Association between Adherence to the Mediterranean Diet and Physical Fitness with Body Composition Parameters in 1717 European Adolescents: The AdolesHealth Study

Pablo Galan-Lopez, Antonio J Sanchez-Oliver, Maret Pihu, Thórdís Gísladóttír, Raúl Domínguez, Francis Ries, Pablo Galan-Lopez, Antonio J Sanchez-Oliver, Maret Pihu, Thórdís Gísladóttír, Raúl Domínguez, Francis Ries

Abstract

Obesity, low levels of physical fitness, and unhealthy eating patterns are responsible for part of the health problems of adolescents today. The current study aimed at examining the association between the adherence to the Mediterranean diet (MD), through each answer to the items of the Adherence to the MD Questionnaire (KIDMED), and physical fitness with body composition parameters (body mass index (BMI), percentage of body fat, and waist circumference) in 1717 European adolescents (N = 900 boys, N = 817 girls). Data of body composition, physical fitness results, and the answers to KIDMED were analyzed by the Student's t-test. Additionally, the effect size (ES) was calculated and a Chi-square test analyzed the proportion of participants with and without over waist circumference, overfat, and overweight in each KIDMED question. The relative risk of suffering over waist circumference, overfat and overweight in relation to the responses was calculated by Odd-Ratio. Adherence to the MD did not influence the condition of over waist circumference, overfat and overweight, although certain dietary habits were identified as risk factors for their development. Over waist circumference, overfat, and overweight boys and girls presented higher levels of body mass, waist circumference, body fat percentage, and BMI (p < 0.001; ES = 1.73-3.38), as well as lower levels of all the parameters of the physical fitness analyzed (p < 0.001; ES = 0.45-1.08), except the handgrip test. A direct relationship between fitness and over waist circumference, overfat, and overweight was found.

Keywords: Mediterranean diet; adolescents; dietary patterns; physical fitness; risk and protective factors.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Total percentage of boys and girls (Owaist, Ofat, and Oweight). * Statistical difference between boys and girls with Ofat (p < 0.05).
Figure 2
Figure 2
Body composition parameters according to Owaist, Ofat, and Oweight groups.
Figure 3
Figure 3
Physical fitness values in over and non-over boys and girls according body composition parameters. * Statistical difference between groups (p < 0.05).

References

    1. Ng M., Fleming T., Robinson M., Thomson B., Graetz N., Margono C., Mullany E.C., Biryukov S., Abbafati C., Abera S.F., et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–781. doi: 10.1016/S0140-6736(14)60460-8.
    1. De Onis M., Blossner M., Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am. J. Clin. Nutr. 2010;92:1257–1264. doi: 10.3945/ajcn.2010.29786.
    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3.
    1. Suárez-Carmona W., Sánchez-Oliver A.J. Índice de masa corporal: Ventajas y desventajas de su uso en la obesidad. Relación con la fuerza y la actividad física. Nutr. Clín. Med. 2018;12:128–139. doi: 10.7400/NCM.2018.12.3.5067.
    1. Piché M.-E., Poirier P., Lemieux I., Després J.-P. Overview of Epidemiology and Contribution of Obesity and Body Fat Distribution to Cardiovascular Disease: An Update. Prog. Cardiovasc. Dis. 2018 doi: 10.1016/j.pcad.2018.06.004.
    1. Laws R., Campbell K.J., van der Pligt P., Russell G., Ball K., Lynch J., Crawford D., Taylor R., Askew D., Denney-Wilson E. The impact of interventions to prevent obesity or improve obesity related behaviours in children (0–5 years) from socioeconomically disadvantaged and/or indigenous families: A systematic review. BMC Public Health. 2014;14:779. doi: 10.1186/1471-2458-14-779.
    1. Evaristo S., Moreira C., Lopes L., Oliveira A., Abreu S., Agostinis-Sobrinho C., Oliveira-Santos J., Póvoas S., Santos R., Mota J. Muscular fitness and cardiorespiratory fitness are associated with health-related quality of life: Results from labmed physical activity study. J. Exerc. Sci. Fit. 2019;17:55–61. doi: 10.1016/j.jesf.2019.01.002.
    1. Ambrosini G.L. Childhood dietary patterns and later obesity: A review of the evidence. Proc. Nutr. Soc. 2014;73:137–146. doi: 10.1017/S0029665113003765.
    1. Andersen L.B., Sardinha L.B., Froberg K., Riddoch C.J., Page A.S., Anderssen S.A. Fitness, fatness and clustering of cardiovascular risk factors in children from Denmark, Estonia and Portugal: The European Youth Heart Study. Int. J. Pediatr. Obes. 2008;3:58–66. doi: 10.1080/17477160801896366.
    1. Gaesser G.A., Tucker W.J., Jarrett C.L., Angadi S.S. Fitness versus Fatness: Which Influences Health and Mortality Risk the Most? Curr. Sports Med. Rep. 2015;14:327–332. doi: 10.1249/JSR.0000000000000170.
    1. Lavie C.J., McAuley P.A., Church T.S., Milani R.V., Blair S.N. Obesity and cardiovascular diseases: Implications regarding fitness, fatness, and severity in the obesity paradox. J. Am. Coll. Cardiol. 2014;63:1345–1354. doi: 10.1016/j.jacc.2014.01.022.
    1. Olshansky S.J., Passaro D.J., Hershow R.C., Layden J., Carnes B.A., Brody J., Hayflick L., Butler R.N., Allison D.B., Ludwig D.S. A Potential Decline in Life Expectancy in the United States in the 21st Century. N. Engl. J. Med. 2005;352:1138–1145. doi: 10.1056/NEJMsr043743.
    1. Lang J.J., Tremblay M.S., Léger L., Olds T., Tomkinson G.R. International variability in 20 m shuttle run performance in children and youth: Who are the fittest from a 50-country comparison? A systematic literature review with pooling of aggregate results. Br. J. Sports Med. 2018;52:276. doi: 10.1136/bjsports-2016-096224.
    1. Arnaoutis G., Georgoulis M., Psarra G., Milkonidou A., Panagiotakos D.B., Kyriakou D., Bellou E., Tambalis K.D., Sidossis L.S. Association of Anthropometric and Lifestyle Parameters with Fitness Levels in Greek Schoolchildren: Results from the EYZHN Program. Front. Nutr. 2018;5:10. doi: 10.3389/fnut.2018.00010.
    1. Flynn M.A.T., McNeil D.A., Maloff B., Mutasingwa D., Wu M., Ford C., Tough S.C. Reducing obesity and related chronic disease risk in children and youth: A synthesis of evidence with “best practice” recommendations. Obes. Rev. 2006;7:7–66. doi: 10.1111/j.1467-789X.2006.00242.x.
    1. Sofi F., Cesari F., Abbate R., Gensini G.F., Casini A., Transmission P.P. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ. 2014;337:333–340. doi: 10.1136/bmj.a1344.
    1. Serra-Majem L., Román-Viñas B., Sanchez-Villegas A., Guasch-Ferré M., Corella D., La Vecchia C. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol. Asp. Med. 2019;67:1–55. doi: 10.1016/j.mam.2019.06.001.
    1. García Cabrera S., Herrera Fernández N., Rodríguez Hernández C., Nissensohn M., Román-Viñas B., Serra-Majem L. Prevalence of Low Adherence To the Mediterranean Diet in Children and Young; a Systematic Review. Nutr. Hosp. 2015;32:2390–2399. doi: 10.3305/nh.2015.32.6.9828.
    1. Tosti V., Bertozzi B., Fontana L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. Ser. A. 2018;73:318–326. doi: 10.1093/gerona/glx227.
    1. Sperber A.D. Translation and validation of study instruments for cross-cultural research. Gastroenterology. 2004;126:S124–S128. doi: 10.1053/j.gastro.2003.10.016.
    1. Wilson P.M., Rodgers W.M., Fraser S.N. Examining the psychometric properties of the behavioral regulation in exercise questionnaire. Meas. Phys. Educ. Exerc. Sci. 2002;6:1–21. doi: 10.1207/S15327841MPEE0601_1.
    1. Ruiz J.R., Castro-Piñero J., España-Romero V., Artero E.G., Ortega F.B., Cuenca M.A.M., Enez-Pavón D.J., Chillón P., Girela-Rejón M.J., Mora J., et al. Field-based fitness assessment in young people: The ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 2011;45:518–524. doi: 10.1136/bjsm.2010.075341.
    1. Galan-Lopez P., Ries F., Gisladottir T., Domínguez R., Sánchez-Oliver A.J. Healthy Lifestyle: Relationship between Mediterranean Diet, Body Composition and Physical Fitness in 13 to 16-Years Old Icelandic Students. Int. J. Environ. Res. Public Health. 2018;15:2632. doi: 10.3390/ijerph15122632.
    1. Galan-Lopez P., Sánchez-Oliver A.J., Ries F., González-Jurado J.A. Mediterranean Diet, Physical Fitness and Body Composition in Sevillian Adolescents: A Healthy Lifestyle. Nutrients. 2019;11:2009. doi: 10.3390/nu11092009.
    1. Moreno L.A., Mesana M.I., González-Gross M., Gil C.M., Fleta J., Wärnberg J., Ruiz J.R., Sarría A., Marcos A., Bueno M., et al. Anthropometric body fat composition reference values in Spanish adolescents. The AVENA Study. Eur. J. Clin. Nutr. 2006;60:191–196. doi: 10.1038/sj.ejcn.1602285.
    1. Moreno L.A., Mesana M.I., González-Gross M., Gil C.M., Ortega F.B., Fleta J., Wärnberg J., León J.F., Marcos A., Bueno M., et al. Body fat distribution reference standards in Spanish adolescents: The AVENA Study. Int. J. Obes. 2007;31:1798–1805. doi: 10.1038/sj.ijo.0803670.
    1. Gómez-Martínez S., Martínez-Gómez D., Perez de Heredia F., Romeo J., Cuenca-Garcia M., Martín-Matillas M., Castillo M., Rey-López J.-P., Vicente-Rodriguez G., Moreno L., et al. Eating habits and total and abdominal fat in Spanish adolescents: Influence of physical activity. The AVENA study. J. Adolesc. Health. 2012;50:403–409. doi: 10.1016/j.jadohealth.2011.08.016.
    1. Jiménez-Pavón D., Ortega F.B., Ruiz J.R., Chillón P., Castillo R., Artero E.G., Martinez-Gómez D., Vicente-Rodriguez G., Rey-López J.P., Gracia L.A., et al. Influence of socioeconomic factors on fitness and fatness in Spanish adolescents: The AVENA study. Int. J. Pediatr. Obes. 2010;5:467–473. doi: 10.3109/17477160903576093.
    1. Artero E.G., España-Romero V., Ortega F.B., Jiménez-Pavón D., Ruiz J.R., Vicente-Rodríguez G., Bueno M., Marcos A., Gómez-Martínez S., Urzanqui A., et al. Health-related fitness in adolescents: Underweight, and not only overweight, as an influencing factor. The AVENA study. Scand. J. Med. Sci. Sports. 2009;20:418–427. doi: 10.1111/j.1600-0838.2009.00959.x.
    1. Vicente-Rodríguez G., Rey-López J.P., Martín-Matillas M., Moreno L.A., Wärnberg J., Redondo C., Tercedor P., Delgado M., Marcos A., Castillo M., et al. AVENA Study Group Television watching, videogames, and excess of body fat in Spanish adolescents: The AVENA study. Nutrition. 2008;24:654–662. doi: 10.1016/j.nut.2008.03.011.
    1. Jiménez-Pavón D., Castillo M.J., Moreno L.A., Kafatos A., Manios Y., Kondaki K., Béghin L., Zaccaria M., de Henauw S., Widhalm K., et al. Helena Study Group Fitness and fatness are independently associated with markers of insulin resistance in European adolescents; the HELENA study. Int. J. Pediatr. Obes. 2011;6:253–260. doi: 10.3109/17477166.2011.575158.
    1. Labayen I., Ruiz J.R., Ortega F.B., Huybrechts I., Rodríguez G., Jiménez-Pavón D., Roccaldo R., Nova E., Widhalm K., Kafatos A., et al. High fat diets are associated with higher abdominal adiposity regardless of physical activity in adolescents; the HELENA study. Clin. Nutr. 2014;33:859–866. doi: 10.1016/j.clnu.2013.10.008.
    1. Martinez-Gomez D., Moreno L.A., Romeo J., Rey-López P., Castillo R., Cabero M.J., Vicente-Rodriguez G., Gutiérrez A., Veiga O.L. Combined influence of lifestyle risk factors on body fat in Spanish adolescents--the Avena study. Obes. Facts. 2011;4:105–111. doi: 10.1159/000327686.
    1. Galan-Lopez P., Domínguez R., Pihu M., Gísladóttir T., Sánchez-Oliver A.J., Ries F. Evaluation of Physical Fitness, Body Composition, and Adherence to Mediterranean Diet in Adolescents from Estonia: The AdolesHealth Study. Int. J. Environ. Res. Public Health. 2019;16:4479. doi: 10.3390/ijerph16224479.
    1. Grosso G., Marventano S., Buscemi S., Scuderi A., Matalone M., Platania A., Giorgianni G., Rametta S., Nolfo F., Galvano F., et al. Factors Associated with Adherence to the Mediterranean Diet among Adolescents Living in Sicily, Southern Italy. Nutrients. 2013;5:4908–4923. doi: 10.3390/nu5124908.
    1. Pearson N., Haycraft E., Johnston J.P., Atkin A.J. Sedentary behaviour across the primary-secondary school transition: A systematic review. Prev. Med. 2017;94:40–47. doi: 10.1016/j.ypmed.2016.11.010.
    1. Moreno L.A., Kersting M., de Henauw S., González-Gross M., Sichert-Hellert W., Matthys C., Mesana M.I., Ross N. How to measure dietary intake and food habits in adolescence: The European perspective. Int. J. Obes. 2005;29(suppl. 2):S66–S77. doi: 10.1038/sj.ijo.0803063.
    1. Archero F., Ricotti R., Solito A., Carrera D., Civello F., Di Bella R., Bellone S., Prodam F. Adherence to the Mediterranean Diet among School Children and Adolescents Living in Northern Italy and Unhealthy Food Behaviors Associated to Overweight. Nutrients. 2018;10:1322. doi: 10.3390/nu10091322.
    1. Grosso G., Galvano F. Mediterranean diet adherence in children and adolescents in southern European countries. NFS J. 2016;3:13–19. doi: 10.1016/j.nfs.2016.02.004.
    1. Mariscal-Arcas M., Romaguera D., Rivas A., Feriche B., Pons A., Tur J.A., Olea-Serrano F. Diet quality of young people in southern Spain evaluated by a Mediterranean adaptation of the Diet Quality Index-International (DQI-I) Br. J. Nutr. 2007;98:1267–1273. doi: 10.1017/S0007114507781424.
    1. Mariscal-Arcas M., Rivas A., Velasco J., Ortega M., Caballero A.M., Olea-Serrano F. Evaluation of the Mediterranean Diet Quality Index (KIDMED) in children and adolescents in Southern Spain. Public Health Nutr. 2009;12:1408–1412. doi: 10.1017/S1368980008004126.
    1. Grosso G., Mistretta A., Marventano S., Purrello A., Vitaglione P., Calabrese G., Drago F., Galvano F. Beneficial effects of the Mediterranean diet on metabolic syndrome. Curr. Pharm. Des. 2014;20:5039–5044. doi: 10.2174/1381612819666131206112144.
    1. López-Alarcón M., Perichart-Perera O., Flores-Huerta S., Inda-Icaza P., Rodríguez-Cruz M., Armenta-Álvarez A., Bram-Falcón M.T., Mayorga-Ochoa M. Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity. Mediat. Inflamm. 2014;2014:1–7. doi: 10.1155/2014/849031.
    1. Bradley P. Refined carbohydrates, phenotypic plasticity and the obesity epidemic. Med. Hypotheses. 2019;131 doi: 10.1016/j.mehy.2019.109317.
    1. Giacco R., Della Pepa G., Luongo D., Riccardi G. Whole grain intake in relation to body weight: From epidemiological evidence to clinical trials. Nutr. Metab. Cardiovasc. Dis. 2011;21:901–908. doi: 10.1016/j.numecd.2011.07.003.
    1. O’Neil C.E., Zanovec M., Cho S.S., Nicklas T.A. Whole grain and fiber consumption are associated with lower body weight measures in US adults: National Health and Nutrition Examination Survey 1999–2004. Nutr. Res. 2010;30:815–822. doi: 10.1016/j.nutres.2010.10.013.
    1. Sette S., D’Addezio L., Piccinelli R., Hopkins S., Le Donne C., Ferrari M., Mistura L., Turrini A. Intakes of whole grain in an Italian sample of children, adolescents and adults. Eur. J. Nutr. 2017;56:521–533. doi: 10.1007/s00394-015-1097-5.
    1. Kamar M., Evans C., Hugh-Jones S. Factors influencing adolescent whole grain intake: A theory-based qualitative study. Appetite. 2016;101:125–133. doi: 10.1016/j.appet.2016.02.154.
    1. Larson N.I., Neumark-Sztainer D., Story M., Burgess-Champoux T. Whole-Grain Intake Correlates among Adolescents and Young Adults: Findings from Project EAT. J. Am. Diet. Assoc. 2010;110:230–237. doi: 10.1016/j.jada.2009.10.034.
    1. Hur I.Y., Reicks M. Relationship between Whole-Grain Intake, Chronic Disease Risk Indicators, and Weight Status among Adolescents in the National Health and Nutrition Examination Survey, 1999–2004. J. Acad. Nutr. Diet. 2012;112:46–55. doi: 10.1016/j.jada.2011.08.028.
    1. Zhao W., Tang H., Yang X., Luo X., Wang X., Shao C., He J. Fish Consumption and Stroke Risk: A Meta-Analysis of Prospective Cohort Studies. J. Stroke Cerebrovasc. Dis. 2019;28:604–611. doi: 10.1016/j.jstrokecerebrovasdis.2018.10.036.
    1. Xun P., Qin B., Song Y., Nakamura Y., Kurth T., Yaemsiri S., Djousse L., He K. Fish consumption and risk of stroke and its subtypes: Accumulative evidence from a meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2012;66:1199–1207. doi: 10.1038/ejcn.2012.133.
    1. Lu L., Xun P., Wan Y., He K., Cai W. Long-term association between dairy consumption and risk of childhood obesity: A systematic review and meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2016;70:414–423. doi: 10.1038/ejcn.2015.226.
    1. Kang K., Sotunde O.F., Weiler H.A. Effects of Milk and Milk-Product Consumption on Growth among Children and Adolescents Aged 6–18 Years: A Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2019;10:250–261. doi: 10.1093/advances/nmy081.
    1. Wrotniak B.H., Georger L., Hill D.L., Zemel B.S., Stettler N. Association of dairy intake with weight change in adolescents undergoing obesity treatment. J. Public Health. 2019;41:338–345. doi: 10.1093/pubmed/fdy064.
    1. Zheng M., Rangan A., Olsen N.J., Andersen L.B., Wedderkopp N., Kristensen P., Grøntved A., Ried-Larsen M., Lempert S.M., Allman-Farinelli M., et al. Substituting sugar-sweetened beverages with water or milk is inversely associated with body fatness development from childhood to adolescence. Nutrition. 2015;31:38–44. doi: 10.1016/j.nut.2014.04.017.
    1. Estruch R., Ros E., Salas-Salvadó J., Covas M.-I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018;378:e34. doi: 10.1056/NEJMoa1800389.
    1. Eslami O., Shidfar F., Dehnad A. Inverse association of long-term nut consumption with weight gain and risk of overweight/obesity: A systematic review. Nutr. Res. 2019;68:1–8. doi: 10.1016/j.nutres.2019.04.001.
    1. Hebden L., O’Leary F., Rangan A., Singgih Lie E., Hirani V., Allman-Farinelli M. Fruit consumption and adiposity status in adults: A systematic review of current evidence. Crit. Rev. Food Sci. Nutr. 2017;57:2526–2540. doi: 10.1080/10408398.2015.1012290.
    1. Fardet A., Richonnet C., Mazur A. Association between consumption of fruit or processed fruit and chronic diseases and their risk factors: A systematic review of meta-analyses. Nutr. Rev. 2019;77:376–387. doi: 10.1093/nutrit/nuz004.
    1. Guyenet S.J. Impact of Whole, Fresh Fruit Consumption on Energy Intake and Adiposity: A Systematic Review. Front. Nutr. 2019;6:66. doi: 10.3389/fnut.2019.00066.
    1. Schwingshackl L., Hoffmann G., Kalle-Uhlmann T., Arregui M., Buijsse B., Boeing H. Fruit and Vegetable Consumption and Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. PLoS ONE. 2015;10:e0140846. doi: 10.1371/journal.pone.0140846.
    1. Maillot M., Vieux F., Rehm C.D., Rose C.M., Drewnowski A. Consumption Patterns of Milk and 100% Juice in Relation to Diet Quality and Body Weight Among United States Children: Analyses of NHANES 2011-16 Data. Front. Nutr. 2019;6:117. doi: 10.3389/fnut.2019.00117.
    1. Neri D., Martinez-Steele E., Monteiro C.A., Levy R.B. Consumption of ultra-processed foods and its association with added sugar content in the diets of US children, NHANES 2009–2014. Pediatr. Obes. 2019:e12563. doi: 10.1111/ijpo.12563.
    1. Vandevijvere S., Jaacks L.M., Monteiro C.A., Moubarac J.-C., Girling-Butcher M., Lee A.C., Pan A., Bentham J., Swinburn B. Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes. Rev. 2019 doi: 10.1111/obr.12860.
    1. Mistry S.K., Puthussery S. Risk factors of overweight and obesity in childhood and adolescence in South Asian countries: A systematic review of the evidence. Public Health. 2015;129:200–209. doi: 10.1016/j.puhe.2014.12.004.
    1. Ludwig D.S., Peterson K.E., Gortmaker S.L. Relation between consumption of sugar-sweetened drinks and childhood obesity: A prospective, observational analysis. Lancet. 2001;357:505–508. doi: 10.1016/S0140-6736(00)04041-1.
    1. Tambalis K.D., Panagiotakos D.B., Psarra G., Sidossis L.S. Association of cardiorespiratory fitness levels with dietary habits and lifestyle factors in schoolchildren. Appl. Physiol. Nutr. Metab. 2019;44:539–545. doi: 10.1139/apnm-2018-0407.
    1. Lassi Z.S., Moin A., Das J.K., Salam R.A., Bhutta Z.A. Systematic review on evidence-based adolescent nutrition interventions. Ann. N. Y. Acad. Sci. 2017;1393:34–50. doi: 10.1111/nyas.13335.
    1. Moreno L.A., Gottrand F., Huybrechts I., Ruiz J.R., González-Gross M., DeHenauw S., HELENA Study Group Nutrition and lifestyle in european adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Adv. Nutr. 2014;5:615S–623S. doi: 10.3945/an.113.005678.
    1. Hallström L., Labayen I., Ruiz J.R., Patterson E., Vereecken C.A., Breidenassel C., Gottrand F., Huybrechts I., Manios Y., Mistura L., et al. HELENA Study Group Breakfast consumption and CVD risk factors in European adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 2013;16:1296–1305. doi: 10.1017/S1368980012000973.
    1. Blondin S.A., Anzman-Frasca S., Djang H.C., Economos C.D. Breakfast consumption and adiposity among children and adolescents: An updated review of the literature. Pediatr. Obes. 2016;11:333–348. doi: 10.1111/ijpo.12082.
    1. Szajewska H., Ruszczynski M. Systematic review demonstrating that breakfast consumption influences body weight outcomes in children and adolescents in Europe. Crit. Rev. Food Sci. Nutr. 2010;50:113–119. doi: 10.1080/10408390903467514.
    1. Ells L.J., Rees K., Brown T., Mead E., Al-Khudairy L., Azevedo L., McGeechan G.J., Baur L., Loveman E., Clements H., et al. Interventions for treating children and adolescents with overweight and obesity: An overview of Cochrane reviews. Int. J. Obes. 2018;42:1823–1833. doi: 10.1038/s41366-018-0230-y.
    1. Ortega F.B., Ruiz J.R., Castillo M.J., Sjöström M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008;32:1–11. doi: 10.1038/sj.ijo.0803774.
    1. Ruiz J.R., Castro-Piñero J., Artero E.G., Ortega F.B., Sjöström M., Suni J., Castillo M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009;43:909–923. doi: 10.1136/bjsm.2008.056499.
    1. Haffner S.M. Abdominal adiposity and cardiometabolic risk: Do we have all the answers? Am. J. Med. 2007;120 doi: 10.1016/j.amjmed.2007.06.006.
    1. Williams P.T. Physical fitness and activity as separate heart disease risk factors: A meta-analysis. Med. Sci. Sports Exerc. 2001;33:754–761. doi: 10.1097/00005768-200105000-00012.
    1. Gontarev S., Kalac R., Zivkovic V., Velickovska L.A., Telai B. The association between high blood pressure, physical fitness and fatness in adolescents. Nutr. Hosp. 2017;34:35. doi: 10.20960/nh.973.
    1. Tishukaj F., Shalaj I., Gjaka M., Ademi B., Ahmetxhekaj R., Bachl N., Tschan H., Wessner B. Physical fitness and anthropometric characteristics among adolescents living in urban or rural areas of Kosovo. BMC Public Health. 2017;17:711. doi: 10.1186/s12889-017-4727-4.
    1. Lang J.J., Larouche R., Tremblay M.S. The association between physical fitness and health in a nationally representative sample of Canadian children and youth aged 6 to 17 years. Health Promot. Chronic Dis. Prev. Can. Res. Policy Pract. 2019;39:104–111. doi: 10.24095/hpcdp.39.3.02.
    1. Joensuu L., Syväoja H., Kallio J., Kulmala J., Kujala U.M., Tammelin T.H. Objectively measured physical activity, body composition and physical fitness: Cross-sectional associations in 9- to 15-year-old children. Eur. J. Sport Sci. 2018 doi: 10.1080/17461391.2018.1457081.
    1. Garcia-Pastor T., Salinero J.J., Sanz-Frias D., Pertusa G., Del Coso J. Body fat percentage is more associated with low physical fitness than with sedentarism and diet in male and female adolescents. Physiol. Behav. 2016;165:166–172. doi: 10.1016/j.physbeh.2016.07.016.
    1. Fernández I., Canet O., Giné-Garriga M. Assessment of physical activity levels, fitness and perceived barriers to physical activity practice in adolescents: Cross-sectional study. Eur. J. Pediatr. 2017;176:57–65. doi: 10.1007/s00431-016-2809-4.
    1. Gulías-González R., Martínez-Vizcaíno V., García-Prieto J.C., Díez-Fernández A., Olivas-Bravo Á., Sánchez-López M. Excess of weight, but not underweight, is associated with poor physical fitness in children and adolescents from Castilla-La Mancha, Spain. Eur. J. Pediatr. 2014;173:727–735. doi: 10.1007/s00431-013-2233-y.
    1. Marcovecchio M.L., Chiarelli F. Obesity and growth during childhood and puberty. World Rev. Nutr. Diet. 2013;106:135–141. doi: 10.1159/000342545.
    1. Deforche B.I., De Bourdeaudhuij I.M., Tanghe A.P. Attitude toward physical activity in normal-weight, overweight and obese adolescents. J. Adolesc. Health. 2006;38:560–568. doi: 10.1016/j.jadohealth.2005.01.015.
    1. Sattler K.M., Deane F.P., Tapsell L., Kelly P.J. Gender differences in the relationship of weight-based stigmatisation with motivation to exercise and physical activity in overweight individuals. Health Psychol. Open. 2018;5 doi: 10.1177/2055102918759691.

Source: PubMed

3
Tilaa