Fast optical imaging of human brain function

Gabriele Gratton, Monica Fabiani, Gabriele Gratton, Monica Fabiani

Abstract

Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods) emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so) interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years) may provide descriptions of localized (to sub-cm level) brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

Keywords: cognitive neuroscience; diffusive optical imaging; diffusive optical tomography; event-related optical signal; near-infrared spectroscopy; non-invasive optical imaging.

Figures

Figure 1
Figure 1
(A) Schematic representation of the back-scattering of photons under conditions of rest and activity in the cortex. S = Source (red dot); D = detector (yellow dot). As shown in the right panels, changes in transparency of the cortex are associated with changes in photon penetration and path length. Adapted from Figure 7 in Gratton and Fabiani (2003). (B) Projections (in green) of the areas investigated by a large number of optical sources (red dots) and detectors (yellow dots) onto 3D renditions of an MR anatomical image.
Figure 2
Figure 2
Adapted from Gratton et al. (2003). The left panel depicts the stimulation conditions used and the cortical regions that are predicted to carry the response. The right panel indicated the EROS time course from the predicted location averaged across the four stimulation conditions (thick lines), and the responses from the same locations when the other stimulation conditions where presented (thin lines). Error bars are based on the standard error of the mean (N = 8).
Figure 3
Figure 3
From Maclin et al. (2008). Three-dimensional reconstruction of EROS phase delay data for each stimulus eccentricity condition (Ecc = stimulus eccentricity). The data are grand average maps (N = 14) of an axial slice (z = –10 in MNI space) obtained at a latency of 76 ms from stimulation (sampling rate was 25.6 ms). The white crosses indicate the peak points. The data are displayed in arbitrary phase units.

References

    1. Andrew R. D., MacVicar B. A. (1994). Imaging cell volume changes and neuronal excitation in the hippocampal slice. Neuroscience 62, 371–38310.1016/0306-4522(94)90372-7
    1. Bandettini P. A. (2009). What's new in neuroimaging methods? Ann. N. Y. Acad. Sci. 1156, 260–29310.1111/j.1749-6632.2009.04420.x
    1. Barinaga M. (1997). New imaging methods provide a better view into the brain. Science 276, 1974–197610.1126/science.276.5321.1974
    1. Beauvoit B., Evans S. M., Jenkins T. W., Miller E. E., Chance B. (1995). Correlation between the light scattering and the mitochondrial content of normal tissues and transplantable rodent tumors. Anal. Biochem. 226, 167–17410.1006/abio.1995.1205
    1. Boas D. A., Culver J. P., Stot J. J., Dunn A. K. (2001). Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt. Express 10, 159–17010.1002/(SICI)1096-9888(200001)35:1<13::AID-JMS901>;2-I
    1. Buchheim K., Schuchmann S., Siegmund H., Gabriel H. J., Heinemann U., Meierkord H. (1999). Intrinsic optical signal measurements reveal characteristic features during different forms of spontaneous neuronal hyperactivity associated with ECS shrinkage in vitro. Eur. J. Neurosci. 11, 1877–188210.1046/j.1460-9568.1999.00606.x
    1. DeSoto M. C., Fabiani M., Geary D. L., Gratton G. (2001). When in doubt, do it both ways: Brain evidence of the simultaneous activation of conflicting responses in a spatial Stroop task. J. Cogn. Neurosci. 13, 523–53610.1162/08989290152001934
    1. Fabiani M., Low K. A., Wee E., Sable J. J., Gratton G. (2006). Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults. J. Cogn. Neurosci. 18, 637–65010.1162/jocn.2006.18.4.637
    1. Foust A. J., Rector D. M. (2007). Optically teasing apart neural swelling and depolarization. Neuroscience 145, 887–89910.1016/j.neuroscience.2006.12.068
    1. Franceschini M. A., Boas D. A. (2004). Noninvasive measurement of neuronal activity with near-infrared optical imaging. Neuroimage 21, 372–38610.1016/j.neuroimage.2003.09.040
    1. Frostig R. D. (Ed.) (2009). In Vivo Optical Imaging of Brain Function, 2nd edn (Boca Raton, FL: CRC Press; ).
    1. Frostig R. D., Lieke E. E., Ts'o D. Y., Grinvald A. (1990). Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high- resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. U.S.A. 87, 6082–608610.1073/pnas.87.16.6082
    1. Fukui Y., Ajichi Y., Okada E. (2003). Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models. Appl. Opt. 42, 2881–288710.1364/AO.42.002881
    1. Gratton E., Fantini S., Franceschini M. A., Gratton G., Fabiani M. (1997). Measurements of scattering and absorption changes in muscle and brain. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 352, 727–735
    1. Gratton G. (1997). Attention and probability effects in the human occipital cortex: an optical imaging study. Neuroreport 8, 1749–175310.1097/00001756-199705060-00036
    1. Gratton G., Brumback C. R., Gordon B.A., Pearson M.A., Low K. A., Fabiani M. (2006). Effects of measurement method, wavelength, and source-detector distance on the fast optical signal. Neuroimage, 32, 1576–159010.1016/j.neuroimage.2006.05.030
    1. Gratton G., Corballis P. M. (1995). Removing the heart from the brain: compensation for the pulse artifact in the photon migration signal. Psychophysiology 32, 292–29910.1111/j.1469-8986.1995.tb02958.x
    1. Gratton G., Corballis P. M., Cho E., Fabiani M., Hood D. (1995). Shades of gray matter: Noninvasive optical images of human brain responses during visual stimulation. Psychophysiology 32, 505–50910.1111/j.1469-8986.1995.tb02102.x
    1. Gratton G., Goodman-Wood M. R., Fabiani M. (2001). Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: an optical imaging study. Human Brain Mapping 13, 13–2510.1002/hbm.1021
    1. Gratton G., Fabiani M. (2003). The event-related optical signal (EROS) in visual cortex: replicability, consistency, localization and resolution. Psychophysiology 40, 561–57110.1111/1469-8986.00058
    1. Gratton G., Fabiani M. (2009). “Fast optical signals: Principles, methods, and experimental results,” in In Vivo Optical imaging of Brain Function, 2nd edn, ed. Frostig R. D. (Boca Raton, FL: CRC Press; ), 435–460
    1. Gratton G., Low K. A., Fabiani M. (2008). “Time course of executive processes: data from the event-related optical signal (EROS),” in Perspectives on Rule-Guided Behavior, eds Bunge S. A., Wallis J. D. (New York, NY: Oxford University Press; ) 197–223
    1. Gratton G., Rykhlevskaia E., Wee E., Leaver E., Fabiani M. (2009). Does white matter matter? Spatiotemporal dynamics of task switching in aging. J. Cogn. Neurosci. 21, 1380–139510.1162/jocn.2009.21093
    1. Gratton G., Sarno A. J., Maclin E., Corballis P. M., Fabiani M. (2000). Toward non-invasive 3-D imaging of the time course of cortical activity: Investigation of the depth of the event-related optical signal (EROS). Neuroimage 11, 491–50410.1006/nimg.2000.0565
    1. Grinvald A., Lieke E., Frostig R. D., Gilbert C. D., Wiesel T. N. (1986). Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–36410.1038/324361a0
    1. Hari R., Levänen S., Raij T. (2000). Timing of human cortical functions during cognition: role of MEG. Trends Cogn. Sci. 4, 455–46210.1016/S1364-6613(00)01549-7
    1. Hill D. K., Keynes R. D. (1949). Opacity changes in stimulated nerve. J. Physiol. 108, 278–28110.1136/bmj.2.4636.1095
    1. Huppert T. J., Diamond S. G., Franceschini M. A., Boas D. A. (2009). HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 48, 280–29810.1364/AO.48.00D280
    1. Intes X., Maloux C., Guven M., Yazici M., Chance B. (2004). Diffuse optical tomography with physiological and spatial a priori constraints. Phys. Med. Biol. 49, 155–16310.1088/0031-9155/49/12/N01
    1. Intes X., Ntziachristos V., Culver J. P., Yodh A., Chance B. (2002). Projection access order in algebraic reconstruction technique for diffuse optical tomography. Phys. Med. Biol. 47, 1–1010.1117/12.462533
    1. Jobsis F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264.10.1126/science.929199
    1. Kiebel S. J., Poline J.-B., Friston K. J., Holmes A. P., Worsley K. J. (1999). Robust smoothness estimation in statistical parametric maps using standardized residuals from the general linear model. Neuroimage 10, 756–76610.1006/nimg.1999.0508
    1. Kubota M., Inouchi M., Dan I., Tsuzuki D., Ishikawa A., Scovel T. (2008). Fast (100–175 ms) components elicited bilaterally by language production as measured by three-wavelength optical imaging. Brain Res. 1226, 124–13310.1016/j.brainres.2008.05.079
    1. Lebid S., O'Neill R. O., Markham C., Ward T., Cole S. (2005). “Multi-timescale measurements of brain responses in visual cortex during stimulation using time-resolved spectroscopy,” in Proceedings of the SPIE conference, Bruges, Belgium: 10.1117/12.604821
    1. Lee J., Kim S. J. (2010). Spectrum measurement of fast optical signal of neural activity in brain tissue and its theoretical origin. Neuroimage 51, 713–72210.1016/j.neuroimage.2010.02.076
    1. Low K. A., Leaver E., Kramer A. F., Fabiani M., Gratton G. (2006). Fast optical imaging of frontal cortex during active and passive oddball tasks. Psychophysiology 43, 127–13610.1111/j.1469-8986.2006.00390.x
    1. Low K. A., Leaver E., Kramer A. F., Fabiani M., Gratton G. (2009). Share or compete? Load-dependent recruitment of prefrontal cortex during dual-task performance. Psychophysiology 46, 1–1110.1111/j.1469-8986.2009.00854.x
    1. Luck S. J. (1999). Direct and indirect integration of event-related potentials, functional magnetic resonance images, and single-unit recordings. Hum. Brain Mapp. 8, 115–12010.1002/(SICI)1097-0193(1999)8:2/3<115::AID-HBM8>;2-3
    1. Maclin E. L., Gratton G., Fabiani M. (2003). Optimum filtering for EROS measurements. Psychophysiology 40, 542–54710.1111/1469-8986.00056
    1. Maclin E. L., Low K. A., Sable J. J., Fabiani M., Gratton G. (2004). The Event Related Optical Signal (EROS) to electrical stimulation of the median nerve. Neuroimage 21, 1798–180410.1016/j.neuroimage.2003.11.019
    1. Maclin E. L., Tse C.-Y., Fabiani M., Gratton G. (2008). Probing the depth of optical signals: a visual eccentricity study. Psychophysiology 45, S93.10.1097/00001756-200111160-00051
    1. MacVicar B. A., Hochman D. (1991). Imaging of synaptically evoked intrinsic optical signals in hippocampal slices. J. Neurosci. 11, 1458–146910.1177/107385849700300611
    1. Medvedev A. V., Kainerstorfer J., Borisov S. V., Barbour R. L., VanMeter J. (2008). Event-related fast optical signal in a rapid object recognition task: Improving detection by the independent component analysis. Brain Res. 1236, 145–15810.1016/j.brainres.2008.07.122
    1. Momose-Sato Y., Sato K., Hirota A., Kamino K. (1998). GABA-Induced intrinsic light-scattering changes associated with voltage-sensitive dye signals in embryonic brain stem slices: coupling of depolarization and cell shrinkage. J. Neurophysiol. 79, 2208–221710.1097/00001756-199711100-00028
    1. Morren G., Wolf M., Lemmerling P., Wolf U., Choi J. H., Gratton E., De Lathauwer L., Van Huffel S. (2004). Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis. Med. Biol. Eng. Comput. 42, 92–9910.1007/BF02351016
    1. Radakrishnan H., Vanduffel W., Deng H. P., Ekstrom L., Boas D. A., Franceschini M. A. (2009). Fast optical signal not detected in awake behaving monkeys. Neuroimage 45, 419–41910.1016/S0896-6273(01)00502-5
    1. Rector D. M., Carter K. M., Volegov P. L., George J. S. (2005). Spatio-temporal mapping of rat whisker barrels with fast scattered light signals. Neuroimage 26, 619–62710.1016/j.neuroimage.2005.02.030
    1. Rector D. M., Poe G. R., Kristensen M. P., Harper R. M. (1997). Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation. J. Neurophysiol. 78, 1707–171310.1016/0306-4522(95)00525-0
    1. Rinne T., Gratton G., Fabiani M., Cowan N., Maclin E., Stinard A., Sinkkonen J., Alho K., Näätänen R. (1999). Scalp-recorded optical signals make sound processing from the auditory cortex visible. Neuroimage 10, 620–62410.1006/nimg.1999.0495
    1. Robertson F., Douglas T., Meintjes E. (2010). Motion artefact removal for functional near infrared spectroscopy: a comparison of methods. IEEE Trans. Biomed. Eng. 57, 1377–138710.1109/TBME.2009.2038667
    1. Roggan A., Minet O., Schroeder C., Mueller G. (1994). Determination of optical tissue properties with double integrating sphere technique and Monte Carlo simulations. Proc. SPIE 2100, 42–5610.1117/12.179026
    1. Rykhlevskaia E., Fabiani M., Gratton G. (2006). Lagged covariance structure models for studying functional connectivity in the brain. Neuroimage 30, 1203–121810.1016/j.neuroimage.2005.11.019
    1. Sato H., Tanaka N., Uchida M., Hirabayashi Y., Kanai M., Ashida T., Konishi I., Maki A. (2006). Wavelet analysis for detecting body-movement artifacts in optical topography signals. Neuroimage 33, 580–58710.1016/j.neuroimage.2006.06.028
    1. Schneider-Garces N., Maclin E., Gratton G., Fabiani M. (2009). Movement correction in optical data: comparison between feature-based and principal component-based approaches. Psychophysiology 46, S108.10.1162/jocn.2009.21230
    1. Steinbrink J., Kempf F. C., Villringer A., Obrig H. (2005). The fast optical signal – robust or elusive when non-invasively measured in the human adult? Neuroimage 26, 996–100810.1016/j.neuroimage.2005.03.006
    1. Steinbrink J., Kohl M., Obrig H., Curio G., Syré F., Thomas F., Wabnitz H., Rinneberg H., Villringer A. (2000). Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head. Neurosci. Lett. 291, 105–10810.1016/S0304-3940(00)01395-1
    1. Stepnoski R. A., LaPorta A., Raccuia-Behling F., Blonder G. E., Slusher R. E., Kleinfeld D. (1991). Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc. Natl. Acad. Sci. U.S.A. 88, 9382–938610.1073/pnas.88.21.9382
    1. Toronov V. Y., Zhang X., Fabiani M., Gratton G., Webb A. G. (2005). “Signal and image processing techniques for functional near-infrared imaging of the human brain,” in Complex Dynamics and Fluctuations in Biomedical Photonics II, ed. Tuchin V. V. (Proc. SPIE Vol. 5696), San Jose, California, USA: 10.1117/12.593345
    1. Tse C.-Y., Lee C.-L., Sullivan J., Garnsey S., Dell G. S., Fabiani M., Gratton G. (2007). Imaging the cortical dynamics of language processing with the event-related optical signal. Proc. Natl. Acad. Sci. U.S.A. 104, 17157–1716210.1073/pnas.0707901104
    1. Tse C. Y., Penney T. B. (2007). Preattentive change detection using the event-related optical signal. IEEE Eng. Med. Biol. Mag. 26, 52–5810.1109/MEMB.2007.384096
    1. Tse C. Y., Penney T. B. (2008). On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance. Neuroimage 41, 1462–147010.1016/j.neuroimage.2008.03.043
    1. Tse C. Y., Tien K. R., Penney T. B. (2006). Event-related optical imaging reveals the temporal dynamics of right temporal and frontal cortex activation in pre-attentive change detection. Neuroimage 29, 314–32010.1016/j.neuroimage.2005.07.013
    1. Whalen C., Maclin E. L., Fabiani M., Gratton G. (2008). Validation of a method for coregistering scalp recording locations with 3D structural MR images. Hum. Brain Mapp. 29, 1288–130110.1002/hbm.20465
    1. Wolf M., Wolf U., Choi J. H., Gupta R., Safonova L. P., Paunescu L. A., Michalos A., Gratton E. (2002). Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex. Neuroimage 17, 1868–187510.1006/nimg.2002.1261
    1. Wolf U., Wolf M., Toronov V., Michalos A., Paunescu L. A., Gratton E. (2000). “Detecting cerebral functional slow and fast signals by frequency-domain near-infrared spectroscopy using two different sensors,” in Paper Presented at OSA Meeting in Optical Spectroscopy and Imaging and Photon Migration, Miami, April 2–5, 2000.10.1016/S1053-8119(00)91446-0
    1. Worsley K. J., Evans A. C., Marrett S., Neelin P. (1992). A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12, 900–91810.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>;2-L
    1. Zhang X., Toronov V. Y., Fabiani M., Gratton G., Webb A. G. (2005). The study of cerebral hemodynamic and neuronal response to visual stimulation using simultaneous NIR optical tomography and BOLD fMRI in humans. In Bartels K. E., Bass L. S., de Riese W.T., Gregory K. W., Hirschberg H., Katzir A., Kollias N., Madsen S. J., Malek R. S., McNally-Heintzelman K. M., Tate L. P., Jr, Trowers E. A., Wong B. J.-F. (Eds.). Proc. SPIE Vol. 5686, Photonic Therapeutics and Diagnostics (pp. 566–572),San Jose, California: 10.1117/12.593435
    1. Zhu W., Wang Y., Yao Y., Chang J., Graber H. L., Barbour R. L. (1997). Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method. J. Opt. Soc. Am. 14, 799–80710.1364/JOSAA.14.000799

Source: PubMed

3
Tilaa