18F-flutemetamol positron emission tomography in cardiac amyloidosis

Maria Papathanasiou, Lukas Kessler, Alexander Carpinteiro, Tim Hagenacker, Felix Nensa, Lale Umutlu, Michael Forsting, Alexandra Brainman, Christoph Kleinschnitz, Gerald Antoch, Ulrich Dührsen, Thomas-Wilfried Schlosser, Ken Herrmann, Tienush Rassaf, Peter Luedike, Christoph Rischpler, Maria Papathanasiou, Lukas Kessler, Alexander Carpinteiro, Tim Hagenacker, Felix Nensa, Lale Umutlu, Michael Forsting, Alexandra Brainman, Christoph Kleinschnitz, Gerald Antoch, Ulrich Dührsen, Thomas-Wilfried Schlosser, Ken Herrmann, Tienush Rassaf, Peter Luedike, Christoph Rischpler

Abstract

Purpose: Bone-tracer scintigraphy has an established role in diagnosis of cardiac amyloidosis (CA) as it detects transthyretin amyloidosis (ATTR). Positron emission tomography (PET) with amyloid tracers has shown high sensitivity for detection of both ATTR and light-chain (AL) CA. We aimed to investigate the accuracy of 18F-flutemetamol in CA.

Methods: We enrolled patients with CA or non-amyloid heart failure (NA-HF), who underwent cardiac 18F-flutemetamol PET/MRI or PET/CT. Myocardial and blood pool standardized tracer uptake values (SUV) were estimated. Late gadolinium enhancement (LGE) and T1 mapping/ extracellular volume (ECV) estimation were performed.

Results: We included 17 patients (12 with CA, 5 with NA-HF). PET/MRI was conducted in 13 patients, while PET/CT was conducted in 4. LGE was detected in 8 of 9 CA patients. Global relaxation time and ECV were higher in CA (1448 vs. 1326, P = 0.02 and 58.9 vs. 33.7%, P = 0.006, respectively). Positive PET studies were demonstrated in 2 of 12 patients with CA (AL and ATTR). Maximal and mean SUV did not differ between groups (2.21 vs. 1.69, P = 0.18 and 1.73 vs. 1.30, P = 0.13).

Conclusion: Although protein-independent binding is supported by our results, the diagnostic yield of PET was low. We demonstrate here for the first time the low sensitivity of PET for CA.

Keywords: Cardiac amyloidosis; amyloid-binding tracers; light-chain; molecular imaging; positron emission tomography; transthyretin.

© 2020. The Author(s).

Figures

Fig. 1
Fig. 1
Diagram depicting the imaging modality used in the amyloidosis and heart failure groups (18F-flutemetamol PET/MRI or 18F-flutemetamol PET/CT)
Fig. 2
Fig. 2
18F-flutemetamol PET/MRIs of a PET-positive, female patient with hereditary ATTR-CA (A) and a PET-negative male patient with wild-type ATTR-CA (B). Representative short-axis images of native T1 maps (left column), late gadolinium enhancement (middle column), and F-18 flutemetamol PET (right column). While patient A demonstrates an abnormal T1 map (1448 ms), diffused LGE, and an increased tracer uptake (SUVmean myocardium: 3.1, SUVmean blood pool: 1.3), patient B does not demonstrate an increased tracer uptake (SUVmean myocardium 1.4, SUVmean blood pool: 1.5) despite an abnormal native T1 map (1460 ms), focal areas of LGE, and a positive myocardial biopsy and bone scan (Perugini 3, not shown)
Fig. 3
Fig. 3
Tracer kinetics in the left ventricular myocardium and the blood. SUVs of the left ventricular myocardium and blood pool are depicted in PET-positive hereditary ATTR-CA (A), PET-positive AL-CA (B), PET-negative hereditary ATTR-CA with positive endomyocardial biopsy (C), and a healthy control (D). In the first few minutes, the mean left ventricular and blood pool SUVs are similar for all patients. While the SUVs of the left ventricular myocardium then remain above the SUVs of the blood pool in the PET-positive hereditary ATTR-CA (A) and AL-CA patients (B), the SUVs of the myocardium decrease in the PET-negative hereditary ATTR-CA (C) and the healthy control (D) and even fall below the SUVs of the blood pool after approximately 400-600 seconds. Unspecific pericardial tracer uptake can be seen in all patients

References

    1. Seferović PM, Polovina M, Bauersachs J, et al. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21(5):553–576. doi: 10.1002/ejhf.1461.
    1. Mohammed SF, Mirzoyev SA, Edwards WD, et al. Left ventricular amyloid deposition inpatients with heart failure and preserved ejection fraction. JACC Hear Fail. 2014;2(2):113–122. doi: 10.1016/j.jchf.2013.11.004.
    1. González-López E, Gallego-Delgado M, Guzzo-Merello G, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36(38):2585–2594. doi: 10.1093/eurheartj/ehv338.
    1. Treibel TA, Fontana M, Gilbertson JA, et al. Occult transthyretin cardiac amyloid in severe calcific aortic stenosis. Circ Cardiovasc Imaging. 2016;9(8):1–10. doi: 10.1161/CIRCIMAGING.116.005066.
    1. Scully PR, Treibel TA, Fontana M, et al. Prevalence of cardiac amyloidosis in patients referred for transcatheter aortic valve replacement. J Am Coll Cardiol. 2018;71(4):463–464. doi: 10.1016/j.jacc.2017.11.037.
    1. Gertz MA. Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2018. Blood Cancer J. 2018 doi: 10.1038/s41408-018-0080-9.
    1. Maurer MS, Hanna M, Grogan M, et al. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey) J Am Coll Cardiol. 2016;68(2):161–172. doi: 10.1016/j.jacc.2016.03.596.
    1. Martinez-Naharro A, Treibel TA, Abdel-Gadir A, et al. Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol. 2017;70(4):466–477. doi: 10.1016/j.jacc.2017.05.053.
    1. Dorbala S, Ando Y, Bokhari S, et al. Expert consensus recommendations. J Nucl Cardiol. 2019 doi: 10.1007/s12350-019-01760-6.
    1. Dorbala S, Ando Y, Bokhari S, et al. Expert consensus recommendations. J Nucl Cardiol. 2019 doi: 10.1007/s12350-019-01761-5.
    1. Antoni G, Lubberink M, Estrada S, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med. 2013;54(2):213–220. doi: 10.2967/jnumed.111.102053.
    1. Dietemann S, Nkoulou R. Amyloid PET imaging in cardiac amyloidosis: a pilot study using 18F-flutemetamol positron emission tomography. Ann Nucl Med. 2019 doi: 10.1007/s12149-019-01372-7.
    1. Dorbala S, Vangala D, Semer J, et al. Imaging cardiac amyloidosis: a pilot study using 18 F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41(9):1652–1662. doi: 10.1007/s00259-014-2787-6.
    1. Ezawa N, Katoh N, Oguchi K, Yoshinaga T, Yazaki M, Sekijima Y. Visualization of multiple organ amyloid involvement in systemic amyloidosis using 11C-PiB PET imaging. Eur J Nucl Med Mol Imaging. 2018;45(3):452–461. doi: 10.1007/s00259-017-3814-1.
    1. Law WP, Wang WYS, Moore PT, Mollee PN, Ng ACT. Cardiac amyloid imaging with 18F-florbetaben PET: a pilot study. J Nucl Med. 2016;57(11):1733–1739. doi: 10.2967/jnumed.115.169870.
    1. Lee SP, Lee ES, Choi H, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging. 2015;8(1):50–59. doi: 10.1016/j.jcmg.2014.09.018.
    1. Osborne DR, Acuff SN, Stuckey A, Wall JS. A routine PET/CT protocol with streamlined calculations for assessing cardiac amyloidosis using 18F-florbetapir. Front Cardiovasc Med. 2015 doi: 10.3389/fcvm.2015.00023.
    1. Pilebro B, Arvidsson S, Lindqvist P, et al. Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR) J Nucl Cardiol. 2018;25(1):240–248. doi: 10.1007/s12350-016-0638-5.
    1. Kim YJ, Ha S, Kim Y. Cardiac amyloidosis imaging with amyloid positron emission tomography: a systematic review and meta-analysis. Journal of Nuclear Cardiology. 2020;27:123–132. doi: 10.1007/s12350-018-1365-x.
    1. Falk RH, Alexander KM, Liao R, Dorbala S. AL (light-chain) cardiac amyloidosis: a review of diagnosis and therapy. J Am Coll Cardiol. 2016;68(12):1323–1341. doi: 10.1016/j.jacc.2016.06.053.
    1. Maurer MS, Elliott P, Comenzo R, Semigran M, Rapezzi C. Addressing common questions encountered in the diagnosis and management of cardiac amyloidosis. Circulation. 2017;135(14):1357–1377. doi: 10.1161/CIRCULATIONAHA.116.024438.
    1. Möckelind S, Axelsson J, Pilebro B, Lindqvist P, Suhr OB, Sundström T. Quantification of cardiac amyloid with [18F]Flutemetamol in patients with V30M hereditary transthyretin amyloidosis. Amyloid. 2020 doi: 10.1080/13506129.2020.1760237.
    1. Lhommel R, Sempoux C, Ivanoiu A, Michaux L, Gerber B. Is 18F-flutemetamol PET/CT able to reveal cardiac amyloidosis? Clin Nucl Med. 2014;39(8):747–749. doi: 10.1097/RLU.0000000000000492.
    1. Kircher M, Ihne S, Brumberg J, et al. Detection of cardiac amyloidosis with 18F-Florbetaben-PET/CT in comparison to echocardiography, cardiac MRI and DPD-scintigraphy. Eur J Nucl Med Mol Imaging. 2019;46(7):1407–1416. doi: 10.1007/s00259-019-04290-y.
    1. Palladini G, Dispenzieri A, Gertz MA, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30(36):4541–4549. doi: 10.1200/JCO.2011.37.7614.
    1. Martinez-Naharro A, Kotecha T, Norrington K, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2019;12(5):810–819. doi: 10.1016/j.jcmg.2018.02.006.
    1. Gillmore JD, Maurer MS, Falk RH, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–2412. doi: 10.1161/CIRCULATIONAHA.116.021612.

Source: PubMed

3
Tilaa