Evaluation of Transfer Learning with Deep Convolutional Neural Networks for Screening Osteoporosis in Dental Panoramic Radiographs

Ki-Sun Lee, Seok-Ki Jung, Jae-Jun Ryu, Sang-Wan Shin, Jinwook Choi, Ki-Sun Lee, Seok-Ki Jung, Jae-Jun Ryu, Sang-Wan Shin, Jinwook Choi

Abstract

: Dental panoramic radiographs (DPRs) provide information required to potentially evaluate bone density changes through a textural and morphological feature analysis on a mandible. This study aims to evaluate the discriminating performance of deep convolutional neural networks (CNNs), employed with various transfer learning strategies, on the classification of specific features of osteoporosis in DPRs. For objective labeling, we collected a dataset containing 680 images from different patients who underwent both skeletal bone mineral density and digital panoramic radiographic examinations at the Korea University Ansan Hospital between 2009 and 2018. Four study groups were used to evaluate the impact of various transfer learning strategies on deep CNN models as follows: a basic CNN model with three convolutional layers (CNN3), visual geometry group deep CNN model (VGG-16), transfer learning model from VGG-16 (VGG-16_TF), and fine-tuning with the transfer learning model (VGG-16_TF_FT). The best performing model achieved an overall area under the receiver operating characteristic of 0.858. In this study, transfer learning and fine-tuning improved the performance of a deep CNN for screening osteoporosis in DPR images. In addition, using the gradient-weighted class activation mapping technique, a visual interpretation of the best performing deep CNN model indicated that the model relied on image features in the lower left and right border of the mandibular. This result suggests that deep learning-based assessment of DPR images could be useful and reliable in the automated screening of osteoporosis patients.

Keywords: artificial intelligence; convolutional neural networks; dental panoramic radiographs; osteoporosis screening.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Image preprocessing for this study. The original DPRs were downsampled, and the ROI is restricted to the mandibular region below the teeth (region inside the bounding box). DPR, dental panoramic radiograph; ROI, region of interest.
Figure 2
Figure 2
Schematic diagrams of the four convolutional neural networks (CNN) architectures evaluated in this study.
Figure 3
Figure 3
The overview of the performed 5-fold cross validation in this study.
Figure 4
Figure 4
Mean ROC curves of each CNN models for screening osteoporosis on DPR images in this study.
Figure 5
Figure 5
Original and Grad-CAM sample images of correctly predicted by the best-performing deep CNN model (VGG16-TR-TF) for DPR image-based osteoporosis screening are illustrated. Below each original sample images, a Grad-CAM image is superimposed over the original image. The bright red in each Grad-CAM image indicate the region that has the greatest impact on screening osteoporosis patients.
Figure 6
Figure 6
Original and Grad-CAM sample images of incorrectly predicted by the best-performing deep CNN model (VGG16-TR-TF) for DPR image-based osteoporosis screening are illustrated. Below each original sample images, a Grad-CAM image is superimposed over the original image. The bright red in each Grad-CAM image indicate the region that has the greatest impact on screening osteoporosis patients.
Figure 7
Figure 7
Comparison of grad-CAM images from other groups against some original images showing true positive and true negative in the best performing VGG16-TR-TF group.
Figure 8
Figure 8
The conceptual diagram of the fine-tuning technique in the transfer learning of a deep CNN.

References

    1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7–29, 2000: Highlights of the conference. South. Med. J. 2001;94:569–573.
    1. Cauley J.A. Public health impact of osteoporosis. J. Gerontol. A Biol. Sci. Med. Sci. 2013;68:1243–1251. doi: 10.1093/gerona/glt093.
    1. Bliuc D., Nguyen N.D., Nguyen T.V., Eisman J.A., Center J.R. Compound risk of high mortality following osteoporotic fracture and refracture in elderly women and men. J. Bone Miner. Res. 2013;28:2317–2324. doi: 10.1002/jbmr.1968.
    1. Sozen T., Ozisik L., Basaran N.C. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017;4:46–56. doi: 10.5152/eurjrheum.2016.048.
    1. Melton L.J., 3rd, Chrischilles E.A., Cooper C., Lane A.W., Riggs B.L. Perspective. How many women have osteoporosis? J. Bone Miner. Res. 1992;7:1005–1010. doi: 10.1002/jbmr.5650070902.
    1. Melton L.J., 3rd, Atkinson E.J., O’Connor M.K., O’Fallon W.M., Riggs B.L. Bone density and fracture risk in men. J. Bone Miner. Res. 1998;13:1915–1923. doi: 10.1359/jbmr.1998.13.12.1915.
    1. Kanis J.A., Johnell O., Oden A., Sembo I., Redlund-Johnell I., Dawson A., De Laet C., Jonsson B. Long-term risk of osteoporotic fracture in Malmo. Osteoporos. Int. 2000;11:669–674. doi: 10.1007/s001980070064.
    1. Kalinowski P., Rozylo-Kalinowska I., Piskorz M., Bojakowska-Komsta U. Correlations between periodontal disease, mandibular inferior cortex index and the osteoporotic fracture probability assessed by means of the fracture risk assessment body mass index tool. BMC Med. Imaging. 2019;19:41. doi: 10.1186/s12880-019-0337-1.
    1. Marcucci G., Brandi M.L. Rare causes of osteoporosis. Clin. Cases Miner. Bone Metab. 2015;12:151–156. doi: 10.11138/ccmbm/2015.12.2.151.
    1. Kanis J.A., Johnell O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporos. Int. 2005;16:229–238. doi: 10.1007/s00198-004-1811-2.
    1. Kanis J.A. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–1936. doi: 10.1016/S0140-6736(02)08761-5.
    1. Mithal A., Bansal B., Kyer C.S., Ebeling P. The Asia-Pacific Regional Audit-Epidemiology, Costs, and Burden of Osteoporosis in India 2013: A report of International Osteoporosis Foundation. Indian J. Endocrinol. Metab. 2014;18:449–454. doi: 10.4103/2230-8210.137485.
    1. Taguchi A., Suei Y., Ohtsuka M., Otani K., Tanimoto K., Ohtaki M. Usefulness of panoramic radiography in the diagnosis of postmenopausal osteoporosis in women. Width and morphology of inferior cortex of the mandible. Dentomaxillofac. Radiol. 1996;25:263–267. doi: 10.1259/dmfr.25.5.9161180.
    1. Ledgerton D., Horner K., Devlin H., Worthington H. Radiomorphometric indices of the mandible in a British female population. Dentomaxillofac. Radiol. 1999;28:173–181. doi: 10.1038/sj.dmfr.4600435.
    1. White S.C., Taguchi A., Kao D., Wu S., Service S.K., Yoon D., Suei Y., Nakamoto T., Tanimoto K. Clinical and panoramic predictors of femur bone mineral density. Osteoporos. Int. 2005;16:339–346. doi: 10.1007/s00198-004-1692-4.
    1. Yasar F., Akgunlu F. The differences in panoramic mandibular indices and fractal dimension between patients with and without spinal osteoporosis. Dentomaxillofac. Radiol. 2006;35:1–9. doi: 10.1259/dmfr/97652136.
    1. Taguchi A., Ohtsuka M., Tsuda M., Nakamoto T., Kodama I., Inagaki K., Noguchi T., Kudo Y., Suei Y., Tanimoto K. Risk of vertebral osteoporosis in post-menopausal women with alterations of the mandible. Dentomaxillofac. Radiol. 2007;36:143–148. doi: 10.1259/dmfr/50171930.
    1. Devlin H., Karayianni K., Mitsea A., Jacobs R., Lindh C., van der Stelt P., Marjanovic E., Adams J., Pavitt S., Horner K. Diagnosing osteoporosis by using dental panoramic radiographs: The OSTEODENT project. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007;104:821–828. doi: 10.1016/j.tripleo.2006.12.027.
    1. Okabe S., Morimoto Y., Ansai T., Yoshioka I., Tanaka T., Taguchi A., Kito S., Wakasugi-Sato N., Oda M., Kuroiwa H., et al. Assessment of the relationship between the mandibular cortex on panoramic radiographs and the risk of bone fracture and vascular disease in 80-year-olds. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008;106:433–442. doi: 10.1016/j.tripleo.2007.09.013.
    1. Taguchi A. Triage screening for osteoporosis in dental clinics using panoramic radiographs. Oral Dis. 2010;16:316–327. doi: 10.1111/j.1601-0825.2009.01615.x.
    1. Al-Dam A., Blake F., Atac A., Amling M., Blessmann M., Assaf A., Hanken H., Smeets R., Heiland M. Mandibular cortical shape index in non-standardised panoramic radiographs for identifying patients with osteoporosis as defined by the German Osteology Organization. J. Craniomaxillofac. Surg. 2013;41:e165–e169. doi: 10.1016/j.jcms.2012.11.044.
    1. Kavitha M.S., Asano A., Taguchi A., Kurita T., Sanada M. Diagnosis of osteoporosis from dental panoramic radiographs using the support vector machine method in a computer-aided system. BMC Med. Imaging. 2012;12:1. doi: 10.1186/1471-2342-12-1.
    1. Kavitha M.S., Ganesh Kumar P., Park S.Y., Huh K.H., Heo M.S., Kurita T., Asano A., An S.Y., Chien S.I. Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches. Dentomaxillofac. Radiol. 2016;45:20160076. doi: 10.1259/dmfr.20160076.
    1. Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M., van der Laak J., van Ginneken B., Sanchez C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005.
    1. Park C., Took C.C., Seong J.K. Machine learning in biomedical engineering. Biomed. Eng. Lett. 2018;8:1–3. doi: 10.1007/s13534-018-0058-3.
    1. LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539.
    1. Baker B., Gupta O., Naik N., Raskar R. Designing neural network architectures using reinforcement learning. arXiv. 20161611.02167
    1. Yosinski J., Clune J., Bengio Y., Lipson H. How transferable are features in deep neural networks? arXiv. 20141411.1792
    1. Pan S.J., Yang Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009;22:1345–1359. doi: 10.1109/TKDE.2009.191.
    1. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. arXiv. 20151512.03385
    1. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv. 20141409.1556
    1. Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks; Proceedings of the 25th International Conference on Neural Information Processing Systems; Lake Tahoe, Nevada. 3–8 December 2012; Red Hook, NY, USA: Curran Associates Inc.; 2012. pp. 1097–1105.
    1. Han Z., Wei B., Zheng Y., Yin Y., Li K., Li S. Breast cancer multi-classification from histopathological images with structured deep learning model. Sci. Rep. 2017;7:4172. doi: 10.1038/s41598-017-04075-z.
    1. Christopher M., Belghith A., Bowd C., Proudfoot J.A., Goldbaum M.H., Weinreb R.N., Girkin C.A., Liebmann J.M., Zangwill L.M. Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs. Sci. Rep. 2018;8:16685. doi: 10.1038/s41598-018-35044-9.
    1. Shin H.-C., Roth H.R., Gao M., Lu L., Xu Z., Nogues I., Yao J., Mollura D., Summers R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging. 2016;35:1285–1298. doi: 10.1109/TMI.2016.2528162.
    1. Ravishankar H., Sudhakar P., Venkataramani R., Thiruvenkadam S., Annangi P., Babu N., Vaidya V. Understanding the mechanisms of deep transfer learning for medical images. arXiv. 20171704.06040
    1. Kanis J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 1994;4:368–381. doi: 10.1007/BF01622200.
    1. Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M. Imagenet large scale visual recognition challenge. Int. J. Compute. Vis. 2015;115:211–252. doi: 10.1007/s11263-015-0816-y.
    1. Stone M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B Methodol. 1974;36:111–133. doi: 10.1111/j.2517-6161.1974.tb00994.x.
    1. Chollet F. Keras: Deep Learning Library for Theano and Tensorflow. [(accessed on 30 January 2020)];2015 7:T1. Available online: .
    1. Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado G.S., Davis A., Dean J., Devin M. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv. 20161603.04467
    1. Selvaraju R.R., Cogswell M., Das A., Vedantam R., Parikh D., Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. arXiv. 20161610.02391
    1. Sawagashira T., Hayashi T., Hara T., Katsumata A., Muramatsu C., Zhou X., Iida Y., Katagi K., Fujita H. An automatic detection method for carotid artery calcifications using top-hat filter on dental panoramic radiographs. IEICE Trans. Inf. Syst. 2013;96:1878–1881. doi: 10.1587/transinf.E96.D.1878.
    1. Lee J.-S., Adhikari S., Liu L., Jeong H.-G., Kim H., Yoon S.-J. Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: A preliminary study. Dentomaxillofac. Radiol. 2019;48:20170344. doi: 10.1259/dmfr.20170344.
    1. Nogueira K., Penatti O.A., Dos Santos J.A. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit. 2017;61:539–556. doi: 10.1016/j.patcog.2016.07.001.

Source: PubMed

3
Tilaa