17p deletion strongly influences rituximab elimination in chronic lymphocytic leukemia

Cristina Bagacean, Adrian Tempescul, David Ternant, Anne Banet, Nathalie Douet-Guilbert, Anne Bordron, Boutahar Bendaoud, Hussam Saad, Mihnea Zdrenghea, Christian Berthou, Gilles Paintaud, Yves Renaudineau, Cristina Bagacean, Adrian Tempescul, David Ternant, Anne Banet, Nathalie Douet-Guilbert, Anne Bordron, Boutahar Bendaoud, Hussam Saad, Mihnea Zdrenghea, Christian Berthou, Gilles Paintaud, Yves Renaudineau

Abstract

Chronic lymphocytic leukemia (CLL) is the most common type of leukemia and the anti-CD20 monoclonal antibody, rituximab, represents the therapeutic gold standard for more than 2 decades in this pathology, when used in combination with chemotherapy. However, some patients experience treatment resistance or rapid relapses, and in particular, those harboring a 17p/TP53 deletion (del(17p)). This resistance could be explained by a chemo-resistance, but it could also result from the direct impact of del(17p) on the pharmacokinetics of rituximab, which represents the aim of the present study. Accordingly, 44 CLL patients were included in the study, and among them 9 presented a del(17p). Next, a total of 233 rituximab sera were selected for a pharmacokinetic study and analyzed in a two-compartment model showing important differences when del(17p) CLL patients were compared with non-del(17p) patients treated with rituximab and chemotherapy: (1) clearance of rituximab was faster; (2) central volume of rituximab distribution V1 (peripheral blood) was reduced while peripheral volume V2 (lymphoid organs and tissues) was increased; and (3) the rate of rituximab elimination (Kout) was faster. In contrast, the group with a better prognosis harboring isolated del(13q) presented a slower rate of elimination (Kout). Pharmacokinetic parameters were independent from the other factors tested such as age, sex, chemotherapy regimen (fludarabine/cyclophosphamide versus bendamustine), IGHV mutational status, and FCGR3A 158VF status. In conclusion, this study provides an additional argument to consider that del(17p) is effective not only to control chemoresistance but also monoclonal antibody activity, based on higher rituximab turnover.

Trial registration: ClinicalTrials.gov NCT03294980.

Keywords: 17p deletion; Anti-CD20 monoclonal antibody; Chronic lymphocytic leukemia; Clearance; Pharmacokinetics; Rituximab.

Conflict of interest statement

Ethics approval and consent to participate

Consent was obtained from all individuals and the protocol approved by the Ethical Board (Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Del(17p) influences the pharmacokinetics of rituximab (RTX). Del(17p) CLL patients have a faster rituximab (RTX) clearance (CL) (a), a lower RTX distribution in the central volume (V1) (c) while peripheral volume (V2) was larger (d), and a significantly lower RTX rate of elimination (Kout) (b) compared to patients presenting other cytogenetic abnormalities. Statistics are indicated when p < 0.05 (Mann-Whitney U test)

References

    1. Grever MR, Lucas DM, Dewald GW, Neuberg DS, Reed JC, Kitada S, et al. Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US intergroup phase III trial E2997. J Clin Oncol. 2007;25(7):799–804. doi: 10.1200/JCO.2006.08.3089.
    1. Catovsky D, Richards S, Matutes E, Oscier D, Dyer M, Bezares RF, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 trial): a randomised controlled trial. Lancet. 2007;370(9583):230–239. doi: 10.1016/S0140-6736(07)61125-8.
    1. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–1174. doi: 10.1016/S0140-6736(10)61381-5.
    1. Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28(29):4473–4479. doi: 10.1200/JCO.2009.27.8762.
    1. Eskelund CW, Dahl C, Hansen JW, Westman M, Kolstad A, Pedersen LB, et al. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood. 2017;130(17):1903–1910. doi: 10.1182/blood-2017-04-779736.
    1. Xiao W, Du N, Huang T, Guo J, Mo X, Yuan T, et al. TP53 mutation as potential negative predictor for response of anti-CTLA-4 therapy in metastatic melanoma. EBioMedicine. 2018;32:119–124. doi: 10.1016/j.ebiom.2018.05.019.
    1. Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2017;23(12):3012–3024. doi: 10.1158/1078-0432.CCR-16-2554.
    1. Bagacean C, Zdrenghea M, Tempescul A, Cristea V, Renaudineau Y. Anti-CD20 monoclonal antibodies in chronic lymphocytic leukemia: from uncertainties to promises. Immunotherapy. 2016;8(5):569–581. doi: 10.2217/imt-2015-0015.
    1. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–445.
    1. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–758. doi: 10.1182/blood.V99.3.754.
    1. Berinstein NL, Grillo-Lopez AJ, White CA, Bence-Bruckler I, Maloney D, Czuczman M, et al. Association of serum rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin's lymphoma. Ann Oncol. 1998;9(9):995–1001. doi: 10.1023/A:1008416911099.
    1. Tempescul A, Bagacean C, Riou C, Bendaoud B, Hillion S, Debant M, et al. Ofatumumab capacity to deplete B cells from chronic lymphocytic leukaemia is affected by C4 complement exhaustion. Eur J Haematol. 2016;96(3):229–235. doi: 10.1111/ejh.12573.
    1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues: IARC; 2008; p:439:
    1. Cornec D, Tempescul A, Querellou S, Hutin P, Pers JO, Jamin C, et al. Identification of patients with indolent B cell lymphoma sensitive to rituximab monotherapy. Ann Hematol. 2012;91(5):715–721. doi: 10.1007/s00277-011-1369-y.
    1. Tout M, Gagez AL, Lepretre S, Gouilleux-Gruart V, Azzopardi N, Delmer A, et al. Influence of FCGR3A-158V/F genotype and baseline CD20 antigen count on target-mediated elimination of rituximab in patients with chronic lymphocytic leukemia: a study of FILO group. Clin Pharmacokinet. 2017;56(6):635–647. doi: 10.1007/s40262-016-0470-8.
    1. Tam CS, Otero-Palacios J, Abruzzo LV, Jorgensen JL, Ferrajoli A, Wierda WG, et al. Chronic lymphocytic leukaemia CD20 expression is dependent on the genetic subtype: a study of quantitative flow cytometry and fluorescent in-situ hybridization in 510 patients. Br J Haematol. 2008;141(1):36–40. doi: 10.1111/j.1365-2141.2008.07012.x.
    1. Zent CS, Taylor RP, Lindorfer MA, Beum PV, LaPlant B, Wu W, et al. Chemoimmunotherapy for relapsed/refractory and progressive 17p13-deleted chronic lymphocytic leukemia (CLL) combining pentostatin, alemtuzumab, and low-dose rituximab is effective and tolerable and limits loss of CD20 expression by circulating CLL cells. Am J Hematol. 2014;89(7):757–765. doi: 10.1002/ajh.23737.
    1. Garces S, Khoury JD, Kanagal-Shamanna R, Salem A, Wang SA, Ok CY, et al. Chronic lymphocytic leukemia with proliferation centers in bone marrow is associated with younger age at initial presentation, complex karyotype and TP53 disruption. Hum Pathol. 2018;82:215-31.
    1. Bordron A, Bagacean C, Mohr A, Tempescul A, Bendaoud B, Deshayes S, et al. Resistance to complement activation, cell membrane hypersialylation and relapses in chronic lymphocytic leukemia patients treated with rituximab and chemotherapy. Oncotarget. 2018;9(60):31590–31605. doi: 10.18632/oncotarget.25657.
    1. Sebejova L, Borsky M, Jaskova Z, Potesil D, Navrkalova V, Malcikova J, et al. Distinct in vitro sensitivity of p53-mutated and ATM-mutated chronic lymphocytic leukemia cells to ofatumumab and rituximab. Exp Hematol. 2014;42(10):867–874. doi: 10.1016/j.exphem.2014.06.003.
    1. Behdad A, Griffin B, Chen YH, Ma S, Kelemen K, Lu X, et al. PD-1 is highly expressed by neoplastic B-cells in Richter transformation. Br J Haematol. 2018. ePub ahead of print.
    1. Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419–3427. doi: 10.1182/blood-2017-02-765685.

Source: PubMed

3
Tilaa