Extravascular lung water in critical care: recent advances and clinical applications

Mathieu Jozwiak, Jean-Louis Teboul, Xavier Monnet, Mathieu Jozwiak, Jean-Louis Teboul, Xavier Monnet

Abstract

Extravascular lung water (EVLW) is the amount of fluid that is accumulated in the interstitial and alveolar spaces. In lung oedema, EVLW increases either because of increased lung permeability or because of increased hydrostatic pressure in the pulmonary capillaries, or both. Increased EVLW is always potentially life-threatening, mainly because it impairs gas exchange and reduces lung compliance. The only technique that provides an easy measurement of EVLW at the bedside is transpulmonary thermodilution. The validation of EVLW measurements by thermodilution was based on studies showing reasonable correlations with gravimetry or thermo-dye dilution in experimental and clinical studies. EVLW should be indexed to predicted body weight. This indexation reduces the proportion of ARDS patients for whom EVLW is in the normal range. Compared to non-indexed EVLW, indexed EVLW (EVLWI) is better correlated with the lung injury score and the oxygenation and it is a better predictor of mortality of patients with acute lung injury or acute respiratory distress syndrome (ARDS). Transpulmonary thermodilution also provides the pulmonary vascular permeability index (PVPI), which is an indirect reflection of the integrity of the alveolocapillary barrier. As clinical applications, EVLWI and PVPI may be useful to guide fluid management of patients at risk of fluid overload, as during septic shock and ARDS. High EVLWI and PVPI values predict mortality in several categories of critically ill patients, especially during ARDS. Thus, fluid administration should be limited when EVLWI is already high. Whatever the value of EVLWI, PVPI may indicate that fluid administration is particularly at risk of aggravating lung oedema. In the acute phase of haemodynamic resuscitation during septic shock and ARDS, high EVLWI and PVPI values may warn of the risk of fluid overload and prevent excessive volume expansion. At the post-resuscitation phase, they may prompt initiation of fluid removal thereby achieving a negative fluid balance.

Keywords: Acute lung injury; Acute respiratory distress syndrome; Extravascular lung water; Fluid management; Fluid responsiveness; Hemodynamic monitoring; Lung oedema; Pulmonary vascular permeability index; Transpulmonary thermodilution.

Figures

Fig. 1
Fig. 1
Physiology of lung water. There is a physiological net outward fluid filtration from microvessels to the interstitium governed by the Starling’s law, which is strictly controlled by the lymphatic drainage system (Palv alveolar pressure, PH hydrostatic pressure, Ponc oncotic pressure, K filtration coefficient of the alveolocapillary barrier, Kσ reflection coefficient of the alveolocapillary barrier)
Fig. 2
Fig. 2
Relationship between extravascular lung water and pulmonary capillary hydrostatic pressure for different levels of pulmonary vascular permeability. The higher the lung permeability, the greater the risk of increase in extravascular lung water during volume expansion
Fig. 3
Fig. 3
Measurement of extravascular lung water by thermo-dye dilution (MTt mean transit time)
Fig. 4
Fig. 4
Measurement of extravascular lung water by single thermal indicator dilution (MTt mean transit time, Dt downslope time)

References

    1. Perel A, Monnet X. Extravascular lung water. In: Vincent J, Hall J (eds) Encyclopedia of intensive care medicine. Springer-Verlag, Berlin Heidelberg; 2011.
    1. Kushimoto S, Taira Y, Kitazawa Y, et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome. Crit Care. 2012;16:R232. doi: 10.1186/cc11898.
    1. Martin GS, Eaton S, Mealer M, Moss M. Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care. 2005;9:R74–R82. doi: 10.1186/cc3025.
    1. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122:2080–2086. doi: 10.1378/chest.122.6.2080.
    1. Miserocchi G. Mechanisms controlling the volume of pleural fluid and extravascular lung water. Eur Respir Rev. 2009;18:244–252. doi: 10.1183/09059180.00002709.
    1. Ware LB, Matthay MA. Clinical practice. Acute pulmonary edema. N Engl J Med. 2005;353:2788–2796. doi: 10.1056/NEJMcp052699.
    1. Staub NC. Pulmonary edema: physiologic approaches to management. Chest. 1978;74:559–564. doi: 10.1378/chest.74.5.559.
    1. Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Ann Intensive Care. 2014;4:38. doi: 10.1186/s13613-014-0038-4.
    1. Tagami T, Kushimoto S, Yamamoto Y, et al. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care. 2010;14:R162. doi: 10.1186/cc9250.
    1. Tagami T, Sawabe M, Kushimoto S, et al. Quantitative diagnosis of diffuse alveolar damage using extravascular lung water. Crit Care Med. 2013;41:2144–2150. doi: 10.1097/CCM.0b013e31828a4643.
    1. Matthay MA. Clinical measurement of pulmonary edema. Chest. 2002;122:1877–1879. doi: 10.1378/chest.122.6.1877.
    1. Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002;82:569–600. doi: 10.1152/physrev.00003.2002.
    1. Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100:9–15. doi: 10.1097/00000542-200401000-00006.
    1. Saugel B, Ringmaier S, Holzapfel K, et al. Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients: a prospective trial. J Crit Care. 2011;26:402–410. doi: 10.1016/j.jcrc.2010.11.001.
    1. Lange NR, Schuster DP. The measurement of lung water. Crit Care. 1999;3:R19–R24. doi: 10.1186/cc342.
    1. Patroniti N, Bellani G, Maggioni E, Manfio A, Marcora B, Pesenti A. Measurement of pulmonary edema in patients with acute respiratory distress syndrome. Crit Care Med. 2005;33:2547–2554. doi: 10.1097/01.CCM.0000186747.43540.25.
    1. Groeneveld AB, Verheij J. Extravascular lung water to blood volume ratios as measures of permeability in sepsis-induced ALI/ARDS. Intensive Care Med. 2006;32:1315–1321. doi: 10.1007/s00134-006-0212-8.
    1. Kunst PW, Vonk Noordegraaf A, Raaijmakers E, et al. Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure. Chest. 1999;116:1695–1702. doi: 10.1378/chest.116.6.1695.
    1. Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care. 2014;4:1. doi: 10.1186/2110-5820-4-1.
    1. Mihm FG, Feeley TW, Rosenthal MH, Lewis F. Measurement of extravascular lung water in dogs using the thermal-green dye indicator dilution method. Anesthesiology. 1982;57:116–122. doi: 10.1097/00000542-198208000-00009.
    1. Mihm FG, Feeley TW, Jamieson SW. Thermal dye double indicator dilution measurement of lung water in man: comparison with gravimetric measurements. Thorax. 1987;42:72–76. doi: 10.1136/thx.42.1.72.
    1. Sakka SG. Extravascular lung water in ARDS patients. Minerva Anestesiol. 2013;79:274–284.
    1. Isakow W, Schuster DP. Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the pulmonary artery catheter. Am J Physiol Lung Cell Mol Physiol. 2006;291:L1118–L1131. doi: 10.1152/ajplung.00277.2006.
    1. Sakka SG, Reuter DA, Perel A. The transpulmonary thermodilution technique. J Clin Monit Comput. 2012;26:347–353. doi: 10.1007/s10877-012-9378-5.
    1. Sakka SG, Ruhl CC, Pfeiffer UJ, et al. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26:180–187. doi: 10.1007/s001340050043.
    1. Reuter DA, Felbinger TW, Moerstedt K, et al. Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth. 2002;16:191–195. doi: 10.1053/jcan.2002.31064.
    1. Neumann P. Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med. 1999;25:216–219. doi: 10.1007/s001340050819.
    1. Katzenelson R, Perel A, Berkenstadt H, et al. Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med. 2004;32:1550–1554. doi: 10.1097/01.CCM.0000130995.18334.8B.
    1. Kirov MY, Kuzkov VV, Kuklin VN, Waerhaug K, Bjertnaes LJ. Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. Crit Care. 2004;8:R451–R458. doi: 10.1186/cc2974.
    1. Rossi P, Wanecek M, Rudehill A, Konrad D, Weitzberg E, Oldner A. Comparison of a single indicator and gravimetric technique for estimation of extravascular lung water in endotoxemic pigs. Crit Care Med. 2006;34:1437–1443. doi: 10.1097/01.CCM.0000215830.48977.29.
    1. Fernandez-Mondejar E, Rivera-Fernandez R, Garcia-Delgado M, Touma A, Machado J, Chavero J. Small increases in extravascular lung water are accurately detected by transpulmonary thermodilution. J Trauma. 2005;59:1420–1423. doi: 10.1097/01.ta.0000198360.01080.42.
    1. Garcia-Delgado M, Touma-Fernandez A, Chamorro-Marin V, Ruiz-Aguilar A, Aguilar-Alonso E, Fernandez-Mondejar E. Alveolar fluid clearance in healthy pigs and influence of positive end-expiratory pressure. Crit Care. 2010;14:R36. doi: 10.1186/cc8914.
    1. Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul JL. Precision of the transpulmonary thermodilution measurements. Crit Care. 2011;15:R204. doi: 10.1186/cc10421.
    1. Dres M, Teboul JL, Guerin L, et al. Transpulmonary thermodilution enables to detect small short-term changes in extravascular lung water induced by a bronchoalveolar lavage. Crit Care Med. 2014;42:1869–1873. doi: 10.1097/CCM.0000000000000341.
    1. Cordemans C, De Laet I, Van Regenmortel N, et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2(Suppl 1):S1. doi: 10.1186/2110-5820-2-S1-S1.
    1. Jozwiak M, Silva S, Persichini R, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41:472–480. doi: 10.1097/CCM.0b013e31826ab377.
    1. Brown LM, Calfee CS, Howard JP, Craig TR, Matthay MA, McAuley DF. Comparison of thermodilution measured extravascular lung water with chest radiographic assessment of pulmonary oedema in patients with acute lung injury. Ann Intensive Care. 2013;3:25. doi: 10.1186/2110-5820-3-25.
    1. Tagami T, Nakamura T, Kushimoto S, et al. Early-phase changes of extravascular lung water index as a prognostic indicator in acute respiratory distress syndrome patients. Ann Intensive Care. 2014;4:27. doi: 10.1186/s13613-014-0027-7.
    1. Huber W, Hollthaler J, Schuster T, et al. Association between different indexations of extravascular lung water (EVLW) and PaO2/FiO2: a two-center study in 231 patients. PLoS One. 2014;9:e103854. doi: 10.1371/journal.pone.0103854.
    1. Berkowitz DM, Danai PA, Eaton S, Moss M, Martin GS. Accurate characterization of extravascular lung water in acute respiratory distress syndrome. Crit Care Med. 2008;36:1803–1809. doi: 10.1097/CCM.0b013e3181743eeb.
    1. Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26:511–522. doi: 10.1183/09031936.05.00035005.
    1. Huber W, Mair S, Gotz SQ, et al. Extravascular lung water and its association with weight, height, age, and gender: a study in intensive care unit patients. Intensive Care Med. 2013;39:146–150. doi: 10.1007/s00134-012-2745-3.
    1. Wolf S, Riess A, Landscheidt JF, Lumenta CB, Schurer L, Friederich P. How to perform indexing of extravascular lung water: a validation study. Crit Care Med. 2013;41:990–998. doi: 10.1097/CCM.0b013e318275cd75.
    1. Phillips CR, Chesnutt MS, Smith SM. Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med. 2008;36:69–73. doi: 10.1097/.
    1. Craig TR, Duffy MJ, Shyamsundar M, et al. Extravascular lung water indexed to predicted body weight is a novel predictor of intensive care unit mortality in patients with acute lung injury. Crit Care Med. 2010;38:114–120. doi: 10.1097/CCM.0b013e3181b43050.
    1. Saugel B, Umgelter A, Schuster T, Phillip V, Schmid RM, Huber W. Transpulmonary thermodilution using femoral indicator injection: a prospective trial in patients with a femoral and a jugular central venous catheter. Crit Care. 2010;14:R95. doi: 10.1186/cc9030.
    1. Faybik P, Hetz H, Baker A, Yankovskaya E, Krenn CG, Steltzer H. Iced versus room temperature injectate for assessment of cardiac output, intrathoracic blood volume, and extravascular lung water by single transpulmonary thermodilution. J Crit Care. 2004;19:103–107. doi: 10.1016/j.jcrc.2004.04.002.
    1. Huber W, Kraski T, Haller B, et al. Room-temperature vs iced saline indicator injection for transpulmonary thermodilution. J Crit Care. 2014;29(1133):e7–e14.
    1. Bendjelid K, Giraud R, Siegenthaler N, Michard F. Validation of a new transpulmonary thermodilution system to assess global end-diastolic volume and extravascular lung water. Crit Care. 2010;14:R209. doi: 10.1186/cc9332.
    1. Kiefer N, Hofer CK, Marx G, et al. Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Crit Care. 2012;16:R98. doi: 10.1186/cc11366.
    1. Oppenheimer L, Elings VB, Lewis FR. Thermal-dye lung water measurements: effects of edema and embolization. J Surg Res. 1979;26:504–512. doi: 10.1016/0022-4804(79)90041-6.
    1. Beckett RC, Gray BA. Effect of atelectasis and embolization on extravascular thermal volume of the lung. J Appl Physiol. 1982;53:1614–1619.
    1. Schreiber T, Huter L, Schwarzkopf K, et al. Lung perfusion affects preload assessment and lung water calculation with the transpulmonary double indicator method. Intensive Care Med. 2001;27:1814–1818. doi: 10.1007/s00134-001-1122-4.
    1. Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care. 2014;4:28. doi: 10.1186/s13613-014-0028-6.
    1. Roch A, Michelet P, D’Journo B, et al. Accuracy and limits of transpulmonary dilution methods in estimating extravascular lung water after pneumonectomy. Chest. 2005;128:927–933. doi: 10.1378/chest.128.2.927.
    1. Kuzkov VV, Suborov EV, Kirov MY, et al. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med. 2007;35:1550–1559. doi: 10.1097/01.CCM.0000265739.51887.2B.
    1. Haas SA, Trepte CJ, Nitzschke R, et al. An assessment of global end-diastolic volume and extravascular lung water index during one-lung ventilation: is transpulmonary thermodilution usable? Anesth Analg. 2013;117:83–90. doi: 10.1213/ANE.0b013e31828f2c39.
    1. Carlile PV, Lowery DD, Gray BA. Effect of PEEP and type of injury on thermal-dye estimation of pulmonary edema. J Appl Physiol. 1986;60:22–31.
    1. Carlile PV, Gray BA. Type of lung injury influences the thermal-dye estimation of extravascular lung water. J Appl Physiol Respir Environ Exerc Physiol. 1984;57:680–685.
    1. Roch A, Michelet P, Lambert D, et al. Accuracy of the double indicator method for measurement of extravascular lung water depends on the type of acute lung injury. Crit Care Med. 2004;32:811–817. doi: 10.1097/01.CCM.0000114831.59185.02.
    1. Schuster DP, Stark T, Stephenson J, Royal H. Detecting lung injury in patients with pulmonary edema. Intensive Care Med. 2002;28:1246–1253. doi: 10.1007/s00134-002-1414-3.
    1. Myers JC, Reilley TE, Cloutier CT. Effect of positive end-expiratory pressure on extravascular lung water in porcine acute respiratory failure. Crit Care Med. 1988;16:52–54. doi: 10.1097/00003246-198801000-00010.
    1. Colmenero-Ruiz M, Fernandez-Mondejar E, Fernandez-Sacristan MA, Rivera-Fernandez R, Vazquez-Mata G. PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema. Am J Respir Crit Care Med. 1997;155:964–970. doi: 10.1164/ajrccm.155.3.9117033.
    1. Michard F. Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls. Crit Care Med. 2007;35:1186–1192. doi: 10.1097/01.CCM.0000259539.49339.66.
    1. Fernandez Mondejar E, Vazquez Mata G, Cardenas A, Mansilla A, Cantalejo F, Rivera R. Ventilation with positive end-expiratory pressure reduces extravascular lung water and increases lymphatic flow in hydrostatic pulmonary edema. Crit Care Med. 1996;24:1562–1567. doi: 10.1097/00003246-199609000-00022.
    1. Blomqvist H, Wickerts CJ, Rosblad PG. Effects of pleural fluid and positive end-expiratory pressure on the measurement of extravascular lung water by the double-indicator dilution technique. Acta Anaesthesiol Scand. 1991;35:578–583. doi: 10.1111/j.1399-6576.1991.tb03352.x.
    1. Saugel B, Phillip V, Ernesti C, et al. Impact of large-volume thoracentesis on transpulmonary thermodilution-derived extravascular lung water in medical intensive care unit patients. J Crit Care. 2013;28:196–201. doi: 10.1016/j.jcrc.2012.05.002.
    1. Sakka SG, Hanusch T, Thuemer O, Wegscheider K. The influence of venovenous renal replacement therapy on measurements by the transpulmonary thermodilution technique. Anesth Analg. 2007;105:1079–1082. doi: 10.1213/01.ane.0000280440.08530.fb.
    1. Dufour N, Delville M, Teboul JL, et al. Transpulmonary thermodilution measurements are not affected by continuous veno-venous hemofiltration at high blood pump flow. Intensive Care Med. 2012;38:1162–1168. doi: 10.1007/s00134-012-2573-5.
    1. Tagami T, Kushimoto S, Tosa R, et al. The precision of PiCCO(R) measurements in hypothermic post-cardiac arrest patients. Anaesthesia. 2012;67:236–243. doi: 10.1111/j.1365-2044.2011.06981.x.
    1. Belda FJ, Aguilar G, Teboul JL, et al. Complications related to less-invasive haemodynamic monitoring. Br J Anaesth. 2011;106:482–486. doi: 10.1093/bja/aeq377.
    1. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med. 2007;33:448–453. doi: 10.1007/s00134-006-0498-6.
    1. Chew MS, Ihrman L, During J, et al. Extravascular lung water index improves the diagnostic accuracy of lung injury in patients with shock. Crit Care. 2012;16:R1. doi: 10.1186/cc10599.
    1. Berbara H, Mair S, Beitz A, Henschel B, Schmid RM, Huber W. Pulmonary vascular permeability index and global end-diastolic volume: are the data consistent in patients with femoral venous access for transpulmonary thermodilution: a prospective observational study. BMC Anesthesiol. 2014;14:81. doi: 10.1186/1471-2253-14-81.
    1. Chung FT, Lin SM, Lin SY, Lin HC. Impact of extravascular lung water index on outcomes of severe sepsis patients in a medical intensive care unit. Respir Med. 2008;102:956–961. doi: 10.1016/j.rmed.2008.02.016.
    1. Chung FT, Lin HC, Kuo CH, et al. Extravascular lung water correlates multiorgan dysfunction syndrome and mortality in sepsis. PLoS One. 2010;5:e15265. doi: 10.1371/journal.pone.0015265.
    1. Bognar Z, Foldi V, Rezman B, Bogar L, Csontos C. Extravascular lung water index as a sign of developing sepsis in burns. Burns. 2010;36:1263–1270. doi: 10.1016/j.burns.2010.04.006.
    1. Mallat J, Pepy F, Lemyze M, et al. Extravascular lung water indexed or not to predicted body weight is a predictor of mortality in septic shock patients. J Crit Care. 2012;27:376–383. doi: 10.1016/j.jcrc.2012.03.009.
    1. Zhang Z, Lu B, Ni H. Prognostic value of extravascular lung water index in critically ill patients: a systematic review of the literature. J Crit Care. 2012;27(420):e1–e8.
    1. Kuzkov VV, Kirov MY, Sovershaev MA, et al. Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med. 2006;34:1647–1653. doi: 10.1097/01.CCM.0000218817.24208.2E.
    1. Force ADT, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–2533.
    1. Ferguson ND, Fan E, Camporota L, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38:1573–1582. doi: 10.1007/s00134-012-2682-1.
    1. Schuster DP. Identifying patients with ARDS: time for a different approach. Intensive Care Med. 1997;23:1197–1203. doi: 10.1007/s001340050486.
    1. Perel A. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS. Crit Care. 2013;17:108. doi: 10.1186/cc11918.
    1. Phillips CR. The Berlin definition: real change or the emperor’s new clothes? Crit Care. 2013;17:174. doi: 10.1186/cc12761.
    1. National Heart L. Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N. Wheeler AP, et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354:2213–2224. doi: 10.1056/NEJMoa061895.
    1. Thille AW, Esteban A, Fernandez-Segoviano P, et al. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013;187:761–767. doi: 10.1164/rccm.201211-1981OC.
    1. LeTourneau JL, Pinney J, Phillips CR. Extravascular lung water predicts progression to acute lung injury in patients with increased risk. Crit Care Med. 2012;40:847–854. doi: 10.1097/CCM.0b013e318236f60e.
    1. Kushimoto S, Endo T, Yamanouchi S, et al. Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the Berlin definition. Crit Care. 2013;17:R132. doi: 10.1186/cc12811.
    1. Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–353. doi: 10.1097/01.CCM.0000194725.48928.3A.
    1. Sakr Y, Vincent JL, Reinhart K, et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest. 2005;128:3098–3108. doi: 10.1378/chest.128.5.3098.
    1. Payen D, de Pont AC, Sakr Y, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12:R74. doi: 10.1186/cc6916.
    1. Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–2575. doi: 10.1056/NEJMoa062200.
    1. Marik PE. Iatrogenic salt water drowning and the hazards of a high central venous pressure. Ann Intensive Care. 2014;4:21. doi: 10.1186/s13613-014-0021-0.
    1. Monnet X, Julien F, Ait-Hamou N, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41:1412–1420. doi: 10.1097/CCM.0b013e318275cece.
    1. Teboul JL, Monnet X. Detecting volume responsiveness and unresponsiveness in intensive care unit patients: two different problems, only one solution. Crit Care. 2009;13:175. doi: 10.1186/cc7979.
    1. Eisenberg PR, Hansbrough JR, Anderson D, Schuster DP. A prospective study of lung water measurements during patient management in an intensive care unit. Am Rev Respir Dis. 1987;136:662–668. doi: 10.1164/ajrccm/136.3.662.
    1. Mitchell JP, Schuller D, Calandrino FS, Schuster DP. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis. 1992;145:990–998. doi: 10.1164/ajrccm/145.5.990.
    1. Schuller D, Mitchell JP, Calandrino FS, Schuster DP. Fluid balance during pulmonary edema. Is fluid gain a marker or a cause of poor outcome? Chest. 1991;100:1068–1075. doi: 10.1378/chest.100.4.1068.
    1. Mutoh T, Kazumata K, Ishikawa T, Terasaka S. Performance of bedside transpulmonary thermodilution monitoring for goal-directed hemodynamic management after subarachnoid hemorrhage. Stroke. 2009;40:2368–2374. doi: 10.1161/STROKEAHA.109.547463.
    1. Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33:96–103. doi: 10.1007/s00134-006-0404-2.
    1. Lenkin AI, Kirov MY, Kuzkov VV, et al. Comparison of goal-directed hemodynamic optimization using pulmonary artery catheter and transpulmonary thermodilution in combined valve repair: a randomized clinical trial. Crit Care Res Pract. 2012;2012:821218.
    1. Compton F, Hoffmann C, Zidek W, Schmidt S, Schaefer JH. Volumetric hemodynamic parameters to guide fluid removal on hemodialysis in the intensive care unit. Hemodial Int. 2007;11:231–237. doi: 10.1111/j.1542-4758.2007.00174.x.
    1. Teboul JL, Monnet X, Richard C. Weaning failure of cardiac origin: recent advances. Crit Care. 2010;14:211. doi: 10.1186/cc8852.
    1. Lemaire F, Teboul JL, Cinotti L, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;69:171–179. doi: 10.1097/00000542-198808000-00004.
    1. Marik PE. Obituary: pulmonary artery catheter 1970 to 2013. Ann Intensive Care. 2013;3:38. doi: 10.1186/2110-5820-3-38.
    1. Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Extravascular lung water, B-type natriuretic peptide, and blood volume contraction enable diagnosis of weaning-induced pulmonary edema. Crit Care Med. 2014;42:1882–1889. doi: 10.1097/CCM.0000000000000295.
    1. Teboul JL. Weaning-induced cardiac dysfunction: where are we today? Intensive Care Med. 2014;40:1069–1079. doi: 10.1007/s00134-014-3334-4.
    1. Yeung JC, Cypel M, Machuca TN, et al. Physiologic assessment of the ex vivo donor lung for transplantation. J Heart Lung Transplant. 2012;31:1120–1126. doi: 10.1016/j.healun.2012.08.016.
    1. Venkateswaran RV, Patchell VB, Wilson IC, et al. Early donor management increases the retrieval rate of lungs for transplantation. Ann Thorac Surg. 2008;85:278–286. doi: 10.1016/j.athoracsur.2007.07.092.
    1. Venkateswaran RV, Dronavalli V, Patchell V, et al. Measurement of extravascular lung water following human brain death: implications for lung donor assessment and transplantation. Eur J Cardiothorac Surg. 2013;43:1227–1232. doi: 10.1093/ejcts/ezs657.
    1. Trebbia G, Sage E, Fadel E, Sakka SG, Cerf C. Ex vivo assessment of extravascular lung water with transpulmonary thermodilution. J Heart Lung Transplant. 2013;32:840–842. doi: 10.1016/j.healun.2013.05.006.
    1. Brucken U, Grensemann J, Wappler F, Sakka SG. Influence of prone positioning on the measurement of transpulmonary thermodilution-derived variables in critically ill patients. Acta Anaesthesiol Scand. 2011;55:1061–1067. doi: 10.1111/j.1399-6576.2011.02519.x.
    1. Michelet P, Roch A, Gainnier M, Sainty JM, Auffray JP, Papazian L. Influence of support on intra-abdominal pressure, hepatic kinetics of indocyanine green and extravascular lung water during prone positioning in patients with ARDS: a randomized crossover study. Crit Care. 2005;9:R251–R257. doi: 10.1186/cc3513.
    1. McAuley DF, Giles S, Fichter H, Perkins GD, Gao F. What is the optimal duration of ventilation in the prone position in acute lung injury and acute respiratory distress syndrome? Intensive Care Med. 2002;28:414–418. doi: 10.1007/s00134-002-1248-z.

Source: PubMed

3
Tilaa