Statistical design of personalized medicine interventions: the Clarification of Optimal Anticoagulation through Genetics (COAG) trial

Benjamin French, Jungnam Joo, Nancy L Geller, Stephen E Kimmel, Yves Rosenberg, Jeffrey L Anderson, Brian F Gage, Julie A Johnson, Jonas H Ellenberg, COAG (Clarification of Optimal Anticoagulation through Genetics) Investigators, Sherif Abdel-Rahman, Robert J Desnick, Jonathan L Halperin, Margaret C Fang, Brian F Gage, Richard B Horenstein, Julie A Johnson, Scott Kaatz, Robert D McBane, Emile R Mohler 3rd, James A S Muldowney 3rd, Scott M Stevens, Steven Yale, Benjamin French, Jungnam Joo, Nancy L Geller, Stephen E Kimmel, Yves Rosenberg, Jeffrey L Anderson, Brian F Gage, Julie A Johnson, Jonas H Ellenberg, COAG (Clarification of Optimal Anticoagulation through Genetics) Investigators, Sherif Abdel-Rahman, Robert J Desnick, Jonathan L Halperin, Margaret C Fang, Brian F Gage, Richard B Horenstein, Julie A Johnson, Scott Kaatz, Robert D McBane, Emile R Mohler 3rd, James A S Muldowney 3rd, Scott M Stevens, Steven Yale

Abstract

Background: There is currently much interest in pharmacogenetics: determining variation in genes that regulate drug effects, with a particular emphasis on improving drug safety and efficacy. The ability to determine such variation motivates the application of personalized drug therapies that utilize a patient's genetic makeup to determine a safe and effective drug at the correct dose. To ascertain whether a genotype-guided drug therapy improves patient care, a personalized medicine intervention may be evaluated within the framework of a randomized controlled trial. The statistical design of this type of personalized medicine intervention requires special considerations: the distribution of relevant allelic variants in the study population; and whether the pharmacogenetic intervention is equally effective across subpopulations defined by allelic variants.

Methods: The statistical design of the Clarification of Optimal Anticoagulation through Genetics (COAG) trial serves as an illustrative example of a personalized medicine intervention that uses each subject's genotype information. The COAG trial is a multicenter, double blind, randomized clinical trial that will compare two approaches to initiation of warfarin therapy: genotype-guided dosing, the initiation of warfarin therapy based on algorithms using clinical information and genotypes for polymorphisms in CYP2C9 and VKORC1; and clinical-guided dosing, the initiation of warfarin therapy based on algorithms using only clinical information.

Results: We determine an absolute minimum detectable difference of 5.49% based on an assumed 60% population prevalence of zero or multiple genetic variants in either CYP2C9 or VKORC1 and an assumed 15% relative effectiveness of genotype-guided warfarin initiation for those with zero or multiple genetic variants. Thus we calculate a sample size of 1238 to achieve a power level of 80% for the primary outcome. We show that reasonable departures from these assumptions may decrease statistical power to 65%.

Conclusions: In a personalized medicine intervention, the minimum detectable difference used in sample size calculations is not a known quantity, but rather an unknown quantity that depends on the genetic makeup of the subjects enrolled. Given the possible sensitivity of sample size and power calculations to these key assumptions, we recommend that they be monitored during the conduct of a personalized medicine intervention.

Trial registration: clinicaltrials.gov: NCT00839657.

Figures

Figure 1
Figure 1
INR measurements (solid circles) and linear interpolations (solid lines) for a hypothetical subject with 60% of time within the therapeutic INR range (shaded region).

References

    1. Terra SG, Johnson JA. Pharmacogenetics, pharmacogenomics, and cardiovascular therapies: The way forward. Am J Cardiovasc Drugs. 2002;2:287–296. doi: 10.2165/00129784-200202050-00001.
    1. Wang SJ, O'Neill RT, Hung HM. Approaches to evaluation of treatment effect in randomized clinical trials with genomic subset. Pharm Stat. 2007;6:227–244. doi: 10.1002/pst.300.
    1. Sargent DJ, Conley BA, Allegra C, Collette L. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol. 2005;23:2020–2027. doi: 10.1200/JCO.2005.01.112.
    1. Garcia D, Regan S, Crowther M, Hughes RA, Hylek EM. Warfarin maintenance dosing patterns in clinical practice: Implications for safer anticoagulation in the elderly population. Chest. 2005;127:2049–2056. doi: 10.1378/chest.127.6.2049.
    1. Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: A HuGEnet systematic review and meta-analysis. Genet Med. 2005;7:97–104. doi: 10.1097/.
    1. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, Rettie AE. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:2285–2293. doi: 10.1056/NEJMoa044503.
    1. Schelleman H, Chen J, Chen Z, Christie J, Newcomb CW, Brensinger CM, Price M, Whitehead AS, Kealey C, Thorn CF, Samaha FF, Kimmel SE. Dosing algorithms to predict warfarin maintenance dose in Caucasians and African Americans. Clin Pharmacol Ther. 2008;84:332–339. doi: 10.1038/clpt.2008.101.
    1. Gage BF, Eby D, Johnson JA, Deych E, Rieder MJ, Ridker PM, Milligan PE, Grice G, Lenzini P, Rettie AE, Aquilante CL, Grosso L, Marsh S, Langaee T, Farnett LE, Voora D, Veenstra DL, Glynn RJ, Barrett A, McLeod HL. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84:326–331. doi: 10.1038/clpt.2008.10.
    1. Lenzini P, Wadelius M, Kimmel S, Anderson JL, Jorgensen A, Pirmohamed M, Caldwell MD, Limdi N, Burmester JK, Dowd MB, Angchaisuksiri P, Bass AR, Chen J, Eriksson N, Rane A, Lindh JD, Carlquist JF, Horne BD, Grice G, Milligan PE, Eby C, Shin J, Kim H, Kurnik D, Stein CM, McMillin G, Pendleton RC, Berg RL, Deloukas P, Gage BF. Integration of genetic, clinical, and laboratory data to refine warfarin dosing. Clin Pharmacol Ther. 2010;87:572–578. doi: 10.1038/clpt.2010.13.
    1. Rosendaal FR, Cannegieter SC, van der Meer FJ, Briët E. A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost. 1993;69:236–239.
    1. Ellenberg JH. In: Encyclopedia of Biostatistics. Armitage P, Colton T, editor. New York: John Wiley & Sons; 1998. Intention-to-treat analysis; pp. 2056–2060.
    1. Fishman GS, Moore LR. A statistical evaluation of multiplicative congruential random number generators with modulus 231 - 1. J Amer Statist Assoc. 1982;77:129–136. doi: 10.2307/2287778.
    1. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, Kahn SF, May HT, Samuelson KM, Muhlestein JB, Carlquist JF. Couma-Gen Investigators. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116:2563–2570. doi: 10.1161/CIRCULATIONAHA.107.737312.
    1. Dolan G, Smith LA, Collins S, Plumb JM. Effect of setting, monitoring intensity and patient experience on anticoagulation control: A systematic review and meta-analysis of the literature. Curr Med Res Opin. 2008;24:1479–1472. doi: 10.1185/030079908X297349.
    1. The International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753–764. doi: 10.1056/NEJMoa0809329.
    1. Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: A prospective randomized controlled study. Clin Pharmacol Ther. 2008;83:460–470. doi: 10.1038/sj.clpt.6100316.
    1. Moyé LA. P-value interpretation and alpha allocation in clinical trials. Ann Epidemiol. 1998;8:351–357. doi: 10.1016/S1047-2797(98)00003-9.
    1. Moyé LA, Deswal A. Trials within trials: Confirmatory subgroup analyses in controlled clinical experiments. Control Clin Trials. 2001;22:605–619. doi: 10.1016/S0197-2456(01)00180-5.
    1. Coats AJ. CAPRICORN: A story of alpha allocation and beta-blockers in left ventricular dysfunction post-MI. Int J Cardiol. 2001;78:109–113. doi: 10.1016/S0167-5273(01)00437-5.
    1. Alosh M, Hugue MF. A flexible strategy for testing subgroups and overall population. Stat Med. 2009;15:3–23. doi: 10.1002/sim.3461.
    1. Joo J, Geller NL, French B, Kimmel SE, Rosenberg Y, Ellenberg JE. Prospective alpha allocation in the Clarification of Optimal Anticoagulation through Genetics (COAG) trial. Clin Trials. 2010;7:597–604. doi: 10.1177/1740774510381285.
    1. Lenzini PA, Grice GR, Milligan PE, Dowd MB, Subherwal S, Deych E, Eby CS, King CR, Porche-Sorbet RM, Murphy CV, Marchand R, Millican EA, Barrack RL, Clohisy JC, Kronquist K, Gatchel SK, Gage BF. Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedic patients. J Thromb Haemost. 2008;6:1655–1662. doi: 10.1111/j.1538-7836.2008.03095.x.
    1. Lachin JM. Introduction to sample size determination and power analysis for clinical trials. Control Clin Trials. 1981;2:93–113. doi: 10.1016/0197-2456(81)90001-5.
    1. Wittes J, Brittain E. The role of internal pilot studies in increasing the efficiency of clinical trials. Stat Med. 1990;9:65–71. doi: 10.1002/sim.4780090113.
    1. Betensky RA, Tierney C. An examination of methods for sample size recalculation during an experiment. Stat Med. 1997;16:2587–2598. doi: 10.1002/(SICI)1097-0258(19971130)16:22<2587::AID-SIM687>;2-5.
    1. Wittes J, Schabenberger O, Zucker D, Brittain E, Proschan M. Internal pilot studies I: Type I error rate of the naive t-test. Stat Med. 1999;18:3481–91. doi: 10.1002/(SICI)1097-0258(19991230)18:24<3481::AID-SIM301>;2-C.
    1. Simon R. The use of genomics in clinical trial design. Clin Cancer Res. 2008;14:5984–5993. doi: 10.1158/1078-0432.CCR-07-4531.
    1. Simon R, Maitouram A. Evaluating the efficiency of targeted designs for randomized clinical trials. Clin Cancer Res. 2004;10:6759–6763. doi: 10.1158/1078-0432.CCR-04-0496.

Source: PubMed

3
Tilaa