The role of viral introductions in sustaining community-based HIV epidemics in rural Uganda: evidence from spatial clustering, phylogenetics, and egocentric transmission models

Mary K Grabowski, Justin Lessler, Andrew D Redd, Joseph Kagaayi, Oliver Laeyendecker, Anthony Ndyanabo, Martha I Nelson, Derek A T Cummings, John Baptiste Bwanika, Amy C Mueller, Steven J Reynolds, Supriya Munshaw, Stuart C Ray, Tom Lutalo, Jordyn Manucci, Aaron A R Tobian, Larry W Chang, Chris Beyrer, Jacky M Jennings, Fred Nalugoda, David Serwadda, Maria J Wawer, Thomas C Quinn, Ronald H Gray, Rakai Health Sciences Program, Mary K Grabowski, Justin Lessler, Andrew D Redd, Joseph Kagaayi, Oliver Laeyendecker, Anthony Ndyanabo, Martha I Nelson, Derek A T Cummings, John Baptiste Bwanika, Amy C Mueller, Steven J Reynolds, Supriya Munshaw, Stuart C Ray, Tom Lutalo, Jordyn Manucci, Aaron A R Tobian, Larry W Chang, Chris Beyrer, Jacky M Jennings, Fred Nalugoda, David Serwadda, Maria J Wawer, Thomas C Quinn, Ronald H Gray, Rakai Health Sciences Program

Abstract

Background: It is often assumed that local sexual networks play a dominant role in HIV spread in sub-Saharan Africa. The aim of this study was to determine the extent to which continued HIV transmission in rural communities--home to two-thirds of the African population--is driven by intra-community sexual networks versus viral introductions from outside of communities.

Methods and findings: We analyzed the spatial dynamics of HIV transmission in rural Rakai District, Uganda, using data from a cohort of 14,594 individuals within 46 communities. We applied spatial clustering statistics, viral phylogenetics, and probabilistic transmission models to quantify the relative contribution of viral introductions into communities versus community- and household-based transmission to HIV incidence. Individuals living in households with HIV-incident (n = 189) or HIV-prevalent (n = 1,597) persons were 3.2 (95% CI: 2.7-3.7) times more likely to be HIV infected themselves compared to the population in general, but spatial clustering outside of households was relatively weak and was confined to distances <500 m. Phylogenetic analyses of gag and env genes suggest that chains of transmission frequently cross community boundaries. A total of 95 phylogenetic clusters were identified, of which 44% (42/95) were two individuals sharing a household. Among the remaining clusters, 72% (38/53) crossed community boundaries. Using the locations of self-reported sexual partners, we estimate that 39% (95% CI: 34%-42%) of new viral transmissions occur within stable household partnerships, and that among those infected by extra-household sexual partners, 62% (95% CI: 55%-70%) are infected by sexual partners from outside their community. These results rely on the representativeness of the sample and the quality of self-reported partnership data and may not reflect HIV transmission patterns outside of Rakai.

Conclusions: Our findings suggest that HIV introductions into communities are common and account for a significant proportion of new HIV infections acquired outside of households in rural Uganda, though the extent to which this is true elsewhere in Africa remains unknown. Our results also suggest that HIV prevention efforts should be implemented at spatial scales broader than the community and should target key populations likely responsible for introductions into communities.

Conflict of interest statement

JL is a PLOS Medicine Statistical Advisor. CB is a member of the Editorial Board of PLOS Medicine. DC has acted as a consultant to Medimmune on issues unrelated to HIV (influenza). The authors declare no other competing interests exist.

Figures

Figure 1. Rakai District, Uganda.
Figure 1. Rakai District, Uganda.
(A) Rakai (∼2,200 km2), a rural district in southwest Uganda, with population ∼450,000 (∼700 communities). RCCS R13 study participants (n = 1,085) reported 1,169 sexual partners with primary residence outside the Rakai District, but within Uganda (where disclosed, residential locations of sexual partners are indicated with red dots on the map). Only three sexual partners were reported to be living outside Uganda (two in Tanzania and one in the United Kingdom, not shown). (B) The Rakai district at a higher resolution, with the 11 geographic regions surveyed in RCCS R13 indicated in color. There are two primary highways (Masaka Road to Tanzania and the Trans-African National Highway to Rwanda and the Democratic Republic of the Congo [DR of Congo]) and numerous secondary roads that extend throughout the district.
Figure 2. Spatial clustering of HIV-seropositive persons…
Figure 2. Spatial clustering of HIV-seropositive persons within households (0 km) and in geographic windows of 250 m up to 10 km (the first window is 10–250 m, and windows are centered every 50 m starting at 125 m).
Spatial clustering analyses show whether HIV prevalence or incidence is elevated within certain distances of other HIV-seropositive persons. We define the spatial clustering of HIV-seropositive individuals as τ(d1,d2), the relative probability that an HIV-seropositive person resides within a distance window, d1 to d2, from another HIV-seropositive person compared to the probability that any individual is HIV seropositive in the entire study population. Where spatial clustering exists, values of τ(d1,d2) exceed one. Shaded areas show the 95% bootstrapped confidence intervals for spatial clustering estimates. (A) The spatial clustering between HIV-seropositive persons (prevalent or incident cases with other prevalent or incident cases; red). (B) The spatial clustering of HIV-seroincident cases with ART-naïve HIV-seroprevalent persons (yellow). (C) The spatial clustering of HIV-seroincident cases with other HIV-seroincident cases (blue). (D) A blowup of the area where significant extra-household spatial clustering (<500 m) was identified among all HIV-seropositive persons (marked with black box in [A–C]). Data are shown only up to 10 km (no significant spatial clustering was observed beyond this distance).
Figure 3. Maximum likelihood phylogenetic analyses of…
Figure 3. Maximum likelihood phylogenetic analyses of the HIV-1 gag gene.
(A) Boxplots of the intra-subtype gag genetic pairwise distances for epidemiologically linked (Epi linked) incident couples (i.e., at least one member of the couple was an incident case) and for all epidemiologically unlinked incident pairs of individuals in RCCS R13. (B) Boxplots of intra-subtype gag genetic pairwise distances by the geographic distance between the incident pair. (C) A ML phylogenetic tree (radial) of HIV-1 subtype A gag sequences from HIV-seroprevalent (n = 245) and HIV-incident (n = 55) cases, where taxa are colored by the geographic region from which they were isolated. Reference strains (n = 87) are in black. Grey circles indicate nodes with bootstrap support of ≥70%; black circles indicate intra-household clusters; † indicates an intra-household virus also sharing a cluster with at least one other household. Additional radial and rectangular phylogenetic trees for HIV-1 subtypes A, D, and C for gag and env genes are included in Figures S5, S6, S7, S8, S9, S10, S11, S12, S13.
Figure 4. Summary of inferential methods and…
Figure 4. Summary of inferential methods and study results and conclusions.
The dotted blue line represents the border of a hypothetical community.

References

    1. Anderson RM, May RM, Boily MC, Garnett GP, Rowley JT (1991) The spread of HIV-1 in Africa: sexual contact patterns and the predicted demographic impact of AIDS. Nature 352: 581–589.
    1. Doherty IA, Padian NS, Marlow C, Aral SO (2005) Determinants and consequences of sexual networks as they affect the spread of sexually transmitted infections. J Infect Dis 191 Suppl 1: S42–S54.
    1. Hagenaars TJ, Donnelly CA, Ferguson NM (2004) Spatial heterogeneity and the persistence of infectious diseases. J Theor Biol 229: 349–359.
    1. Deredec A, Courchamp F (2003) Extinction thresholds in host-parasite dynamics. Ann Zool Fennici 40: 115.
    1. Grosskurth H, Gray R, Hayes R, Mabey D, Wawer M (2000) Control of sexually transmitted diseases for HIV-1 prevention: understanding the implications of the Mwanza and Rakai trials. Lancet 355: 1981–1987.
    1. Wawer MJ, Sewankambo NK, Serwadda D, Quinn TC, Paxton LA, et al. (1999) Control of sexually transmitted diseases for AIDS prevention in Uganda: a randomised community trial. Lancet 353: 525–535.
    1. Garnett GP, Becker S, Bertozzi S (2012) Treatment as prevention: translating efficacy trial results to population effectiveness. Curr Opin HIV AIDS 7: 157–163.
    1. Cohen MS, Mastro TD, Cates W Jr (2009) Universal voluntary HIV testing and immediate antiretroviral therapy. Lancet 373: 1077.
    1. Eshleman SH, Hudelson SE, Redd AD, Wang L, Debes R, et al. (2011) Analysis of genetic linkage of HIV from couples enrolled in the HIV prevention trials network 052 trial. J Infect Dis 204: 1918–1926.
    1. US President's Emergency Program for AIDS Relief (2012) PEPFAR blue print: creating an AIDS-free generation. Washington (District of Columbia): Office of the Global AIDS Coordinator.
    1. HIV Prevention Trials Network (2012) HPTN 071: population effects of antiretroviral therapy to reduce HIV transmission (PopART): a cluster-randomized trial of the impact of a combination prevention package on population-level HIV incidence in Zambia and South Africa. Available: . Accessed 8 July 2013.
    1. (2013) The Mochudi Prevention Project ART protocol. . Available: . Accessed 8 July 2013.
    1. Hayes RJ, Alexander ND, Bennett S, Cousens SN (2000) Design and analysis issues in cluster-randomized trials of interventions against infectious diseases. Stat Methods Med Res 9: 95–116.
    1. Serwadda D, Mugerwa RD, Sewankambo NK, Lwegaba A, Carswell JW, et al. (1985) Slim disease: a new disease in Uganda and its association with HTLV-III infection. Lancet 2: 849–852.
    1. Collinson-Streng AN, Redd AD, Sewankambo NK, Serwadda D, Rezapour M, et al. (2009) Geographic HIV type 1 subtype distribution in Rakai district, Uganda. AIDS Res Hum Retroviruses 25: 1045–1048.
    1. Salje H, Lessler J, Endy TP, Curriero FC, Gibbons RV, et al. (2012) Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc Natl Acad Sci U S A 109: 9535–9538.
    1. Conroy SA, Laeyendecker O, Redd AD, Collinson-Streng A, Kong X, et al. (2010) Changes in the distribution of HIV type 1 subtypes D and A in Rakai district, Uganda between 1994 and 2002. AIDS Res Hum Retroviruses 26: 1087–1091.
    1. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
    1. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552.
    1. Martin DP, Lemey P, Lott M, Moulton V, Posada D, et al. (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26: 2462–2463.
    1. Schultz AK, Zhang M, Bulla I, Leitner T, Korber B, et al. (2009) jpHMM: improving the reliability of recombination prediction in HIV-1. Nucleic Acids Res 37 Web Server issue: W647–W651.
    1. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees [abstract]. 2010 Gateway Computing Environments Workshop; 14 Nov 2010; New Orleans, Louisiana, US.
    1. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. University of Texas Digital Repository. Available: . Accessed 8 July 2013.
    1. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539–542.
    1. Reynolds SJ, Makumbi F, Nakigozi G, Kagaayi J, Gray RH, et al. (2011) HIV-1 transmission among HIV-1 discordant couples before and after the introduction of antiretroviral therapy. AIDS 25: 473–477.
    1. Becker KM, Glass GE, Brathwaite W, Zenilman JM (1998) Geographic epidemiology of gonorrhea in Baltimore, Maryland, using a geographic information system. Am J Epidemiol 147: 709–716.
    1. Bellan SE, Fiorella KJ, Melesse DY, Getz WM, Williams BG, et al. (2013) Extra-couple HIV transmission in sub-Saharan Africa: a mathematical modelling study of survey data. Lancet 381: 1561–1569.
    1. Dunkle KL, Stephenson R, Karita E, Chomba E, Kayitenkore K, et al. (2008) New heterosexually transmitted HIV infections in married or cohabiting couples in urban Zambia and Rwanda: an analysis of survey and clinical data. Lancet 371: 2183–2191.
    1. Hollingsworth TD, Anderson RM, Fraser C (2008) HIV-1 transmission, by stage of infection. J Infect Dis 198: 687–693.
    1. Wawer MJ, Gray RH, Sewankambo NK, Serwadda D, Li X, et al. (2005) Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis 191: 1403–1409.
    1. Nunn AJ, Wagner HU, Kamali A, Kengeya-Kayondo JF, Mulder DW (1995) Migration and HIV-1 seroprevalence in a rural Ugandan population. AIDS 9: 503–506.
    1. Pison G, Le Guenno B, Lagarde E, Enel C, Seck C (1993) Seasonal migration: a risk factor for HIV infection in rural Senegal. J Acquir Immune Defic Syndr 6: 196–200.
    1. Read JM, Keeling MJ (2003) Disease evolution on networks: the role of contact structure. Proc Biol Sci 270: 699–708.
    1. Messinger SM, Ostling A (2009) The consequences of spatial structure for the evolution of pathogen transmission rate and virulence. Am Nat 174: 441–454.
    1. Keeling MJ, Woolhouse ME, Shaw DJ, Matthews L, Chase-Topping M, et al. (2001) Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science 294: 813–817.
    1. Tanser F, Barnighausen T, Hund L, Garnett GP, McGrath N, et al. (2011) Effect of concurrent sexual partnerships on rate of new HIV infections in a high-prevalence, rural South African population: a cohort study. Lancet 378: 247–255.
    1. Das M, Chu PL, Santos GM, Scheer S, Vittinghoff E, et al. (2010) Decreases in community viral load are accompanied by reductions in new HIV infections in San Francisco. PLoS ONE 5: e11068.
    1. Uganda Bureau of Statistics, ICF International (2012) Uganda demographic and Health survey 2011. Fairfax (Virginia): ICF International.
    1. Hughes GJ, Fearnhill E, Dunn D, Lycett SJ, Rambaut A, et al. (2009) Molecular phylodynamics of the heterosexual HIV epidemic in the United Kingdom. PLoS Pathog 5: e1000590.
    1. Yirrell DL, Pickering H, Palmarini G, Hamilton L, Rutemberwa A, et al. (1998) Molecular epidemiological analysis of HIV in sexual networks in Uganda. AIDS 12: 285–290.

Source: PubMed

3
Tilaa