Cerebral blood flow and glucose metabolism measured with positron emission tomography are decreased in human type 1 diabetes

Larissa W van Golen, Marc C Huisman, Richard G Ijzerman, Nikie J Hoetjes, Lothar A Schwarte, Adriaan A Lammertsma, Michaela Diamant, Larissa W van Golen, Marc C Huisman, Richard G Ijzerman, Nikie J Hoetjes, Lothar A Schwarte, Adriaan A Lammertsma, Michaela Diamant

Abstract

Subclinical systemic microvascular dysfunction exists in asymptomatic patients with type 1 diabetes. We hypothesized that microangiopathy, resulting from long-standing systemic hyperglycemia and hyperinsulinemia, may be generalized to the brain, resulting in changes in cerebral blood flow (CBF) and metabolism in these patients. We performed dynamic [(15)O]H2O and [(18)F]-fluoro-2-deoxy-d-glucose brain positron emission tomography scans to measure CBF and cerebral glucose metabolism (CMRglu), respectively, in 30 type 1 diabetic patients and 12 age-matched healthy controls after an overnight fast. Regions of interest were automatically delineated on coregistered magnetic resonance images and full kinetic analysis was performed. Plasma glucose and insulin levels were higher in patients versus controls. Total gray matter CBF was 9%, whereas CMRglu was 21% lower in type 1 diabetic subjects versus control subjects. We conclude that at real-life fasting glucose and insulin levels, type 1 diabetes is associated with decreased resting cerebral glucose metabolism, which is only partially explained by the decreased CBF. These findings suggest that mechanisms other than generalized microangiopathy account for the altered CMRglu observed in well-controlled type 1 diabetes.

Trial registration: ClinicalTrials.gov NCT00626080.

Figures

FIG. 1.
FIG. 1.
A: Mean CBF in total gray matter in type 1 diabetic patients (black bar; n = 23) vs. healthy controls (white bar; n = 11). B: Mean CMRglu (LC = 0.81) in total gray matter in type 1 diabetic patients (black bar; n = 28) vs. healthy controls (white bar; n = 9).

References

    1. Bronson-Castain KW, Bearse MA, Jr, Neuville J, et al. Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina 2012;32:92–102
    1. Zerbini G, Bonfanti R, Meschi F, et al. Persistent renal hypertrophy and faster decline of glomerular filtration rate precede the development of microalbuminuria in type 1 diabetes. Diabetes 2006;55:2620–2625
    1. Srinivasan M, Herrero P, McGill JB, et al. The effects of plasma insulin and glucose on myocardial blood flow in patients with type 1 diabetes mellitus. J Am Coll Cardiol 2005;46:42–48
    1. Brands AM, Kessels RP, de Haan EH, Kappelle LJ, Biessels GJ. Cerebral dysfunction in type 1 diabetes: effects of insulin, vascular risk factors and blood-glucose levels. Eur J Pharmacol 2004;490:159–168
    1. van Duinkerken E, Klein M, vanSchoonenboom NS, et al. Functional brain connectivity and neurocognitive functioning in patients with long-standing type 1 diabetes with and without microvascular complications: a magnetoencephalography study. Diabetes 2009;58:2335–2343
    1. Musen G, Lyoo IK, Sparks CR, et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 2006;55:326–333
    1. McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction. Lancet 2012;379:2291–2299
    1. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 1994;94:2511–2515
    1. Clark MG. Impaired microvascular perfusion: a consequence of vascular dysfunction and a potential cause of insulin resistance in muscle. Am J Physiol Endocrinol Metab 2008;295:E732–E750
    1. Bingham EM, Hopkins D, Smith D, et al. The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes 2002;51:3384–3390
    1. Hirvonen J, Virtanen KA, Nummenmaa L, et al. Effects of insulin on brain glucose metabolism in impaired glucose tolerance. Diabetes 2011;60:443–447
    1. Duckrow RB. Decreased cerebral blood flow during acute hyperglycemia. Brain Res 1995;703:145–150
    1. Duckrow RB, Bryan RM., Jr Regional cerebral glucose utilization during hyperglycemia. J Neurochem 1987;48:989–993
    1. Duckrow RB. Glucose transfer into rat brain during acute and chronic hyperglycemia. Metab Brain Dis 1988;3:201–209
    1. Gjedde A, Crone C. Blood-brain glucose transfer: repression in chronic hyperglycemia. Science 1981;214:456–457
    1. Iida H, Law I, Pakkenberg B, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. Theory, error analysis, and stereologic comparison. J Cereb Blood Flow Metab 2000;20:1237–1251
    1. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979;6:371–388
    1. Phelps ME. Positron computed tomography studies of cerebral glucose metabolism in man: theory and application in nuclear medicine. Semin Nucl Med 1981;11:32–49
    1. Reivich M, Kuhl D, Wolf A, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979;44:127–137
    1. Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 1980;4:727–736
    1. Ziegler D, Langen KJ, Herzog H, et al. Cerebral glucose metabolism in type 1 diabetic patients. Diabet Med 1994;11:205–209
    1. Fanelli CG, Dence CS, Markham J, et al. Blood-to-brain glucose transport and cerebral glucose metabolism are not reduced in poorly controlled type 1 diabetes. Diabetes 1998;47:1444–1450
    1. Bril V, Perkins BA. Validation of the Toronto Clinical Scoring System for diabetic polyneuropathy. Diabetes Care 2002;25:2048–2052
    1. van der Naalt J, Fidler V, van der Oosterhuis HJ. Vibration perception threshold, complaints and sensory examination in diabetic patients. Acta Neurol Scand 1991;83:297–300
    1. Smith SM, Zhang Y, Jenkinson M, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002;17:479–489
    1. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23(Suppl. 1):S208–S219
    1. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987;149:351–356
    1. Huisman MC, van Golen LW, Hoetjes NJ, Greuter HN, Schober P, IJzermanRG, Diamant M, LammertsmaAA. Cerebral blood flow and glucose metabolism in healthy volunteers measured using a high-resolution PET scanner. EJNMMI Res 2012;2:63
    1. Hoekstra CJ, Paglianiti I, Hoekstra OS, et al. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000;27:731–743
    1. Boellaard R, van Lingen A, van Balen SC, Hoving BG, Lammertsma AA. Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 2001;28:81–89
    1. van Velden FH, Kloet RW, van Berckel BN, et al. HRRT versus HR+ human brain PET studies: an interscanner test-retest study. J Nucl Med 2009;50:693–702
    1. van Velden FH, Kloet RW, van Berckel BN, Lammertsma AA, Boellaard R. Accuracy of 3-dimensional reconstruction algorithms for the high-resolution research tomograph. J Nucl Med 2009;50:72–80
    1. Walker MD, Feldmann M, Matthews JC, et al. Optimization of methods for quantification of rCBF using high-resolution [(15)O]H(2)O PET images. Phys Med Biol 2012;57:2251–2271
    1. Cízek J, Herholz K, Vollmar S, Schrader R, Klein J, Heiss WD. Fast and robust registration of PET and MR images of human brain. Neuroimage 2004;22:434–442
    1. Svarer C, Madsen K, Hasselbalch SG, et al. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage 2005;24:969–979
    1. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure, and normal values. J Clin Invest 1948;27:476–483
    1. Suda S, Shinohara M, Miyaoka M, Lucignani G, Kennedy C, Sokoloff L. The lumped constant of the deoxyglucose method in hypoglycemia: effects of moderate hypoglycemia on local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab 1990;10:499–509
    1. Wienhard K. Measurement of glucose consumption using [(18)F]fluorodeoxyglucose. Methods 2002;27:218–225
    1. Schuier F, Orzi F, Suda S, Lucignani G, Kennedy C, Sokoloff L. Influence of plasma glucose concentration on lumped constant of the deoxyglucose method: effects of hyperglycemia in the rat. J Cereb Blood Flow Metab 1990;10:765–773
    1. Crone CC. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion' method. Acta Physiol Scand 1963;58:292–305
    1. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 1959;197:1205–1210
    1. Gutniak M, Blomqvist G, Widén L, Stone-Elander S, Hamberger B, Grill V. D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects. Am J Physiol 1990;258:E805–E812
    1. Avogaro A, Nosadini R, Doria A, et al. Substrate availability other than glucose in the brain during euglycemia and insulin-induced hypoglycemia in dogs. Metabolism 1990;39:46–50
    1. Grill V, Gutniak M, Björkman O, et al. Cerebral blood flow and substrate utilization in insulin-treated diabetic subjects. Am J Physiol 1990;258:E813–E820
    1. Mans AM, DeJoseph MR, Davis DW, Hawkins RA. Brain energy metabolism in streptozotocin-diabetes. Biochem J 1988;249:57–62
    1. Duckrow RB, Beard DC, Brennan RW. Regional cerebral blood flow decreases during chronic and acute hyperglycemia. Stroke 1987;18:52–58
    1. Jimenez-Bonilla JF, Carril JM, Quirce R, Gomez-Barquin R, Amado JA, Gutierrez-Mendiguchia C. Assessment of cerebral blood flow in diabetic patients with no clinical history of neurological disease. Nucl Med Commun 1996;17:790–794
    1. Quirce R, Carril JM, Jiménez-Bonilla JF, et al. Semi-quantitative assessment of cerebral blood flow with 99mTc-HMPAO SPET in type I diabetic patients with no clinical history of cerebrovascular disease. Eur J Nucl Med 1997;24:1507–1513
    1. Salem MA, Matta LF, Tantawy AA, Hussein M, Gad GI. Single photon emission tomography (SPECT) study of regional cerebral blood flow in normoalbuminuric children and adolescents with type 1 diabetes. Pediatr Diabetes 2002;3:155–162
    1. Cranston I, Marsden P, Matyka K, et al. Regional differences in cerebral blood flow and glucose utilization in diabetic man: the effect of insulin. J Cereb Blood Flow Metab 1998;18:130–140
    1. Hasselbalch SG, Knudsen GM, Videbaek C, et al. No effect of insulin on glucose blood-brain barrier transport and cerebral metabolism in humans. Diabetes 1999;48:1915–1921
    1. Reivich M, Alavi A, Wolf A, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 1985;5:179–192
    1. Sabri O, Hellwig D, Schreckenberger M, et al. Influence of diabetes mellitus on regional cerebral glucose metabolism and regional cerebral blood flow. Nucl Med Commun 2000;21:19–29
    1. Wessels AM, Simsek S, Remijnse PL, et al. Voxel-based morphometry demonstrates reduced grey matter density on brain MRI in patients with diabetic retinopathy. Diabetologia 2006;49:2474–2480
    1. Pletzer B, Kronbichler M, Ladurner G, Nuerk HC, Kerschbaum H. Menstrual cycle variations in the BOLD-response to a number bisection task: implications for research on sex differences. Brain Res 2011;1420:37–47
    1. Gur RE, Gur RC. Gender differences in regional cerebral blood flow. Schizophr Bull 1990;16:247–254
    1. Andreason PJ, Zametkin AJ, Guo AC, Baldwin P, Cohen RM. Gender-related differences in regional cerebral glucose metabolism in normal volunteers. Psychiatry Res 1994;51:175–183
    1. Azari NP, Rapoport SI, Grady CL, et al. Gender differences in correlations of cerebral glucose metabolic rates in young normal adults. Brain Res 1992;574:198–208

Source: PubMed

3
Tilaa