and topoisomerase inhibition of 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinone mannich bases and their platinum(II) complexes. J Inorg Biochem 119:54–64. doi:10.1016/j.jinorgbio.2012.10.007.
    1. Brata Das B, Sen N, Ganguly A, Majumder HK. 2004. Reconstitution and functional characterization of the unusual bi-subunit type I DNA topoisomerase from Leishmania donovani. FEBS Lett 565:81–88. doi:10.1016/j.febslet.2004.03.078.
    1. Chawla B, Madhubala R. 2010. Drug targets in leishmania. J Parasit Dis 34:1–13. doi:10.1007/s12639-010-0006-3.
    1. D'Annessa I, Castelli S, Desideri A. 2015. Topoisomerase 1B as a target against leishmaniasis. Mini Rev Med Chem 15:203–210. doi:10.2174/138955751503150312120912.
    1. Chakraborty AK, Gupta A, Majumder HK. 1993. A type 1 DNA topoisomerase from the kinetoplast hemoflagellate Leishmania donovani. Indian J Biochem Biophys 30:257–263.
    1. Riou GF, Gabillot M, Douc-Rasy S, Kayser A, Barrois M. 1983. A type I DNA topoisomerase from Trypanosoma cruzi. Eur J Biochem 134:479–484. doi:10.1111/j.1432-1033.1983.tb07592.x.
    1. Bodley AL, Chakraborty AK, Xie S, Burri C, Shapiro TA. 2003. An unusual type IB topoisomerase from African trypanosomes. Proc Natl Acad Sci U S A 100:7539–7544.
    1. Broccoli S, Marquis JF, Papadopoulou B, Olivier M, Drolet M. 1999. Characterization of a Leishmania donovani gene encoding a protein that closely resembles a type IB topoisomerase. Nucleic Acids Res 27:2745–2752. doi:10.1093/nar/27.13.2745.
    1. Davies DR, Mushtaq A, Interthal H, Champoux JJ, Hol WGJ. 2006. The structure of the transition state of the heterodimeric topoisomerase I of Leishmania donovani as a vanadate complex with nicked DNA. J Mol Biol 357:1202–1210. doi:10.1016/j.jmb.2006.01.022.
    1. Rosenberg B, Vancamp L, Krigas T. 1965. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699. doi:10.1038/205698a0.
    1. Otero L, Vieites M, Boiani L, Denicola A, Rigol C, Opazo L, Olea-Azar C, Maya JD, Morello A, Krauth-Siegel RL, Piro OE, Castellano E, González M, Gambino D, Cerecetto H. 2006. Novel antitrypanosomal agents based on palladium nitrofurylthiosemicarbazone complexes: DNA and redox metabolism as potential therapeutic targets. J Med Chem 49:3322–3331. doi:10.1021/jm0512241.
    1. Vieites M, Otero L, Santos D, Toloza J, Figueroa R, Norambuena E, Olea-Azar C, Aguirre G, Cerecetto H, González M, Morello A, Maya JD, Garat B, Gambino D. 2008. Platinum(II) metal complexes as potential anti-Trypanosoma cruzi agents. J Inorg Biochem 102:1033–1043. doi:10.1016/j.jinorgbio.2007.12.005.
    1. Caires AC, Almeida ET, Mauro AE, Hemerly JP, Valentini SR. 1999. Síntese e atividade citotóxica de alguns azido-ciclopaladados estabilizados com ligantes bifosfínicos. Quim Nova 22:329–334. doi:10.1590/S0100-40421999000300008.
    1. Santos D, Parajón-Costa B, Rossi M, Caruso F, Benítez D, Varela J, Cerecetto H, González M, Gómez N, Caputto ME, Moglioni AG, Moltrasio GY, Finkielsztein LM, Gambino D. 2012. Activity on Trypanosoma cruzi, erythrocytes lysis and biologically relevant physicochemical properties of Pd(II) and Pt(II) complexes of thiosemicarbazones derived from 1-indanones. J Inorg Biochem 117:270–276. doi:10.1016/j.jinorgbio.2012.08.024.
    1. Vieites M, Smircich P, Guggeri L, Marchán E, Gómez-barrio A, Navarro M, Garat B, Gambino D. 2009. Synthesis and characterization of a pyridine-2-thiol N-oxide gold(I) complex with potent antiproliferative effect against Trypanosoma cruzi and Leishmania sp. insight into its mechanism of action. Q J Inorg Biochem 103:1300–1306. doi:10.1016/j.jinorgbio.2009.02.011.
    1. Croft SL, Neal RA, Craciunescu DG, Certadfombona G. 1992. The activity of platinum, iridium, and rhodium drug complexes against Leishmania donovani. Trop Med Parasitol 43:24–28.
    1. Rodriguez-Cabezas MN, Mesa-Valle CM, Azzouz S, Moraleda-Lindez V, Craciunescu D, Gutierrez-Rios MT, De Frutos MI, Osuna A. 2001. In vitro and in vivo activity of new rhodium(III) complexes against Leishmania donovani. Pharmacology 63:112–119. doi:10.1159/000056121.
    1. Silva ML, Neto AF, Cardoso SA, Albuquerque S, Miller J. 2002. Synthesis and “in vitro” trypanocidal activity evaluation of some organo-iron compounds. Met drugs 8:329–332. doi:10.1155/MBD.2002.329.
    1. Velásquez AM, Francisco AI, Kohatsu AA, Silva FA, Rodrigues DF, Teixeira RG, Chiari BG, De Almeida MG, Isaac VL, Vargas MD, Cicarelli RM. 2014. Synthesis and tripanocidal activity of ferrocenyl and benzyl diamines against Trypanosoma brucei and Trypanosoma cruzi. Bioorganic Med Chem Lett 24:1707–1710. doi:10.1016/j.bmcl.2014.02.046.
    1. Rodrigues EG, Silva LS, Fausto DM, Hayashi MS, Dreher S, Santos EL, Pesquero JB, Travassos LR, Caires ACF. 2003. Cyclopalladated compounds as chemotherapeutic agents: antitumor activity against a murine melanoma cell line. Int J Cancer 107:498–504. doi:10.1002/ijc.11434.
    1. de Souza RA, Stevanato A, Treu-Filho O, Netto AV, Mauro AE, Castellano EE, Carlos IZ, Pavan FR, Leite CQ. 2010. Antimycobacterial and antitumor activities of palladium(II) complexes containing isonicotinamide (isn): X-ray structure of trans-[Pd(N3)2(isn)2]. Eur J Med Chem 45:4863–4868. doi:10.1016/j.ejmech.2010.07.057.
    1. Moro AC, Mauro AE, Netto AV, Ananias SR, Quilles MB, Carlos IZ, Pavan FR, Leite CQ, Hörner M. 2009. Antitumor and antimycobacterial activities of cyclopalladated complexes: X-ray structure of [Pd(C2,N-dmba)(Br)(tu)] (dmba=N,N-dimethylbenzylamine, tu=thiourea). Eur J Med Chem 44:4611–4615. doi:10.1016/j.ejmech.2009.06.032.
    1. Moro AC, Urbaczek AC, De Almeida ET, Pavan FR, Leite CQ, Netto AV, Mauro AE. 2012. Binuclear cyclopalladated compounds with antitubercular activity: synthesis and characterization of [{Pd(C2,N-dmba)(X)} 2(μ-bpp)] (X=Cl, Br, NCO, N 3; bpp=1,3-bis(4-pyridyl)propane). J Coord Chem 65:1434–1442. doi:10.1080/00958972.2012.673718.
    1. Da Rocha MC, Santana AM, Ananias SR, De Almeida ET, Mauro AE, Placeres MC, Carlos IZ. 2007. Cytotoxicity and immune response induced by organopalladium(II) compounds in mice bearing Ehrlich ascites tumour. J Braz Chem Soc 18:1473–1480. doi:10.1590/S0103-50532007000800004.
    1. Spencer J, Rathnam RP, Motukuri M, Kotha AK, Richardson SC, Hazrati A, Hartley JA, Male L, Hursthouse MB. 2009. Synthesis of a 1,4-benzodiazepine containing palladacycle with in vitro anticancer and cathepsin B activity. Dalt Trans 22:4299–4303. doi:10.1039/b819061e.
    1. Velásquez AM, De Souza RA, Passalacqua TG, Ribeiro AR, Scontri M, Chin CM, De Almeida L, Del Cistia ML, Da Rosa JA, Mauro AE, Graminha MA. 2016. Antiprotozoal activity of the cyclopalladated complexes against Leishmania amazonensis and Trypanosoma cruzi. J Braz Chem Soc 27:1032–1039.
    1. Katsuno K, Burrows JN, Duncan K, van Huijsduijnen RH, Kaneko T, Kita K, Mowbray CE, Schmatz D, Warner P, Slingsby BT. 2015. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov 14:751–758. doi:10.1038/nrd4683.
    1. Lainson R, Shaw JJ. 1987. Evolution, classification, and geographical distribution, p 1–120. In Killick-Kendrick R, Peters W (ed), The leishmaniases in biology and medicine. Academic Press, London, United Kingdom.
    1. Wortmann G, Zapor M, Ressner R, Fraser S, Hartzell J, Pierson J, Weintrob A, Magill A. 2010. Liposomal amphotericin B for treatment of cutaneous leishmaniasis. Am J Trop Med Hyg 83:1028–1033. doi:10.4269/ajtmh.2010.10-0171.
    1. Gill J, Sprenger HR, Ralph ED, Sharpe MD. 1999. Hepatotoxicity possibly caused by amphotericin B. Ann Pharmacother 33:683–685. doi:10.1345/aph.18181.
    1. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y. 2012. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inform Modeling 52:3099–3105. doi:10.1021/ci300367a.
    1. Li X, Chen L, Cheng F, Wu Z, Bian H, Xu C, Li W, Liu G, Shen X, Tang Y. 2014. In silico prediction of chemical acute oral toxicity using multi-classification methods. J Chem Infect Model 54:1061–1069. doi:10.1021/ci5000467.
    1. Chakraborty AK, Majumder HK. 1988. Mode of action of pentavalent antimonials: specific inhibition of type I DNA topoisomerase of Leishmania donovani. Biochem Biophys Res Commun 152:605–611. doi:10.1016/S0006-291X(88)80081-0.
    1. Balaña-Fouce R, Álvarez-Velilla R, Fernández-Prada C, García-Estrada C, Reguera RM. 2014. Trypanosomatids topoisomerase revisited: new structural findings and role in drug discovery. Int J Parasitol Drugs Drug Resist 4:326–337. doi:10.1016/j.ijpddr.2014.07.006.
    1. Bjornsti MA, Benedetti P, Viglianti GA, Wang JC. 1989. Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: restoration of sensitivity of the cells to the antitumor drug camptothecin. Cancer Res 49:6318–6323.
    1. Kiechle FL, Zhang X. 2002. Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta 326:27–45. doi:10.1016/S0009-8981(02)00297-8.
    1. Walker J, Saravia NG. 2004. Inhibition of Leishmania donovani promastigote DNA topoisomerase I and human monocyte DNA topoisomerases I and II by antimonial drugs and classical antitopoisomerase agents. J Parasitol 90:1155–1162. doi:10.1645/GE-3347.
    1. Prada CF, Álvarez-Velilla R, Balaña-Fouce R, Prieto C, Calvo-Álvarez E, Escudero-Martínez JM, Requena JM, Ordóñez C, Desideri A, Pérez-Pertejo Y, Reguera RM. 2013. Gimatecan and other camptothecin derivatives poison Leishmania DNA-topoisomerase IB leading to a strong leishmanicidal effect. Biochem Pharmacol 85:1433–1440. doi:10.1016/j.bcp.2013.02.024.
    1. Hasinoff BB, Wu X, Krokhin OV, Ens W, Standing KG, Nitiss JL, Sivaram T, Giorgianni A, Yang S, Jiang Y, Yalowich JC. 2005. Biochemical and proteomics approaches to characterize topoisomerase IIα cysteines and DNA as targets responsible for cisplatin-induced inhibition of topoisomerase IIα. Mol Pharmacol 67:937–947. doi:10.1124/mol.104.004416.
    1. de Almeida ET, Mauro AE, Santana AM, Ananias SR, Netto AV, Ferreira JG, Santos RH. 2007. Self-assembly of organometallic Pd(II) complexes via CH3 interactions: the first example of a cyclopalladated compound with herringbone stacking pattern. Inorg Chem Commun (Camb) 10:1394–1398. doi:10.1016/j.inoche.2007.08.020.
    1. Cope AC, Friedrich EC. 1968. Electrophilic aromatic substitution reactions by platinum (II) and palladium (II) chlorides on N,N-dimethylbenzylamines. J Am Chem Soc 90:909–913. doi:10.1021/ja01006a012.
    1. Lucca Neto VA, Mauro AE, Caires AC, Ananias SR, de Almeida ET. 1999. Synthesis, characterization, and thermal behavior of cyclopalladated compounds of the type [Pd{C6H4CH2N(CH3)2}(μ-X)]2 (X=Cl, NCO, SCN, CN). Polyhedron 18:413–417. doi:10.1016/S0277-5387(98)00310-6.
    1. Silva LH, Nussenzweig V. 1953. Sobre uma cepa de Trypanosoma cruzi altamente virulenta para o camundongo branco. Folia Clin Biol 20:191–208.
    1. Wass JA. 2004. Origin 7.0. Biotech Software Internet Rep 3:130–133. doi:10.1089/152791602321105799.
    1. Passalacqua TG, Dutra LA, De Almeida L, Velásquez AM, Torres Esteves FA, Yamasaki PR, Dos Santos Bastos M, Regasini LO, Michels PA, Da Silva Bolzani V, Graminha MA. 2015. Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorganic Med Chem Lett 25:3342–3345. doi:10.1016/j.bmcl.2015.05.072.
    1. Dutra LA, De Almeida L, Passalacqua TG, Reis JS, Torres FA, Martinez I, Peccinini RG, Chin CM, Chegaev K, Guglielmo S, Fruttero R, Graminha MA, Dos Santos JL. 2014. Leishmanicidal activities of novel synthetic furoxan and benzofuroxan derivatives. Antimicrob Agents Chemother 58:4837–4847. doi:10.1128/AAC.00052-14.
    1. Contreras VT, Morel CM, Goldenberg S. 1985. Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol 14:83–96. doi:10.1016/0166-6851(85)90108-2.
    1. Moore GE, Woods LK. 1976. Culture media for human cells: RPMI 1603, RPMI 1634, RPMI 1640, and GEM 1717. Tissue Cult Methods 3:503–508. doi:10.1007/BF00918753.
    1. Stauber LA. 1958. Strain of Leishmania donovani Host resistance to genus Leishmania. Rice Inst Pam 45:80–96.
    1. Seifert K, Juhls C, Salguero FJ, Croft SL. 2015. Sequential chemoimmunotherapy of experimental visceral leishmaniasis using a single low dose of liposomal amphotericin B and a novel DNA vaccine candidate. Antimicrob Agents Chemother 59:5819–5823. doi:10.1128/AAC.00273-15.
    1. Murray HW, Brooks EB, DeVecchio JL, Heinzel FP. 2003. Immunoenhancement combined with amphotericin B as treatment for experimental visceral leishmaniasis. Antimicrob Agents Chemother 47:2513. doi:10.1128/AAC.47.8.2513-2517.2003.
    1. Mullen AB, Baillie AJ, Carter KC. 1998. Visceral leishmaniasis in the BALB/c mouse: a comparison of the efficacy of a nonionic surfactant formulation of sodium stibogluconate with those of three proprietary formulations of amphotericin B. Antimicrob Agents Chemother 42:2722–2725. .
    1. Bergmeyer HU, Bowers GN, Horder M, Moss DW. 1977. Provisional recommendation on IFCC methods for the measurement of catalytic concentration of enzymes. 2. IFCC method for aspartate aminotransferase. J Clin Chem Clin Biochem 15:39–51.
    1. Wróblewski F, Ladue JS. 1956. Serum glutamic pyruvic transaminase in cardiac and hepatic disease. PSEBM 91:569–571.
    1. Committee on Enzymes of the Scandinavian Society for Clinical Chemistry and Clinical Physiology. 1974. Recommended methods for the determination of four enzymes in blood. Scand J Clin Lab Invest 33:291–306. doi:10.3109/00365517409082499.
    1. Perry BW, Doumas BT, Bayse DD, Butler T, Cohen A, Fellows W, Garber CC, Howell B, Koch T, Krishnamurthy S, Louderback A, McComb RB, Miller D, Miller RR, Rand RN, Schaffer R. 1983. A candidate reference method for determination of bilirubin in serum: test for transferability. Clin Chem 29:297–301. .
    1. Doumas BT, Poon Pat Kwok-Cheung Perry BW. 1985. Candidate reference method for determination of total bilirubin in serum: development and validation. Clin Chem 31:1779–1789. .
    1. Cook JGH. 1971. Creatinine assay in the presence of protein. Clin Chim Acta 32:485–486. doi:10.1016/0009-8981(71)90452-9.
    1. Bernt E, Bergmeyer HU. 1965. Urea, p 401–406. In Bergmeyer HU. (ed), Methods of enzymatic analysis, 2nd ed Academic Press, New York, NY.

Source: PubMed

3
Tilaa