Streptococcus pneumoniae Enhances Human Respiratory Syncytial Virus Infection In Vitro and In Vivo

D Tien Nguyen, Rogier Louwen, Karin Elberse, Geert van Amerongen, Selma Yüksel, Ad Luijendijk, Albert D M E Osterhaus, W Paul Duprex, Rik L de Swart, D Tien Nguyen, Rogier Louwen, Karin Elberse, Geert van Amerongen, Selma Yüksel, Ad Luijendijk, Albert D M E Osterhaus, W Paul Duprex, Rik L de Swart

Abstract

Human respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants hospitalized with bronchiolitis or pneumonia. It has been described that respiratory virus infections may predispose for bacterial superinfections, resulting in severe disease. However, studies on the influence of bacterial colonization of the upper respiratory tract on the pathogenesis of subsequent respiratory virus infections are scarce. Here, we have investigated whether pneumococcal colonization enhances subsequent HRSV infection. We used a newly generated recombinant subgroup B HRSV strain that expresses enhanced green fluorescent protein and pneumococcal isolates obtained from healthy children in disease-relevant in vitro and in vivo model systems. Three pneumococcal strains specifically enhanced in vitro HRSV infection of primary well-differentiated normal human bronchial epithelial cells grown at air-liquid interface, whereas two other strains did not. Since previous studies reported that bacterial neuraminidase enhanced HRSV infection in vitro, we measured pneumococcal neuraminidase activity in these cultures but found no correlation with the observed infection enhancement in our model. Subsequently, a selection of pneumococcal strains was used to induce nasal colonization of cotton rats, the best available small animal model for HRSV. Intranasal HRSV infection three days later resulted in strain-specific enhancement of HRSV replication in vivo. One S. pneumoniae strain enhanced HRSV both in vitro and in vivo, and was also associated with enhanced syncytium formation in vivo. However, neither pneumococci nor HRSV were found to spread from the upper to the lower respiratory tract, and neither pathogen was transmitted to naive cage mates by direct contact. These results demonstrate that pneumococcal colonization can enhance subsequent HRSV infection, and provide tools for additional mechanistic and intervention studies.

Conflict of interest statement

Competing Interests: A.D.M.E. Osterhaus founded and is chief scientific officer of ViroClinics Biosciences B.V., a company set up in collaboration with Erasmus University. R.L. de Swart has received research funding from ViroClinics Biosciences B.V. However, for clarification, no materials or support were received from the company for the studies described in this manuscript, and no agreements were in place concerning the execution or publication of this work. The other authors declare no competing interests. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Enhancement of HRSV infection mediated…
Fig 1. Enhancement of HRSV infection mediated by specific S. pneumoniae strains in wd-NHBE cells.
(A) wd-NHBE cells were inoculated with HRSV and one S. pneumoniae strain with mock control. Strain 8, 15A and 19F enhanced HRSV infection as evidenced by quantification of EGFP+ cells 2 d.p.i. Data are represented as mean ± SD. * p ≤ 0.05; 2-tailed Mann-Whitney U test. (B) wd-NHBE cells were treated with neuraminidase from Vibrio cholerae, followed by HRSV infection after washing. Two dpi the numbers of HRSV-infected cells were enumerated. Data are presented as means ± SD. * p ≤ 0.05; 2-tailed Mann-Whitney U test. (C) HRSV was treated with neuraminidase from Vibrio cholerae before inoculation of wd-NHBE cells. Treated virus was incubated for 1 hour, followed by washing. HRSV-infected cells were enumerated 2 dpi. Data are presented as means ± SD. * p ≤ 0.05; 2-tailed Mann-Whitney U test. (D) Apical inocula of the wd-NHBE cell co-infection experiment shown in Fig 1A were tested for neuraminidase activity using the NA-Star Influenza Neuraminidase Inhibitor Resistance Detection Kit (Applied Biosystems). Numbers correspond to Vibrio cholerae μU neuraminidase activity. Data are presented as means ± SD.
Fig 2. Bacterial and virus titers of…
Fig 2. Bacterial and virus titers of HRSV infected S. pneumoniae colonized cotton rats.
(A) Experimental design. Pneumococcal carriage was induced by i.n. inoculation of cotton rats with 5x105 CFU S. pneumoniae in 10 μl at day 0. Three days later animals were infected with 1x104 TCID50 rHRSVB05EGFP(5) in PBS (10 μl). At day 8 animals were euthanized. (B) Bacterial titers eight days after induction of pneumococcal carriage. The geometric mean titer was about 2x105 CFU/ml for the different strains. Data symbols represent individual animals, bars represent geometric mean titers (GMT) per group. * p ≤ 0.05; 2-tailed Mann-Whitney U test. (C) Virus titers five days after HRSV infection. Significantly higher virus load were detected in groups with nasal carriage of S. pneumoniae strain 19F and 23F compared to mock-treated. * p ≤ 0.05; 2-tailed Mann-Whitney U test.
Fig 3. HRSV infection in nasal septum…
Fig 3. HRSV infection in nasal septum of a S. pneumoniae colonized cotton rat.
Composite microscopic UV images of the complete nasal septum of a cotton rat 5 d.p.i. showing a representative syncytium in the middle (scale bar represents 500 μm). The inset is a confocal laser scanning image of the same nasal septum with nuclei stained with TO-PRO3 (red; scale bar represents 100 μm).
Fig 4. In vivo transmission study HRSV…
Fig 4. In vivo transmission study HRSV infection in S. pneumoniae colonized cotton rats.
(A) Schematic representation of the time course of the experiment. Animals were initially housed in pairs. One of each pair was pneumococcus- or mock-colonized, and infected with HRSV three days later. Another two days later the matching naive contact animals were added to their cage, reuniting the original pairs. Index and contact animals were euthanized at day 8 or 11, respectively. (B) Bacterial titer of index and contact animals. The geometric mean titer (GMT) was about 2x105 CFU/ml for the index group, but no bacteria were isolated in the contact animals. Each data symbol represents one animal, bars represent GMT. (C) Virus titers of index and contact animals. Significantly higher virus loads were detected in the index group colonized with strain 19F, as compared to mock-colonized. In both contact groups no virus could be isolated out of the nose and lungs. * p ≤ 0.05; 2-tailed Mann-Whitney U test.

References

    1. Fischer Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, et al. Global burden of childhood pneumonia and diarrhoea. Lancet. 2013;381:1405–16. 10.1016/S0140-6736(13)60222-6
    1. Bogaert D, de Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis. 2004;4:144–54.
    1. Simell B, Auranen K, Kayhty H, Goldblatt D, Dagan R, O'Brien KL. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 2012;11:841–55.
    1. Poolman JT, Peeters CC, van den Dobbelsteen GP. The history of pneumococcal conjugate vaccine development: dose selection. Expert Rev Vaccines. 2013;12:1379–94. 10.1586/14760584.2013.852475
    1. Simoes EAF. Respiratory syncytial virus infection. Lancet. 1999;354:847–52.
    1. Collins PL, Karron RA. Respiratory syncytial virus and metapneumovirus In: Knipe DM, Howley PM, editors. Fields Virology. Edition 6 Philadelphia: Wolters Kluwer | Lippincott Williams & Wilkins; 2013. p. 1086–123.
    1. Graham BS. Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol Rev. 2011;239:149–66. 10.1111/j.1600-065X.2010.00972.x
    1. Chu HY, Englund JA. Respiratory syncytial virus disease: prevention and treatment. Curr Top Microbiol Immunol. 2013;372:235–58. 10.1007/978-3-642-38919-1_12
    1. Rietveld E, Steyerberg EW, Polder JJ, Veeze HJ, Vergouwe Y, Huysman MW, et al. Passive immunisation against respiratory syncytial virus: a cost-effectiveness analysis. Arch Dis Child. 2010;95:493–8. 10.1136/adc.2008.155556
    1. Talbot TR, Poehling KA, Hartert TV, Arbogast PG, Halasa NB, Edwards KM, et al. Seasonality of invasive pneumococcal disease: temporal relation to documented influenza and respiratory syncytial viral circulation. Am J Med. 2005;118:285–91.
    1. Weinberger DM, Grant LR, Steiner CA, Weatherholtz R, Santosham M, Viboud C, et al. Seasonal drivers of pneumococcal disease incidence: impact of bacterial carriage and viral activity. Clin Infect Dis. 2014;58:188–94. 10.1093/cid/cit721
    1. Hoti F, Erasto P, Leino T, Auranen K. Outbreaks of Streptococcus pneumoniae carriage in day care cohorts in Finland—implications for elimination of transmission. BMC Infect Dis. 2009;9:102 10.1186/1471-2334-9-102
    1. Hall CB, Simoes EAF, Anderson LJ. Clinical and epidemiological features of respiratory syncytial virus. Curr Top Microbiol Immunol. 2013;372:39–57. 10.1007/978-3-642-38919-1_2
    1. Pessoa D, Hoti F, Syrjanen R, Sa-Leao R, Kaijalainen T, Gomes MG, et al. Comparative analysis of Streptococcus pneumoniae transmission in Portuguese and Finnish day-care centres. BMC Infectious Diseases. 2013;13:180 10.1186/1471-2334-13-180
    1. Timmons OD, Yamauchi T, Collins SR, Newbern DG, Sweatt JA, Jacobs RF. Association of respiratory syncytial virus and Streptococcus pneumoniae infection in young infants. Pediatr Infect Dis J. 1987;6:1134–5.
    1. Duttweiler L, Nadal D, Frey B. Pulmonary and systemic bacterial co-infections in severe RSV bronchiolitis. Arch Dis Child. 2004;89:1155–7.
    1. Bosch AA, Biesbroek G, Trzcinski K, Sanders EA, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 2013;9:e1003057 10.1371/journal.ppat.1003057
    1. Beem M, Wright FH, Hamre D, Egerer R, Oehme M. Association of the chimpanzee coryza agent with acute respiratory disease in children. N Engl J Med. 1960;263:523–30.
    1. Hament JM, Aerts PC, Fleer A, van Dijk H, Harmsen T, Kimpen JL, et al. Enhanced adherence of Streptococcus pneumoniae to human epithelial cells infected with respiratory syncytial virus. Pediatr Res. 2004;55:972–8.
    1. Hament JM, Aerts PC, Fleer A, van Dijk H, Harmsen T, Kimpen JL, et al. Direct binding of respiratory syncytial virus to pneumococci: a phenomenon that enhances both pneumococcal adherence to human epithelial cells and pneumococcal invasiveness in a murine model. Pediatr Res. 2005;58:1198–203.
    1. Avadhanula V, Wang Y, Portner A, Adderson E. Nontypeable Haemophilus influenzae and Streptococcus pneumoniae bind respiratory syncytial virus glycoprotein. J Med Microbiol. 2007;56:1133–7.
    1. Nguyen DT, de Witte L, Ludlow M, Yüksel S, Wiesmüller KH, Geijtenbeek TBH, et al. The synthetic bacterial lipopeptide Pam3CSK4 modulates respiratory syncytial virus infection independent of TLR activation. PLoS Pathog. 2010;6:e1001049 10.1371/journal.ppat.1001049
    1. Verkaik NJ, Nguyen DT, de Vogel CP, Moll HA, Verbrugh HA, Jaddoe VWV, et al. Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin Microbiol Infect. 2011;17:1840–4. 10.1111/j.1469-0691.2011.03480.x
    1. Madhi SA, Klugman KP. A role for Streptococcus pneumoniae in virus-associated pneumonia. Nat Med. 2004;10:811–3.
    1. Lemon K, Nguyen DT, Ludlow M, Rennick LJ, Yüksel S, Van Amerongen G, et al. Recombinant subgroup B human respiratory syncytial virus expressing enhanced green fluorescent protein efficiently replicates in primary human cells and is virulent in cotton rats. J Virol. 2015;89:2849–56. 10.1128/JVI.03587-14
    1. Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2006;2:e31
    1. Elberse K, Witteveen S, van der Heide H, van de Pol I, Schot C, Van Der Ende A, et al. Sequence diversity within the capsular genes of Streptococcus pneumoniae serogroup 6 and 19. PLoS ONE. 2011;6:e25018 10.1371/journal.pone.0025018
    1. De Swart RL, Ludlow M, De Witte L, Yanagi Y, Van Amerongen G, McQuaid S, et al. Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog. 2007;3:e178
    1. Converse GM III, Dillon HC Jr. Epidemiological studies of Streptococcus pneumoniae in infants: methods of isolating pneumococci. J Clin Microbiol. 1977;5:293–6.
    1. Widjojoatmodjo MN, Boes J, Van Bers M, Van Remmerden Y, Roholl PJM, Luytjes W. A highly attenuated recombinant human respiratory syncytial virus lacking the G protein induces long-lasting protection in cotton rats. Virol J. 2010;7:114 10.1186/1743-422X-7-114
    1. Nguyen DT, Ludlow M, Van Amerongen G, De Vries RD, Yüksel S, Verburgh RJ, et al. Evaluation of synthetic infection-enhancing lipopeptides as adjuvants for a live-attenuated canine distemper virus vaccine administered intra-nasally to ferrets. Vaccine. 2012;30:5073–80. 10.1016/j.vaccine.2012.05.079
    1. Nguyen DT, De Vries RD, Ludlow M, van den Hoogen BG, Lemon K, Van Amerongen G, et al. Paramyxovirus infections in ex vivo lung slice cultures of different host species. J Virol Methods. 2013;193:159–65. 10.1016/j.jviromet.2013.06.016
    1. Barretto N, Hallak LK, Peeples ME. Neuraminidase treatment of respiratory syncytial virus-infected cells or virions, but not target cells, enhances cell-cell fusion and infection. Virology. 2003;313(1):33–43.
    1. Miller MA, Stabenow JM, Parvathareddy J, Wodowski AJ, Fabrizio TP, Bina XR, et al. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS ONE. 2012;7:e31359 10.1371/journal.pone.0031359
    1. Thorburn K, Harigopal S, Reddy V, Taylor N, van Saene HK. High incidence of pulmonary bacterial co-infection in children with severe respiratory syncytial virus (RSV) bronchiolitis. Thorax. 2006;61:611–5.
    1. Thorburn K, van Saene HK. Pulmonary bacterial co-infection in children ventilated for severe respiratory syncytial virus bronchiolitis is common. Intensive Care Med. 2007;33:565
    1. Brundage JF, Shanks GD. Deaths from bacterial pneumonia during 1918–19 influenza pandemic. Emerg Infect Dis. 2008;14:1193–9. 10.3201/eid1408.071313
    1. McCullers JA. Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev. 2006;19:571–82.
    1. Palacios G, Hornig M, Cisterna D, Savji N, Bussetti AV, Kapoor V, et al. Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza. PLoS ONE. 2009;4:e8540 10.1371/journal.pone.0008540
    1. Diavatopoulos DA, Short KR, Price JT, Wilksch JJ, Brown LE, Briles DE, et al. Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J. 2010;24:1789–98. 10.1096/fj.09-146779
    1. Wang XY, Kilgore PE, Lim KA, Wang SM, Lee J, Deng W, et al. Influenza and bacterial pathogen coinfections in the 20th century. Interdiscip Perspect Infect Dis. 2011;2011:146376 10.1155/2011/146376
    1. Sajjan US, Jia Y, Newcomb DC, Bentley JK, Lukacs NW, LiPuma JJ, et al. H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J. 2006;20:2121–3.
    1. Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011;334:249–52. 10.1126/science.1211057
    1. Gabryszewski SJ, Bachar O, Dyer KD, Percopo CM, Killoran KE, Domachowske JB, et al. Lactobacillus-mediated priming of the respiratory mucosa protects against lethal pneumovirus infection. J Immunol. 2011;186:1151–61. 10.4049/jimmunol.1001751
    1. Tomosada Y, Chiba E, Zelaya H, Takahashi T, Tsukida K, Kitazawa H, et al. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol. 2013;14:40 10.1186/1471-2172-14-40
    1. Scanlon KL, Diven WF, Glew RH. Purification and properties of Streptococcus pneumoniae neuraminidase. Enzyme. 1989;41:143–50.
    1. Cohen M, Zhang XQ, Senaati HP, Chen HW, Varki NM, Schooley RT, et al. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J. 2013;10:321 10.1186/1743-422X-10-321
    1. Pittet LF, Posfay-Barbe KM. Pneumococcal vaccines for children: a global public health priority. Clin Microbiol Infect. 2012;18 Suppl 5:25–36. 10.1111/j.1469-0691.2012.03938.x
    1. Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet. 2011;378:1962–73. 10.1016/S0140-6736(10)62225-8
    1. Elberse KE, van der Heide HG, Witteveen S, van de Pol I, Schot CS, Van Der Ende A, et al. Changes in the composition of the pneumococcal population and in IPD incidence in The Netherlands after the implementation of the 7-valent pneumococcal conjugate vaccine. Vaccine. 2012;30:7644–51. 10.1016/j.vaccine.2012.04.021
    1. Feikin DR, Kagucia EW, Loo JD, Link-Gelles R, Puhan MA, Cherian T, et al. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. Plos Med. 2013;10:e1001517 10.1371/journal.pmed.1001517
    1. Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nature Rev Microbiol. 2008;6:288–301. 10.1038/nrmicro1871
    1. Martner A, Skovbjerg S, Paton JC, Wold AE. Streptococcus pneumoniae autolysis prevents phagocytosis and production of phagocyte-activating cytokines. Infect Immun. 2009;77:3826–37. 10.1128/IAI.00290-09
    1. Paunio M, Peltola H, Valle M, Davidkin I, Virtanen M, Heinonen OP. Explosive school-based measles outbreak: intense exposure may have resulted in high risk, even among revaccinees. Am J Epidemiol. 1998;148:1103–10.
    1. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438:355–9.

Source: PubMed

3
Tilaa