An Inexpensive and Easy to Use Cervical Range of Motion Measurement Solution Using Inertial Sensors

Rafael Raya, Rodrigo Garcia-Carmona, Cristina Sanchez, Eloy Urendes, Oscar Ramirez, Alvaro Martin, Abraham Otero, Rafael Raya, Rodrigo Garcia-Carmona, Cristina Sanchez, Eloy Urendes, Oscar Ramirez, Alvaro Martin, Abraham Otero

Abstract

Neck injuries and the related pain have a high prevalence and represent an important health problem. To properly diagnose and treat them, practitioners need an accurate system for measuring Cervical Range Of Motion (CROM). This article describes the development and validation of an inexpensive, small (4 cm × 4 cm × 8 cm), light (< 200 g) and easy to use solution for measuring CROM using wearable inertial sensors. The proposed solution has been designed with the clinical practice in mind, after consulting with practitioners. It is composed of: (a) two wearable wireless MEMS-based inertial devices, (b) a recording and report generation software application and (c) a measurement protocol for assessing CROM. The solution provides accurate (none of our results is outside the ROM ranges when compared with previously published results based on an optical tracking device) and reliable measurements (ICC = 0.93 for interrater reliability when compared with an optical tracking device and ICC > 0.90 for test-retest reliability), surpassing the popular CROM instrument's capabilities and precision. It also fulfills the needs for clinical practice attending to effectiveness, efficiency (4 min from setup to final report) and user's satisfaction (as reported by practitioners). The solution has been certified for mass-production and use in medical environments.

Keywords: CROM; assessment; diagnosis; inertial sensor; neck pain; wearable sensor.

Conflict of interest statement

Raya R. is the CEO of Werium Solutions; Urendes E. is a shareholder of Werium Solutions; Ramirez O. works at Werium Solutions. The other authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Cervical motions.
Figure 2
Figure 2
Complete solution overview.
Figure 3
Figure 3
Sensor block diagram.
Figure 4
Figure 4
Sensor with the forehead strap.
Figure 5
Figure 5
Sample CROM report.
Figure 6
Figure 6
(a) Placement diagram; (b) Actual placement.

References

    1. Hoy D., March L., Woolf A., Blyth F., Brooks P., Smith E., Vos T., Jan B., Blore J., Murray C., et al. The global burden of neck pain: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 2014;73:1309–1315. doi: 10.1136/annrheumdis-2013-204431.
    1. Vos T., Flaxman A.D., Naghavi M., Lozano R., Michaud C., Ezzati M., Shibuya K., Salomon J.A., Abdalla S., Aboyans V., et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–2196. doi: 10.1016/S0140-6736(12)61729-2.
    1. Hoy D., Protani M., De R., Buchbinder R. The epidemiology of neck pain. Best Pract. Res. Clin. Rheumatol. 2010;24:783–792. doi: 10.1016/j.berh.2011.01.019.
    1. Cohen S.P. Epidemiology, diagnosis, and treatment of neck pain. Mayo Clin. Proc. 2015;90:284–299. doi: 10.1016/j.mayocp.2014.09.008.
    1. Hogg-Johnson S., Van Der Velde G., Carroll L.J., Holm L.W., Cassidy J.D., Guzman J., Côté P., Haldeman S., Ammendolia C., Carragee E., et al. The burden and determinants of neck pain in the general population. Eur. Spine J. 2008;17:39–51. doi: 10.1007/s00586-008-0624-y.
    1. Quinlan K.P., Annest J.L., Myers B., Ryan G., Hill H. Neck strains and sprains among motor vehicle occupants—United States, 2000. Accid. Anal. Prev. 2004;36:21–27. doi: 10.1016/S0001-4575(02)00110-0.
    1. Haldeman S., Kopansky-Giles D., Hurwitz E.L., Hoy D., Erwin W.M., Dagenais S., Kawchuk G., Strömqvist B., Walsh N. Advancements in the management of spine disorders. Best Pract. Res. Clin. Rheumatol. 2012;26:263–280. doi: 10.1016/j.berh.2012.03.006.
    1. Vassilaki M., Hurwitz E.L. Insights in public health: Perspectives on pain in the low back and neck: Global burden, epidemiology, and management. Hawai’i J. Med. Public Health. 2014;73:122.
    1. Martin B.I., Deyo R.A., Mirza S.K., Turner J.A., Comstock B.A., Hollingworth W., Sullivan S.D. Expenditures and health status among adults with back and neck problems. JAMA. 2008;299:656–664. doi: 10.1001/jama.299.6.656.
    1. Côté P., Cassidy J.D., Carroll L.J., Kristman V. The annual incidence and course of neck pain in the general population: A population-based cohort study. Pain. 2004;112:267–273. doi: 10.1016/j.pain.2004.09.004.
    1. World Health Organization . Rehabilitation 2030: A Call for Action. World Health Organization; Geneva, Switzerland: 2017. Meeting Report.
    1. Acar M., Bewsher S. Design concepts for an integrated whiplash mitigating head restraint and seat. Int. J. Crashworthiness. 2016;21:386–395. doi: 10.1080/13588265.2016.1221185.
    1. Cagnie B., Cools A., De Loose V., Cambier D., Danneels L. Reliability and normative database of the Zebris cervical range-of-motion system in healthy controls with preliminary validation in a group of patients with neck pain. J. Manip. Physiol. Ther. 2007;30:450–455. doi: 10.1016/j.jmpt.2007.05.003.
    1. Dall’Alba P.T., Sterling M.M., Treleaven J.M., Edwards S.L., Jull G.A. Cervical range of motion discriminates between asymptomatic persons and those with whiplash. Spine. 2001;26:2090–2094. doi: 10.1097/00007632-200110010-00009.
    1. Miller J., Gross A., D’Sylva J., Burnie S.J., Goldsmith C.H., Graham N., Haines T., Brønfort G., Hoving J.L. Manual therapy and exercise for neck pain: A systematic review. Manu. Ther. 2010;15:334–354. doi: 10.1016/j.math.2010.02.007.
    1. Gross A., Paquin J., Dupont G., Blanchette S., Lalonde P., Cristie T., Graham N., Kay T., Burnie S., Gelley G., et al. Exercises for mechanical neck disorders: A Cochrane review update. Manu. Ther. 2016;24:25–45. doi: 10.1016/j.math.2016.04.005.
    1. Blanpied P.R., Gross A.R., Elliott J.M., Devaney L.L., Clewley D., Walton D.M., Sparks C., Robertson E.K., Altman R.D., Beattie P., et al. Neck pain: Revision 2017: Clinical practice guidelines linked to the international classification of functioning, disability and health from the orthopaedic section of the American Physical Therapy Association. J. Orthop. Sports Phys. Ther. 2017;47:A1–A83. doi: 10.2519/jospt.2017.0302.
    1. Lluch E., Schomacher J., Gizzi L., Petzke F., Seegar D., Falla D. Immediate effects of active cranio-cervical flexion exercise versus passive mobilisation of the upper cervical spine on pain and performance on the cranio-cervical flexion test. Manu. Ther. 2014;19:25–31. doi: 10.1016/j.math.2013.05.011.
    1. Childs J.D., Cleland J.A., Elliott J.M., Teyhen D.S., Wainner R.S., Whitman J.M., Sopky B.J., Godges J.J., Flynn T.W., Delitto A., et al. Neck pain: Clinical practice guidelines linked to the International Classification of Functioning, Disability, and Health from the Orthopaedic Section of the American Physical Therapy Association. J. Orthop. Sports Phys. Ther. 2008;38:A1–A34. doi: 10.2519/jospt.2008.0303.
    1. Teasell R.W., McClure J.A., Walton D., Pretty J., Salter K., Meyer M., Sequeira K., Death B. A research synthesis of therapeutic interventions for whiplash-associated disorder: Part 1—Overview and summary. Pain Res. Manag. 2010;15:287–294. doi: 10.1155/2010/106593.
    1. Hole D., Cook J., Bolton J. Reliability and concurrent validity of two instruments for measuring cervical range of motion: Effects of age and gender. Manu. Ther. 1995;1:36–42. doi: 10.1054/math.1995.0248.
    1. Petersen C., Johnson R., Schuit D. Reliability of cervical range of motion using the OSI CA 6000 spine motion analyser on asymptomatic and symptomatic subjects. Manu. Ther. 2000;5:82–88. doi: 10.1054/math.2000.0232.
    1. Mayer T., Brady S., Bovasso E., Pope P., Gatchel R.J. Noninvasive measurement of cervical tri-planar motion in normal subjects. Spine. 1993;18:2191–2195. doi: 10.1097/00007632-199311000-00007.
    1. Rheault W., Albright B., Byers C., Franta M., Johnson A., Skowronek M., Dougherty J. Intertester reliability of the cervical range of motion device. J. Orthop. Sports Phys. Ther. 1992;15:147–150. doi: 10.2519/jospt.1992.15.3.147.
    1. Capuano-Pucci D., Rheault W., Aukai J., Bracke M., Day R., Pastrick M. Intratester and intertester reliability of the cervical range of motion device. Arch. Phys. Med. Rehabil. 1991;72:338–340.
    1. Williams M.A., McCarthy C.J., Chorti A., Cooke M.W., Gates S. A systematic review of reliability and validity studies of methods for measuring active andPassive cervical range of motion. J. Manip. Physiol. Ther. 2010;33:138–155. doi: 10.1016/j.jmpt.2009.12.009.
    1. Tousignant M., Smeesters C., Breton A.M., Breton É., Corriveau H. Criterion validity study of the cervical range of motion (CROM) device for rotational range of motion on healthy adults. J. Orthop. Sports Phys. Ther. 2006;36:242–248. doi: 10.2519/jospt.2006.36.4.242.
    1. Lantz C.A., Chen J., Buch D. Clinical validity and stability of active and passive cervical range of motion with regard to total and unilateral uniplanar motion. Spine. 1999;24:1082–1089. doi: 10.1097/00007632-199906010-00007.
    1. Fletcher J.P., Bandy W.D. Intrarater reliability of CROM measurement of cervical spine active range of motion in persons with and without neck pain. J. Orthop. Sports Phys. Ther. 2008;38:640–645. doi: 10.2519/jospt.2008.2680.
    1. Audette I., Dumas J.P., Côté J.N., De Serres S.J. Validity and between-day reliability of the cervical range of motion (CROM) device. J. Orthop. Sports Phys. Ther. 2010;40:318–323. doi: 10.2519/jospt.2010.3180.
    1. Prushansky T., Deryi O., Jabarreen B. Reproducibility and validity of digital inclinometry for measuring cervical range of motion in normal subjects. Physiother. Res. Int. 2010;15:42–48. doi: 10.1002/pri.443.
    1. Alqhtani R.S., Jones M.D., Theobald P.S., Williams J.M. Reliability of an accelerometer-based system for quantifying multiregional spinal range of motion. J. Manip. Physiol. Ther. 2015;38:275–281. doi: 10.1016/j.jmpt.2014.12.007.
    1. Iosa M., Picerno P., Paolucci S., Morone G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices. 2016;13:641–659. doi: 10.1080/17434440.2016.1198694.
    1. Theobald P.S., Jones M.D., Williams J.M. Do inertial sensors represent a viable method to reliably measure cervical spine range of motion? Manu. Ther. 2012;17:92–96. doi: 10.1016/j.math.2011.06.007.
    1. Raya R., Rocon E., Gallego J.A., Ceres R., Pons J.L. A robust kalman algorithm to facilitate human-computer interaction for people with cerebral palsy, using a new interface based on inertial sensors. Sensors. 2012;12:3049–3067. doi: 10.3390/s120303049.
    1. Raya R., Roa J., Rocon E., Ceres R., Pons J. Wearable inertial mouse for children with physical and cognitive impairments. Sens. Actuators A Phys. 2010;162:248–259. doi: 10.1016/j.sna.2010.04.019.
    1. Premerlani W., Bizard P. Direction Cosine Matrix IMU: Theory. [(accessed on 7 August 2018)]; Available online: .
    1. International Organization for Standardization . Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs)—Part 9: Requirements for Non-Keyboard Input Devices (ISO 9241-9) International Organization for Standardization; Geneva, Switzerland: 2002.
    1. Koo T.K., Li M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Una Solución de Vanguardia con ICOT. [(accessed on 22 May 2018)]; Available online:
    1. Ferrario V.F., Sforza C., Serrao G., Grassi G., Mossi E. Active range of motion of the head and cervical spine: A three-dimensional investigation in healthy young adults. J. Orthop. Res. 2002;20:122–129. doi: 10.1016/S0736-0266(01)00079-1.
    1. Schmidt J., Berg D.R., Ploeg H.L., Ploeg L. Precision, repeatability and accuracy of Optotrak® optical motion tracking systems. Int. J. Exp. Comput. Biomech. 2009;1:114–127. doi: 10.1504/IJECB.2009.022862.
    1. Lohse K., Shirzad N., Verster A., Hodges N., Van der Loos H.M. Video games and rehabilitation: Using design principles to enhance engagement in physical therapy. J. Neurol. Phys. Ther. 2013;37:166–175. doi: 10.1097/NPT.0000000000000017.
    1. Flores E., Tobon G., Cavallaro E., Cavallaro F.I., Perry J.C., Keller T. Improving patient motivation in game development for motor deficit rehabilitation; Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology; Yokohama, Japan. 3–5 December 2008; pp. 381–384.
    1. Meijer H.A., Graafland M., Goslings J.C., Schijven M.P. A systematic review on the effect of serious games and wearable technology used in rehabilitation of patients with traumatic bone and soft tissue injuries. Arch. Phys. Med. Rehabil. 2017 doi: 10.1016/j.apmr.2017.10.018.

Source: PubMed

3
Tilaa