Central mechanisms of real and sham electroacupuncture in the treatment of chronic low back pain: study protocol for a randomized, placebo-controlled clinical trial

Jiang-Ti Kong, Brandon MacIsaac, Ruti Cogan, Amanda Ng, Christine Sze Wan Law, Joseph Helms, Rosa Schnyer, Nicholas Vasilis Karayannis, Ming-Chih Kao, Lu Tian, Beth D Darnall, James J Gross, Sean Mackey, Rachel Manber, Jiang-Ti Kong, Brandon MacIsaac, Ruti Cogan, Amanda Ng, Christine Sze Wan Law, Joseph Helms, Rosa Schnyer, Nicholas Vasilis Karayannis, Ming-Chih Kao, Lu Tian, Beth D Darnall, James J Gross, Sean Mackey, Rachel Manber

Abstract

Background: Chronic low back pain (CLBP) is the most common chronic pain condition and is often resistant to conventional treatments. Acupuncture is a popular alternative for treating CLBP but its mechanisms of action remain poorly understood. Evidence suggests that pain regulatory mechanisms (particularly the ascending and secondarily the descending pain modulatory pathways) and psychological mechanisms (e.g., expectations, pain catastrophizing and self-efficacy) may be involved in the pathogenesis of CLBP and its response to treatments. We will examine these mechanisms in the treatment of CLBP by electroacupuncture (EA).

Methods: We present the aims and methods of a placebo-controlled, participant-blinded and assessor-blinded mechanistic study. Adult patients with CLBP will be randomized to receiving 16 sessions of real (active) or sham (placebo) EA over the course of 8 weeks. The primary pain regulatory measure for which the study was powered is temporal summation (TS), which approximates ascending pain facilitation. Conditioned pain modulation (CPM), representing a descending pain modulatory pathway, will be our secondary pain regulatory measure. The primary psychological measure is expectations of benefit, and the secondary psychological measures are pain catastrophizing and self-efficacy in managing pain. Main clinical outcomes are back pain bothersomeness on a 0-100 visual analog scale (primary), Roland Morris Disability Questionnaire (secondary), and relevant items from the National Institutes of Health (NIH) Patient-Reported Outcome Measures Information System (secondary). We hypothesize that compared to sham, real EA will lead to greater reduction in TS after 8 treatment sessions (4 weeks); and that reduction in TS (and secondarily, increase in CPM) after 8 treatment sessions will mediate reduction in back pain bothersomeness from baseline to week 10 (clinical response) to EA. We also hypothesize that the three psychological factors are moderators of clinical response. With 100 treatment completers, the study is designed to have 80% power to detect a medium-sized between-group effect (d = 0.5) on temporal summation.

Discussion: To the best of our knowledge, this is the first appropriately powered, placebo-controlled clinical trial evaluating mechanisms of EA in the treatment of CLBP.

Trial registration: ClinicalTrials.gov, NCT02503475 . Registered on 15 July 15 2015. Retrospectively registered.

Keywords: Catastrophizing; Chronic; Conditioned pain modulation; Electrical acupuncture; Electroacupuncture; Expectation; Low back pain; PROMIS; Pressure pain threshold; Quantitative sensory testing; Self-efficacy; Sham acupuncture; Temporal summation.

Conflict of interest statement

Ethics approval and consent to participate

This study has been approved for human subject research by the Stanford University IRB (reference number 22436) and undergoes routine review and resubmissions to the appropriate parties. This trial is registered with Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Participant timeline. EA, electroacupuncture. Participants are randomized to verum (real) or sham acupuncture
Fig. 2
Fig. 2
Standard protocol items: recommendation for interventional trials (SPIRIT) figure (required for study protocols). Wk, week; MINI, Mini International Neuropsychiatric Interview; QST, quantitative sensory testing; fMRI, functional magnetic resonance imaging

References

    1. Meucci RD, Fassa AG, Faria NM. Prevalence of chronic low back pain: systematic review. Revista de saude publica. 2015;49.
    1. Shmagel A, Foley R, Ibrahim H. Epidemiology of chronic low back pain in US adults: data from the 2009-2010 National Health and Nutrition Examination Survey. Arthritis Care Res. 2016;68(11):1688–1694.
    1. Dieleman JL, Baral R, Birger M, Bui AL, Bulchis A, Chapin A, Hamavid H, Horst C, Johnson EK, Joseph J, et al. US Spending on personal health care and public health, 1996-2013. JAMA. 2016;316(24):2627–2646.
    1. Chou R, Loeser JD, Owens DK, Rosenquist RW, Atlas SJ, Baisden J, Carragee EJ, Grabois M, Murphy DR, Resnick DK, et al. Interventional therapies, surgery, and interdisciplinary rehabilitation for low back pain: an evidence-based clinical practice guideline from the American Pain Society. Spine. 2009;34(10):1066–1077.
    1. Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F, Williams DA, Clauw DJ. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum. 2004;50(2):613–623.
    1. Sanzarello I, Merlini L, Rosa MA, Perrone M, Frugiuele J, Borghi R, Faldini C. Central sensitization in chronic low back pain: a narrative review. J Back Musculoskelet Rehabil. 2016;29(4):625–633.
    1. Ung H, Brown JE, Johnson KA, Younger J, Hush J, Mackey S. Multivariate classification of structural MRI data detects chronic low back pain. Cereb Cortex. 2014;24(4):1037–1044.
    1. Berman BM, Langevin HM, Witt CM, Dubner R. Acupuncture for chronic low back pain. N Engl J Med. 2010;363(5):454–461.
    1. Haake M, Muller HH, Schade-Brittinger C, Basler HD, Schafer H, Maier C, Endres HG, Trampisch HJ, Molsberger A. German acupuncture trials (GERAC) for chronic low back pain: randomized, multicenter, blinded, parallel-group trial with 3 groups. Arch Intern Med. 2007;167(17):1892–1898.
    1. Cherkin DC, Sherman KJ, Avins AL, Erro JH, Ichikawa L, Barlow WE, Delaney K, Hawkes R, Hamilton L, Pressman A, et al. A randomized trial comparing acupuncture, simulated acupuncture, and usual care for chronic low back pain. Arch Intern Med. 2009;169(9):858–866.
    1. Langevin HM, Schnyer R, MacPherson H, Davis R, Harris RE, Napadow V, Wayne PM, Milley RJ, Lao L, Stener-Victorin E, et al. Manual and electrical needle stimulation in acupuncture research: pitfalls and challenges of heterogeneity. J Altern Complement Med. 2015;21(3):113–128.
    1. Hansson P. Translational aspects of central sensitization induced by primary afferent activity: what it is and what it is not. Pain. 2014;155(10):1932–1934.
    1. Melzack R, Wall PD. Pain mechanisms: a new theory. Science (New York, NY) 1965;150(3699):971–979.
    1. Treede RD. Gain control mechanisms in the nociceptive system. Pain. 2016;157(6):1199–1204.
    1. Martucci KT, Mackey SC. Imaging pain. Anesthesiol Clin. 2016;34(2):255–269.
    1. Martucci KT, Ng P, Mackey S. Neuroimaging chronic pain: what have we learned and where are we going? Future Neurol. 2014;9(6):615–626.
    1. Rabey M, Slater H, O'Sullivan P, Beales D, Smith A. Somatosensory nociceptive characteristics differentiate subgroups in people with chronic low back pain: a cluster analysis. Pain. 2015;156(10):1874–1884.
    1. Jiang Y, Oathes D, Hush J, Darnall B, Charvat M, Mackey S, Etkin A. Perturbed connectivity of the amygdala and its subregions with the central executive and default mode networks in chronic pain. Pain. 2016;157(9):1970–1978.
    1. Taub CJ, Sturgeon JA, Johnson KA, Mackey SC, Darnall BD. Effects of a pain catastrophizing induction on sensory testing in women with chronic low back pain: a pilot study. Pain Res Manag. 2017;2017:7892494.
    1. Martucci KT, Mackey S. Neuroimaging of pain: human evidence and clinical relevance of central nervous system processes and modulation. Anesthesiology. 2018;128(6):1241–54.
    1. Chou R, Deyo R, Friedly J, Skelly A, Hashimoto R, Weimer M, Fu R, Dana T, Kraegel P, Griffin J, et al. Nonpharmacologic therapies for low back pain: a systematic review for an American College of Physicians Clinical Practice Guideline. Ann Intern Med. 2017;166(7):493–505.
    1. Chou R, Deyo R, Friedly J, Skelly A, Weimer M, Fu R, Dana T, Kraegel P, Griffin J, Grusing S. Systemic pharmacologic therapies for low back pain: a systematic review for an American College of Physicians Clinical Practice Guideline. Ann Intern Med. 2017;166(7):480–492.
    1. Nijs J, Meeus M, Van Oosterwijck J, Roussel N, De Kooning M, Ickmans K, Matic M. Treatment of central sensitization in patients with 'unexplained' chronic pain: what options do we have? Expert Opin Pharmacother. 2011;12(7):1087–1098.
    1. Backonja MM, Walk D, Edwards RR, Sehgal N, Moeller-Bertram T, Wasan A, Irving G, Argoff C, Wallace M. Quantitative sensory testing in measurement of neuropathic pain phenomena and other sensory abnormalities. Clin J Pain. 2009;25(7):641–647.
    1. Walk D, Sehgal N, Moeller-Bertram T, Edwards RR, Wasan A, Wallace M, Irving G, Argoff C, Backonja MM. Quantitative sensory testing and mapping: a review of nonautomated quantitative methods for examination of the patient with neuropathic pain. Clin J Pain. 2009;25(7):632–640.
    1. Arendt-Nielsen L, Petersen-Felix S. Wind-up and neuroplasticity: is there a correlation to clinical pain? Eur J Anaesthesiol Suppl. 1995;10:1–7.
    1. Price DD. Characteristics of second pain and flexion reflexes indicative of prolonged central summation. Exp Neurol. 1972;37(2):371–387.
    1. Price DD, Hu JW, Dubner R, Gracely RH. Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain. 1977;3(1):57–68.
    1. Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. Curr Opin Anaesthesiol. 2010;23(5):611–615.
    1. Le Bars D: The whole body receptive field of dorsal horn multireceptive neurones. Brain Res Brain Res Rev 2002, 40(1–3):29–44.
    1. Moont R, Crispel Y, Lev R, Pud D, Yarnitsky D. Temporal changes in cortical activation during distraction from pain: a comparative LORETA study with conditioned pain modulation. Brain Res. 2012;1435:105–117.
    1. Zhao ZQ. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol. 2008;85(4):355–375.
    1. Han JS. Acupuncture and endorphins. Neurosci Lett. 2004;361(1–3):258–261.
    1. Pomeranz B, Chiu D. Naloxone blockade of acupuncture analgesia: endorphin implicated. Life Sci. 1976;19(11):1757–1762.
    1. Zheng Z, Feng SJ, Costa C, Li CG, Lu D, Xue CC. Acupuncture analgesia for temporal summation of experimental pain: a randomised controlled study. Eur J Pain. 2010;14(7):725–731.
    1. Kong JT, Schnyer RN, Johnson KA, Mackey S. Understanding central mechanisms of acupuncture analgesia using dynamic quantitative sensory testing: a review. Evid Based Complement Alternat Med. 2013;2013:187182.
    1. Linde K, Witt CM, Streng A, Weidenhammer W, Wagenpfeil S, Brinkhaus B, Willich SN, Melchart D. The impact of patient expectations on outcomes in four randomized controlled trials of acupuncture in patients with chronic pain. PAIN. 2007;128(3):264–271.
    1. McRae C, Cherin E, Yamazaki TG, Diem G, Vo AH, Russell D, Ellgring JH, Fahn S, Greene P, Dillon S, et al. Effects of perceived treatment on quality of life and medical outcomes in a double-blind placebo surgery trial. Arch Gen Psychiatry. 2004;61(4):412–420.
    1. Sherman KJ, Cherkin DC, Ichikawa L, Avins AL, Delaney K, Barlow WE, Khalsa PS, Deyo RA. Treatment expectations and preferences as predictors of outcome of acupuncture for chronic back pain. Spine. 2010;35(15):1471–1477.
    1. Costa Lda C, Maher CG, McAuley JH, Hancock MJ, Smeets RJ. Self-efficacy is more important than fear of movement in mediating the relationship between pain and disability in chronic low back pain. Eur J Pain. 2011;15(2):213–219.
    1. Marshall PWM, Schabrun S, Knox MF. Physical activity and the mediating effect of fear, depression, anxiety, and catastrophizing on pain related disability in people with chronic low back pain. PLoS One. 2017;12(7):e0180788.
    1. Bishop FL, Yardley L, Prescott P, Cooper C, Little P, Lewith GT. Psychological covariates of longitudinal changes in back-related disability in patients undergoing acupuncture. Clin J Pain. 2015;31(3):254–264.
    1. Colloca L, Grillon C. Understanding placebo and nocebo responses for pain management. Curr Pain Headache Rep. 2014;18(6):419.
    1. Kaptchuk TJ, Kelley JM, Conboy LA, Davis RB, Kerr CE, Jacobson EE, Kirsch I, Schyner RN, Nam BH, Nguyen LT, et al. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ (Clin Res ed) 2008;336(7651):999–1003.
    1. Deyo RA, Dworkin SF, Amtmann D, Andersson G, Borenstein D, Carragee E, Carrino J, Chou R, Cook K, DeLitto A, et al. Report of the NIH Task Force on research standards for chronic low back pain. J Pain. 2014;15(6):569–585.
    1. Streitberger K, Kleinhenz J. Introducing a placebo needle into acupuncture research. Lancet (London, England) 1998;352(9125):364–365.
    1. Campbell A. Role of C tactile fibres in touch and emotion – clinical and research relevance to acupuncture. Acupunct Med. 2006;24(4):169–171.
    1. Wayne PM, Krebs DE, Macklin EA, Schnyer R, Kaptchuk TJ, Parker SW, Scarborough DM, McGibbon CA, Schaechter JD, Stein J, et al. Acupuncture for upper-extremity rehabilitation in chronic stroke: a randomized sham-controlled study. Arch Phys Med Rehabil. 2005;86(12):2248–2255.
    1. Witt CM, Pach D, Brinkhaus B, Wruck K, Tag B, Mank S, Willich SN. Safety of acupuncture: results of a prospective observational study with 229,230 patients and introduction of a medical information and consent form. Complement Med Res. 2009;16(2):91–97.
    1. Kong JT, Johnson KA, Balise RR, Mackey S. Test-retest reliability of thermal temporal summation using an individualized protocol. J Pain. 2013;14(1):79–88.
    1. Mackey IG, Dixon EA, Johnson K, Kong JT. Dynamic quantitative sensory testing to characterize central pain processing. J Vis Exp. 2017;120. 10.3791/54452.
    1. Cherkin DC, Sherman KJ, Balderson BH, Cook AJ, Anderson ML, Hawkes RJ, Hansen KE, Turner JA. Effect of mindfulness-based stress reduction vs cognitive behavioral therapy or usual care on back pain and functional limitations in adults with chronic low back pain: a randomized clinical trial. JAMA. 2016;315(12):1240–1249.
    1. Bernaba M, Johnson KA, Kong JT, Mackey S. Conditioned pain modulation is minimally influenced by cognitive evaluation or imagery of the conditioning stimulus. J Pain Res. 2014;7:689–697.
    1. Sullivan MJL, Bishop SR, Pivik J. The Pain Catastrophizing Scale: development and validation. Psychol Assess. 1995;7(4):524–532.
    1. Turner JA, Ersek M, Kemp C. Self-efficacy for managing pain is associated with disability, depression, and pain coping among retirement community residents with chronic Pain. J pain. 2005;6(7):471–479.
    1. Smith MD, Kotz S, Read CB, Balakrishnan N, Vidakovic B, Johnson NL. Biased-coin randomization. In: Encyclopedia of statistical sciences. Hoboken: Wiley; 2004.
    1. Dworkin RH, Turk DC, Peirce-Sandner S, Burke LB, Farrar JT, Gilron I, Jensen MP, Katz NP, Raja SN, Rappaport BA, et al. Considerations for improving assay sensitivity in chronic pain clinical trials: IMMPACT recommendations. Pain. 2012;153(6):1148–1158.
    1. Sherman KJ, Cherkin DC, Ichikawa L, Avins AL, Barlow WE, Khalsa PS, Deyo RA. Characteristics of patients with chronic back pain who benefit from acupuncture. BMC Musculoskelet Disord. 2009;10:114.
    1. Witt CM, Schutzler L, Ludtke R, Wegscheider K, Willich SN. Patient characteristics and variation in treatment outcomes: which patients benefit most from acupuncture for chronic pain? Clin J Pain. 2011;27(6):550–555.
    1. Kraemer HC, Kiernan M, Essex M, Kupfer DJ. How and why criteria defining moderators and mediators differ between the Baron & Kenny and MacArthur approaches. Health Psychol. 2008;27(2s):S101–S108.
    1. MacPherson H, Altman DG, Hammerschlag R, Youping L, Taixiang W, White A, Moher D. Revised standards for reporting interventions in clinical trials of acupuncture (STRICTA): extending the CONSORT statement. PLoS Med. 2010;7(6):e1000261.
    1. Ghoname EA, Craig WF, White PF, Ahmed HE, Hamza MA, Henderson BN, Gajraj NM, Huber PJ, Gatchel RJ. Percutaneous electrical nerve stimulation for low back pain: a randomized crossover study. JAMA. 1999;281(9):818–823.

Source: PubMed

3
Tilaa