Methylphenidate and galantamine in patients with vascular cognitive impairment-the proof-of-principle study STREAM-VCI

Jolien F Leijenaar, Geert Jan Groeneveld, Erica S Klaassen, Anna E Leeuwis, Philip Scheltens, Henry C Weinstein, Joop M A van Gerven, Frederik Barkhof, Wiesje M van der Flier, Niels D Prins, Jolien F Leijenaar, Geert Jan Groeneveld, Erica S Klaassen, Anna E Leeuwis, Philip Scheltens, Henry C Weinstein, Joop M A van Gerven, Frederik Barkhof, Wiesje M van der Flier, Niels D Prins

Abstract

Background: To date, no symptomatic treatment is available for patients with vascular cognitive impairment (VCI). In the proof-of-principle study Symptomatic Treatment of Vascular Cognitive Impairment (STREAM-VCI), we investigated whether a single dose of a monoaminergic drug (methylphenidate) improves executive functioning and whether a single dose of a cholinergic drug (galantamine) improves memory in VCI patients.

Methods: STREAM-VCI is a single-center, double-blind, three-way crossover trial. We included 30 VCI patients (Mini-Mental State Examination (MMSE) ≥ 16 and Clinical Dementia Rating score 0.5-1.0) with cerebrovascular pathology on MRI. All patients received single doses of methylphenidate (10 mg), galantamine (16 mg), and placebo in random order on three separate study visits. We used the NeuroCart®, a computerized test battery, to assess drug-sensitive cognitive effects. Predefined main outcomes, measured directly after a single dose of a study drug, were (i) change in performance on the adaptive tracker for executive functioning and (ii) performance on the Visual Verbal Learning Test-15 (VVLT-15) for memory, compared to placebo. We performed mixed model analysis of variance.

Results: The study population had a mean age of 67 ± 8 years and MMSE 26 ± 3, and 9 (30%) were female. Methylphenidate improved performance on the adaptive tracker more than placebo (mean difference 1.40%; 95% confidence interval [CI] 0.56-2.25; p = 0.002). In addition, methylphenidate led to better memory performance on the VVLT-15 compared to placebo (mean difference in recalled words 0.59; 95% CI 0.03-1.15; p = 0.04). Galantamine did not improve performance on the adaptive tracker and led to worse performance on delayed recall of the VVLT-15 (mean difference - 0.84; 95% CI - 1.65, - 0.03; p = 0.04). Methylphenidate was well tolerated while galantamine produced gastrointestinal side effects in a considerable number of patients.

Conclusions: In this proof-of-principle study, methylphenidate is well tolerated and improves executive functioning and immediate recall in patients with VCI. Galantamine did not improve memory or executive dysfunction. Results might be influenced by the considerable amount of side effects seen.

Trial registration: http://www.clinicaltrials.gov. Registration number: NCT02098824. Registration date: March 28, 2014.

Keywords: Cognition; Galantamine; MCI; Methylphenidate; Vascular cognitive impairment; Vascular dementia.

Conflict of interest statement

PS has acquired grant support (for the institution) from GE Healthcare, Nutricia Research, Piramal, and MERCK. In the past, he has received consultancy/speaker fees (paid to the institution) from Lilly, Biogen, Novartis, Probiodrug, Roche, and EIP Pharma. FB serves as a consultant for Biogen, Janssen, Bayer, Merck, Roche, Novartis, Lundbeck, and IXICO. He has received sponsoring from EU-H2020, IMDI, SMSR, TEVA, Novartis, Toshiba, and IMI and is supported by NIHR-UCLH Biomedical Research Center. WF performs contract research for Boehringer Ingelheim and has been an invited speaker at Boehringer Ingelheim. Research programs of WF have been funded by ZonMW, NWO, EU-FP7, Alzheimer Nederland, Cardiovasculair Onderzoek Nederland, stichting Dioraphte, Gieskes-Strijbis fonds, Boehringer Ingelheim, Piramal Neuroimaging, Roche BV, Janssen Stellar, and Combinostics. All funding is paid to her institution. NP serves on the advisory board of Boehringer Ingelheim and Probiodrug and on the DSMB of Abbvie’s M15-566 trial. NP is the CEO and co-owner of the Brain Research Center, Amsterdam, The Netherlands. He received research support from Alzheimer Nederland (STREAM-VCI project number WE.03-2012-02). The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Overview of the activities on a study day. The arrows represent when a test round or test is started. CNS test round encompasses all tests with exception of the VVLT-15 and the FACE. At time point 0, the study medication was administered
Fig. 2
Fig. 2
Effect of the study drugs on adaptive tracker. The shaded area represents the 95% CI. The estimated difference in mean change from baseline between methylphenidate and placebo was significant (p = 0.002)

References

    1. van der Flier WM, Skoog I, Schneider JA, Pantoni L, Mok V, Chen CLH, et al. Vascular cognitive impairment. Nat Rev Dis Primers. 2018;4:18003. doi: 10.1038/nrdp.2018.3.
    1. Bowler JV. Vascular cognitive impairment. J Neurol Neurosurg Psychiatry. 2005;76(Suppl 5):v35–v44. doi: 10.1136/jnnp.2005.082313.
    1. Bohnen NI, Muller ML, Kuwabara H, Constantine GM, Studenski SA. Age-associated leukoaraiosis and cortical cholinergic deafferentation. Neurology. 2009;72(16):1411–1416. doi: 10.1212/WNL.0b013e3181a187c6.
    1. Robbins TW, Arnsten AF. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci. 2009;32:267–287. doi: 10.1146/annurev.neuro.051508.135535.
    1. Roman GC, Kalaria RN. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol Aging. 2006;27(12):1769–1785. doi: 10.1016/j.neurobiolaging.2005.10.004.
    1. Spivak B, Vered Y, Yoran-Hegesh R, Graff E, Averbuch E, Vinokurow S, et al. The influence of three months of methylphenidate treatment on platelet-poor plasma biogenic amine levels in boys with attention deficit hyperactivity disorder. Hum Psychopharmacol. 2001;16(4):333–337. doi: 10.1002/hup.298.
    1. Padala PR, Burke WJ, Shostrom VK, Bhatia SC, Wengel SP, Potter JF, et al. Methylphenidate for apathy and functional status in dementia of the Alzheimer type. Am J Geriatr Psychiatry. 2010;18(4):371–374. doi: 10.1097/JGP.0b013e3181cabcf6.
    1. Padala PR, Padala KP, Lensing SY, Ramirez D, Monga V, Bopp MM, et al. Methylphenidate for apathy in community-dwelling older veterans with mild Alzheimer’s disease: a double-blind, randomized, placebo-controlled trial. Am J Psychiatry. 2018;175(2):159–168. doi: 10.1176/appi.ajp.2017.17030316.
    1. Rosenberg PB, Lanctot KL, Drye LT, Herrmann N, Scherer RW, Bachman DL, et al. Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. J Clin Psychiatry. 2013;74(8):810–816. doi: 10.4088/JCP.12m08099.
    1. Lanctot KL, Chau SA, Herrmann N, Drye LT, Rosenberg PB, Scherer RW, et al. Effect of methylphenidate on attention in apathetic AD patients in a randomized, placebo-controlled trial. Int Psychogeriatr. 2014;26(2):239–246. doi: 10.1017/S1041610213001762.
    1. Herrmann N, Rothenburg LS, Black SE, Ryan M, Liu BA, Busto UE, et al. Methylphenidate for the treatment of apathy in Alzheimer disease: prediction of response using dextroamphetamine challenge. J Clin Psychopharmacol. 2008;28(3):296–301. doi: 10.1097/JCP.0b013e318172b479.
    1. Galynker I, Ieronimo C, Miner C, Rosenblum J, Vilkas N, Rosenthal R. Methylphenidate treatment of negative symptoms in patients with dementia. J Neuropsychiatry Clin Neurosci. 1997;9(2):231–239. doi: 10.1176/jnp.9.2.231.
    1. Albuquerque EX, Santos MD, Alkondon M, Pereira EF, Maelicke A. Modulation of nicotinic receptor activity in the central nervous system: a novel approach to the treatment of Alzheimer disease. Alzheimer Dis Assoc Disord. 2001;15(Suppl 1):S19–S25. doi: 10.1097/00002093-200108001-00004.
    1. Wilcock GK, Lilienfeld S, Gaens E. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: multicentre randomised controlled trial. Galantamine International-1 Study Group. BMJ. 2000;321(7274):1445–1449. doi: 10.1136/bmj.321.7274.1445.
    1. Birks J, Craig D. Galantamine for vascular cognitive impairment. Cochrane Database Syst Rev. 2006;4:CD004746.
    1. Erkinjuntti T, Kurz A, Gauthier S, Bullock R, Lilienfeld S, Damaraju CV. Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet. 2002;359(9314):1283–1290. doi: 10.1016/S0140-6736(02)08267-3.
    1. Auchus AP, Brashear HR, Salloway S, Korczyn AD, De Deyn PP, Gassmann-Mayer C, et al. Galantamine treatment of vascular dementia: a randomized trial. Neurology. 2007;69(5):448–458. doi: 10.1212/01.wnl.0000266625.31615.f6.
    1. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(9):2672–2713. doi: 10.1161/STR.0b013e3182299496.
    1. Leijenaar JF, Groeneveld GJ, van der Flier WM, Scheltens P, Klaassen ES, Weinstein HC, et al. Symptomatic treatment of vascular cognitive impairment (STREAM-VCI): protocol for a cross-over trial. JMIR Res Protoc. 2018;7(3):e80. doi: 10.2196/resprot.9192.
    1. Groeneveld GJ, Hay JL, Van Gerven JM. Measuring blood-brain barrier penetration using the NeuroCart, a CNS test battery. Drug Discov Today Technol. 2016;20:27–34. doi: 10.1016/j.ddtec.2016.07.004.
    1. Ilieva IP, Hook CJ, Farah MJ. Prescription stimulants’ effects on healthy inhibitory control, working memory, and episodic memory: a meta-analysis. J Cogn Neurosci. 2015;27(6):1069–1089. doi: 10.1162/jocn_a_00776.
    1. Klinge C, Shuttleworth C, Muglia P, Nobre AC, Harmer CJ, Murphy SE. Methylphenidate enhances implicit learning in healthy adults. J Psychopharmacol. 2018;32(1):70–80. doi: 10.1177/0269881117731472.
    1. Agay N, Yechiam E, Carmel Z, Levkovitz Y. Methylphenidate enhances cognitive performance in adults with poor baseline capacities regardless of attention-deficit/hyperactivity disorder diagnosis. J Clin Psychopharmacol. 2014;34(2):261–265. doi: 10.1097/JCP.0000000000000076.
    1. del Campo N, Fryer TD, Hong YT, Smith R, Brichard L, Acosta-Cabronero J, et al. A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment. Brain. 2013;136(Pt 11):3252–3270. doi: 10.1093/brain/awt263.
    1. Ahmed Mehnaz, Malik Marlene, Teselink Johannes, Lanctôt Krista L., Herrmann Nathan. Current Agents in Development for Treating Behavioral and Psychological Symptoms Associated with Dementia. Drugs & Aging. 2019;36(7):589–605. doi: 10.1007/s40266-019-00668-7.
    1. Lohner V, Brookes RL, Hollocks MJ, Morris RG, Markus HS. Apathy, but not depression, is associated with executive dysfunction in cerebral small vessel disease. PLoS One. 2017;12(5):e0176943. doi: 10.1371/journal.pone.0176943.
    1. Marin RS, Biedrzycki RC, Firinciogullari S. Reliability and validity of the Apathy Evaluation Scale. Psychiatry Res. 1991;38(2):143–162. doi: 10.1016/0165-1781(91)90040-V.
    1. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44(12):2308–2314. doi: 10.1212/WNL.44.12.2308.
    1. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49. doi: 10.1016/0022-3956(82)90033-4.
    1. Furth KE, Mastwal S, Wang KH, Buonanno A, Vullhorst D. Dopamine, cognitive function, and gamma oscillations: role of D4 receptors. Front Cell Neurosci. 2013;7:102. doi: 10.3389/fncel.2013.00102.
    1. Nottage JF, Horder J. State-of-the-art analysis of high-frequency (gamma range) electroencephalography in humans. Neuropsychobiology. 2015;72(3–4):219–228. doi: 10.1159/000382023.
    1. Dolder CR, Davis LN, McKinsey J. Use of psychostimulants in patients with dementia. Ann Pharmacother. 2010;44(10):1624–1632. doi: 10.1345/aph.1P341.
    1. Habel LA, Cooper WO, Sox CM, Chan KA, Fireman BH, Arbogast PG, et al. ADHD medications and risk of serious cardiovascular events in young and middle-aged adults. JAMA. 2011;306(24):2673–2683. doi: 10.1001/jama.2011.1830.
    1. Galvin JE, Cornblatt B, Newhouse P, Ancoli-Israel S, Wesnes K, Williamson D, et al. Effects of galantamine on measures of attention - results from 2 clinical trials in Alzheimer disease patients with comparisons to donepezil. Alz Dis Assoc Dis. 2008;22(1):30–38. doi: 10.1097/WAD.0b013e3181630b81.
    1. Adler G, Brassen S, Chwalek K, Dieter B, Teufel M. Prediction of treatment response to rivastigmine in Alzheimer’s dementia. J Neurol Neurosurg Psychiatry. 2004;75(2):292–294.
    1. van Straaten EC, Scheltens P, Gouw AA, Stam CJ. Eyes-closed task-free electroencephalography in clinical trials for Alzheimer’s disease: an emerging method based upon brain dynamics. Alzheimers Res Ther. 2014;6(9):86. doi: 10.1186/s13195-014-0086-x.
    1. Baakman AC, 't Hart E., Kay D G, Stevens J, Klaassen E S, Maelicke A, Groeneveld G J. First in human study with a prodrug of galantamine. Alzheimer’s Dement 2016;2(1):13–22.
    1. Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C. A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology. 2000;54(12):2269–2276. doi: 10.1212/WNL.54.12.2269.
    1. Raskind MA, Peskind ER, Wessel T, Yuan W. Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology. 2000;54(12):2261–2268. doi: 10.1212/WNL.54.12.2261.

Source: PubMed

3
Tilaa