Salbutamol Worsens the Autonomic Nervous System Dysfunction of Children With Sickle Cell Disease

Plamen Bokov, Houmam El Jurdi, Isabelle Denjoy, Claudine Peiffer, Noria Medjahdi, Laurent Holvoet, Malika Benkerrou, Christophe Delclaux, Plamen Bokov, Houmam El Jurdi, Isabelle Denjoy, Claudine Peiffer, Noria Medjahdi, Laurent Holvoet, Malika Benkerrou, Christophe Delclaux

Abstract

Background: Sickle cell disease (SCD) patients with asthma have an increased rate of vaso-occlusive crisis (VOC) and acute chest syndrome (ACS) episodes when compared to those without asthma. We hypothesized that either asthma diagnosis or bronchodilator treatment might aggravate SCD via their modulating effect on the autonomic nervous system (ANS).

Methods: Cross-sectional evaluation of heart rate variability (HRV) during pulmonary function tests, including salbutamol administration, in children with SCD receiving asthma treatment or not when compared to asthmatic children without SCD matched for ethnicity.

Results: SCD children with asthma (n = 30, median age of 12.9 years old) were characterized by a reduced FEV1/FVC ratio, an increased bronchodilator response, and a greater incidence of VOC and ACS when compared to SCD children without asthma (n = 30, 12.7 years). Children with asthma without SCD (n = 29, 11.4 years) were characterized by a higher exhaled NO fraction than SCD children. SCD children when compared to non-SCD children showed reduced HRV [total power, low (LF) and high (HF, vagal tone) frequencies], which was further worsened by salbutamol administration in all the groups: reduction in total power and HF with an increase in LF/HF ratio. After salbutamol, the LF/HF ratio of the SCD children was higher than that of the non-SCD children. The two groups of SCD children were similar, suggesting that asthma diagnosis per se did not modify ANS functions.

Conclusion: SCD children are characterized by impaired parasympathetic control and sympathetic overactivity that is worsened by salbutamol administration.

Clinical trial registration: www.ClinicalTrials.gov, identifier NCT04062409.

Keywords: asthma; heart rate variability; salbutamol; sickle cell disease; sympathetic activity; vagal activity; vaso-occlusive event.

Copyright © 2020 Bokov, El Jurdi, Denjoy, Peiffer, Medjahdi, Holvoet, Benkerrou and Delclaux.

Figures

FIGURE 1
FIGURE 1
Response to paced ventilation (respiratory sinus arrhythmia evaluation). The upper panel is the HFa (raw values of HF), the middle panel is the normalized HF (Hfnu), and the lower panel is the ΔHFnu (stimulated minus baseline condition). p values are those of the Kruskal–Wallis test between the three groups. The Mann–Whitney U test further demonstrated that the two SCD groups differed from the asthmatic non-SCD group in the middle and lower panels (data not shown). Box and whisker plots show median, 25 and 75th percentiles, and 10 and 90th percentiles.
FIGURE 2
FIGURE 2
Relationship between the effect of paced ventilation and VC/VA. A significant correlation was evidenced between VC/VA and ΔHFnu: R = 0.406, p = 0.0002. Black circles are SDC children while open circles are asthmatic non-SCD children.
FIGURE 3
FIGURE 3
Response to salbutamol stimulation. Sympathetic stimulation was obtained after 400 μg of salbutamol administration (10 min after inhalation). The six SCD patients with typical asthma are individualized in the SCD asthma group as circles on the left side of the group with the black contour line. The p value is that of the Kruskal–Wallis test between the three groups. The Mann–Whitney U tests further demonstrated that the two SCD groups differed from the asthmatic non-SCD group (data not shown). The box and whisker plots show median, 25 and 75th percentiles, and 10 and 90th percentiles.

References

    1. Ahmed M. W., Kadish A. H., Parker M. A., Goldberger J. J. (1994). Effect of physiologic and pharmacologic adrenergic stimulation on heart rate variability. J. Am. Coll. Cardiol. 24 1082–1090. 10.1016/0735-1097(94)90874-5
    1. Anderson D. E., McNeely J. D., Windham B. G. (2009). Device-guided slow-breathing effects on end-tidal CO(2) and heart-rate variability. Psychol. Health Med. 14 667–679. 10.1080/13548500903322791
    1. Ashley-Koch A. E., Elliott L., Kail M. E., De Castro L. M., Jonassaint J., Jackson T. L., et al. (2008). Identification of genetic polymorphisms associated with risk for pulmonary hypertension in sickle cell disease. Blood 111 5721–5726. 10.1182/blood-2007-02-074849
    1. Billman G. E. (2013a). The effect of heart rate on the heart rate variability response to autonomic interventions. Front. Physiol. 4:222 10.3389/fphys.2013.00222
    1. Billman G. E. (2013b). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 4:26 10.3389/fphys.2013.00026
    1. Chalacheva P., Kato R. M., Sangkatumvong S., Detterich J., Bush A., Wood J. C., et al. (2015). Autonomic responses to cold face stimulation in sickle cell disease: a time-varying model analysis. Physiol. Rep. 3:e12463. 10.14814/phy2.12463
    1. Chalacheva P., Kato R. M., Shah P., Veluswamy S., Denton C. C., Sunwoo J., et al. (2019). Sickle cell disease subjects have a distinct abnormal autonomic phenotype characterized by peripheral vasoconstriction with blunted cardiac response to head-up tilt. Front. Physiol. 10:381. 10.3389/fphys.2019.00381
    1. Charlot K., Hierso R., Lemonne N., Romana M., Tressières B., Lalanne-Mistrih M.-L., et al. (2017). Changes in autonomic nervous activity during vaso-occlusive crisis in patients with sickle cell anaemia. Br. J. Haematol. 177 484–486. 10.1111/bjh.14064
    1. Cohen R. T., Rodeghier M., Kirkham F. J., Rosen C. L., Kirkby J., DeBaun M. R., et al. (2016). Exhaled nitric oxide: not associated with asthma, symptoms, or spirometry in children with sickle cell anemia. J. Allergy Clin. Immunol. 138 1338–1343.e4. 10.1016/j.jaci.2016.06.043
    1. Delclaux C., Zerah-Lancner F., Bachir D., Habibi A., Monin J.-L., Godeau B., et al. (2005). Factors associated with dyspnea in adult patients with sickle cell disease. Chest 128 3336–3344. 10.1378/chest.128.5.3336
    1. Edgell H., Moore L. E., Chung C., Byers B. W., Stickland M. K. (2016). Short-term cardiovascular and autonomic effects of inhaled salbutamol. Respir. Physiol. Neurobiol. 231 14–20. 10.1016/j.resp.2016.05.014
    1. Eryonucu B., Uzun K., Güler N., Bilge M. (2001). Comparison of the acute effects of salbutamol and terbutaline on heart rate variability in adult asthmatic patients. Eur. Respir. J. 17 863–867. 10.1183/09031936.01.17508630
    1. Garcia-Araújo A. S., Pires Di Lorenzo V. A., Labadessa I. G., Jürgensen S. P., Di Thommazo-Luporini L., Garbim C. L., et al. (2015). Increased sympathetic modulation and decreased response of the heart rate variability in controlled asthma. J. Asthma 52 246–253. 10.3109/02770903.2014.957765
    1. Garrard C. S., Seidler A., McKibben A., McAlpine L. E., Gordon D. (1992). Spectral analysis of heart rate variability in bronchial asthma. Clin. Auton. Res. 2 105–111. 10.1007/bf01819665
    1. Glassberg J., Spivey J. F., Strunk R., Boslaugh S., DeBaun M. R. (2006). Painful episodes in children with sickle cell disease and asthma are temporally associated with respiratory symptoms. J. Pediatr. Hematol. Oncol. 28 481–485. 10.1097/01.mph.0000212968.98501.2b
    1. Glassberg J. A., Strunk R., DeBaun M. R. (2014). Wheezing in children with sickle cell disease. Curr. Opin. Pediatr. 26 9–18. 10.1097/MOP.0000000000000045
    1. Hayano J., Yuda E. (2019). Pitfalls of assessment of autonomic function by heart rate variability. J. Physiol. Anthropol. 38:3. 10.1186/s40101-019-0193-2
    1. Hill L. K., Hu D. D., Koenig J., Sollers J. J., Kapuku G., Wang X., et al. (2015). Ethnic differences in resting heart rate variability: a systematic review and meta-analysis. Psychosom. Med. 77 16–25. 10.1097/PSY.0000000000000133
    1. Jartti T., Kaila T., Tahvanainen K., Kuusela T., Vanto T., Välimäki I. (1997). The acute effects of inhaled salbutamol on the beat-to-beat variability of heart rate and blood pressure assessed by spectral analysis. Br. J. Clin. Pharmacol. 43 421–428. 10.1046/j.1365-2125.1997.00565.x
    1. Jhun E. H., Sadhu N., Hu X., Yao Y., He Y., Wilkie D. J., et al. (2019). Beta2-adrenergic receptor polymorphisms and haplotypes associate with chronic pain in sickle cell disease. Front. Pharmacol. 10:84. 10.3389/fphar.2019.00084
    1. Knight-Madden J. M., Connes P., Bowers A., Nebor D., Hardy-Dessources M.-D., Romana M., et al. (2013). Relationship between acute chest syndrome and the sympatho-vagal balance in adults with hemoglobin SS disease; a case control study. Clin. Hemorheol. Microcirc. 53 231–238. 10.3233/CH-2012-1545
    1. Lucini D., Solaro N., Pagani M. (2018). Autonomic differentiation map: a novel statistical tool for interpretation of heart rate variability. Front. Physiol. 9:401. 10.3389/fphys.2018.00401
    1. Lunt A., Mortimer L., Rees D., Height S., Thein S. L., Greenough A. (2018). Heterogeneity of respiratory disease in children and young adults with sickle cell disease. Thorax 73 575–577. 10.1136/thoraxjnl-2017-210206
    1. Mahut B., Delclaux C., Tillie-Leblond I., Gosset P., Delacourt C., Zerah-Lancner F., et al. (2004). Both inflammation and remodeling influence nitric oxide output in children with refractory asthma. J. Allergy Clin. Immunol. 113 252–256. 10.1016/j.jaci.2003.10.038
    1. Mahut B., Louis B., Zerah-Lancner F., Delclaux C. (2006). Validity criteria and comparison of analytical methods of flow-independent exhaled NO parameters. Respir. Physiol. Neurobiol. 153 148–156. 10.1016/j.resp.2005.10.005
    1. Mahut B., Peiffer C., Thibaudon M., Chevalier-Bidaud B., Defrance-Hutinet M.-F., Trinquart L., et al. (2009). What does a single exhaled nitric oxide measurement tell us in asthmatic children? J. Asthma 46 810–814. 10.3109/02770900903114580
    1. Mahut B., Trinquart L., Bokov P., Peiffer C., Delclaux C. (2010). The link between exhaled NO and bronchomotor tone depends on the dose of inhaled steroid in asthma. Respir. Med. 104 945–950. 10.1016/j.rmed.2010.02.003
    1. Mehari A., Klings E. S. (2016). Chronic pulmonary complications of sickle cell disease. Chest 149 1313–1324. 10.1016/j.chest.2015.11.016
    1. Miller M. R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., et al. (2005). Standardisation of spirometry. Eur. Respir. J. 26 319–338. 10.1183/09031936.05.00034805
    1. Nebor D., Bowers A., Hardy-Dessources M.-D., Knight-Madden J., Romana M., Reid H., et al. (2011). Frequency of pain crises in sickle cell anemia and its relationship with the sympatho-vagal balance, blood viscosity and inflammation. Haematologica 96 1589–1594. 10.3324/haematol.2011.047365
    1. No author, (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Circulation 93 1043–1065. 10.1161/01.cir.93.5.1043
    1. Pearson S. R., Alkon A., Treadwell M., Wolff B., Quirolo K., Boyce W. T. (2005). Autonomic reactivity and clinical severity in children with sickle cell disease. Clin. Auton. Res. 15 400–407. 10.1007/s10286-005-0300-9
    1. Pianosi P., D’Souza S. J., Esseltine D. W., Charge T. D., Coates A. L. (1991). Ventilation and gas exchange during exercise in sickle cell anemia. Am. Rev. Respir. Dis. 143 226–230. 10.1164/ajrccm/143.2.226
    1. Pichot V., Roche F., Celle S., Barthélémy J.-C., Chouchou F. (2016). HRVanalysis: a free software for analyzing cardiac autonomic activity. Front. Physiol. 7:557. 10.3389/fphys.2016.00557
    1. Romero Mestre J. C., Hernández A., Agramonte O., Hernández P. (1997). Cardiovascular autonomic dysfunction in sickle cell anemia: a possible risk factor for sudden death? Clin. Auton. Res. 7 121–125. 10.1007/bf02308838
    1. Rothman K. J. (1990). No adjustments are needed for multiple comparisons. Epidemiology 1 43–46. 10.1097/00001648-199001000-00010
    1. Sangkatumvong S., Khoo M. C. K., Kato R., Detterich J. A., Bush A., Keens T. G., et al. (2011). Peripheral vasoconstriction and abnormal parasympathetic response to sighs and transient hypoxia in sickle cell disease. Am. J. Respir. Crit. Care Med. 184 474–481. 10.1164/rccm.201103-0537OC
    1. Sommet J., Alberti C., Couque N., Verlhac S., Haouari Z., Mohamed D., et al. (2016). Clinical and haematological risk factors for cerebral macrovasculopathy in a sickle cell disease newborn cohort: a prospective study. Br. J. Haematol. 172 966–977. 10.1111/bjh.13916
    1. Stewart R. I. (1988). Carbon monoxide diffusing capacity in asthmatic patients with mild airflow limitation. Chest 94 332–336. 10.1378/chest.94.2.332
    1. Sylvester K. P., Patey R. A., Broughton S., Rafferty G. F., Rees D., Thein S. L., et al. (2007). Temporal relationship of asthma to acute chest syndrome in sickle cell disease. Pediatr. Pulmonol. 42 103–106. 10.1002/ppul.20430
    1. Wanger J., Clausen J. L., Coates A., Pedersen O. F., Brusasco V., Burgos F., et al. (2005). Standardisation of the measurement of lung volumes. Eur. Respir. J. 26 511–522. 10.1183/09031936.05.00035005
    1. Zavorsky G. S., Hsia C. C. W., Hughes J. M. B., Borland C. D. R., Guénard H., van der Lee I., et al. (2017). Standardisation and application of the single-breath determination of nitric oxide uptake in the lung. Eur. Respir. J. 49:1600962. 10.1183/13993003.00962-2016
    1. Zennadi R., Moeller B. J., Whalen E. J., Batchvarova M., Xu K., Shan S., et al. (2007). Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Blood 110 2708–2717. 10.1182/blood-2006-11-056101

Source: PubMed

3
Tilaa