Changes in Serological Immunology Measures in UK and Kenyan Adults Post-controlled Human Malaria Infection

Susanne H Hodgson, David Llewellyn, Sarah E Silk, Kathryn H Milne, Sean C Elias, Kazutoyo Miura, Gathoni Kamuyu, Elizabeth A Juma, Charles Magiri, Alfred Muia, Jing Jin, Alexandra J Spencer, Rhea J Longley, Thomas Mercier, Laurent Decosterd, Carole A Long, Faith H Osier, Stephen L Hoffman, Bernhards Ogutu, Adrian V S Hill, Kevin Marsh, Simon J Draper, Susanne H Hodgson, David Llewellyn, Sarah E Silk, Kathryn H Milne, Sean C Elias, Kazutoyo Miura, Gathoni Kamuyu, Elizabeth A Juma, Charles Magiri, Alfred Muia, Jing Jin, Alexandra J Spencer, Rhea J Longley, Thomas Mercier, Laurent Decosterd, Carole A Long, Faith H Osier, Stephen L Hoffman, Bernhards Ogutu, Adrian V S Hill, Kevin Marsh, Simon J Draper

Abstract

Background: The timing of infection is closely determined in controlled human malaria infection (CHMI) studies, and as such they provide a unique opportunity to dissect changes in immunological responses before and after a single infection. The first Kenyan Challenge Study (KCS) (Pan African Clinical Trial Registry: PACTR20121100033272) was performed in 2013 with the aim of establishing the CHMI model in Kenya. This study used aseptic, cryopreserved, attenuated Plasmodium falciparum sporozoites administered by needle and syringe (PfSPZ Challenge) and was the first to evaluate parasite dynamics post-CHMI in individuals with varying degrees of prior exposure to malaria. Methods: We describe detailed serological and functional immunological responses pre- and post-CHMI for participants in the KCS and compare these with those from malaria-naïve UK volunteers who also underwent CHMI (VAC049) (ClinicalTrials.gov NCT01465048) using PfSPZ Challenge. We assessed antibody responses to three key blood-stage merozoite antigens [merozoite surface protein 1 (MSP1), apical membrane protein 1 (AMA1), and reticulocyte-binding protein homolog 5 (RH5)] and functional activity using two candidate measures of anti-merozoite immunity; the growth inhibition activity (GIA) assay and the antibody-dependent respiratory burst activity (ADRB) assay. Results:Clear serological differences were observed pre- and post-CHMI by ELISA between malaria-naïve UK volunteers in VAC049, and Kenyan volunteers who had prior malaria exposure. Antibodies to AMA1 and schizont extract correlated with parasite multiplication rate (PMR) post-CHMI in KCS. Serum from volunteer 110 in KCS, who demonstrated a dramatically reduced PMR in vivo, had no in vitro GIA prior to CHMI but the highest level of ADRB activity. A significant difference in ADRB activity was seen between KCS volunteers with minimal and definite prior exposure to malaria and significant increases were seen in ADRB activity post-CHMI in Kenyan volunteers. Quinine and atovaquone/proguanil, previously assumed to be removed by IgG purification, were identified as likely giving rise to aberrantly high in vitro GIA results. Conclusions: The ADRB activity assay is a promising functional assay that warrants further investigation as a measure of prior exposure to malaria and predictor of control of parasite growth. The CHMI model can be used to evaluate potential measures of naturally-acquired immunity to malaria.

Keywords: ADRB; CHMI; ELISA; GIA; challenge; falciparum; immunity; malaria.

Figures

Figure 1
Figure 1
Design of Studies. (A) VAC049 was a UK CHMI study of PfSPZ Challenge administered to malaria-naïve, UK volunteers. (B) KCS was a Kenyan Challenge Study of PfSPZ Challenge administered to Kenyan volunteers. In each study in each group, the total dose of sporozoites was split between two injection sites and administered as two 50 μL injections, one in each deltoid. ID, intradermal; IM, intramuscular; MinExp, minimal prior exposure to malaria; DefExp, definite prior exposure to malaria.
Figure 2
Figure 2
Serum IgG antibody responses for volunteers with Minimal and Definite prior exposure to malaria in KCS.(A) MSP119. (B) AMA1. (C) RH5. (D) Schizont extract. Median values are indicated. Mann Whitney U tests and Wilcoxon matched-pairs signed rank tests as appropriate. Data from volunteer 110 highlighted in red. MinExp, minimal prior exposure to malaria; DefExp, definite prior exposure to malaria. C−1, baseline pre-CHMI. C+35 = 35 days post-CHMI. *p < 0.05, ***p < 0.001, ****p < 0.0001.
Figure 3
Figure 3
VAC049 GIA data. (A) Pre- and post–CHMI. Wilcoxon matched-pairs signed rank test. Individual data and median are shown. (B) Correlation between GIA at C+35 and days between start of anti-malarial therapy and sampling at C+35 visit. Spearman rank test. Volunteers not successfully infected are highlighted in red. GIA expected to be < 20% in malaria-naïve individuals (dotted line). C−1 = baseline pre-CHMI. C+35 = 35 days post-CHMI. ****p <0.0001.
Figure 4
Figure 4
KCS GIA. (A) Pre- and post-CHMI. (B) MinExp and DefExp volunteers. (C) Correlation between GIA at C−1 and PMR. (D) Correlation between GIA at C+35 and days between start of anti-malaria therapy and sampling at C+35 visit. Data for volunteer 110 is highlighted in red. Individual and median values are indicated. Wilcoxon matched-pairs signed rank or Mann Whitney U tests as appropriate. Spearman rank test for correlations. MinExp, minimal prior exposure to malaria; DefExp, definite prior exposure to malaria. C−1 = baseline pre-CHMI. C+35 = 35 days post-CHMI. ***p < 0.001, ****p < 0.0001.
Figure 5
Figure 5
VAC049 and KCS ADRB activity. (A) VAC049 all infected volunteers pre- and post-CHMI. (B) KCS all volunteers pre- and post-CHMI. (C) KCS MinExp and DefExp volunteers. (D) KCS correlation between ADRB activity at C−1 and parasite multiplication rate (PMR). Data for volunteer 110 is highlighted in red. Individual and median values are indicated. RLU, relative light units. Wilcoxon matched-pairs signed rank or Mann Whitney U tests as appropriate. Spearman rank test for correlation. MinExp, minimal prior exposure to malaria; DefExp, definite prior exposure to malaria. C−1 = baseline pre-CHMI. C+35 = 35 days post-CHMI. **p < 0.005, ***p < 0.001, ****p < 0.0001.

References

    1. Biswas S., Choudhary P., Elias S. C., Miura K., Milne K. H., de Cassan S. C., et al. . (2014). Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure. PLoS ONE 9:e107903. 10.1371/journal.pone.0107903
    1. Douglas A. D., Baldeviano G. C., Lucas C. M., Lugo-Roman L. A., Crosnier C., Bartholdson S. J., et al. . (2015). A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in aotus monkeys. Cell Host Microbe 17, 130–139. 10.1016/j.chom.2014.11.017
    1. Douglas A. D., Edwards N. J., Duncan C. J., Thompson F. M., Sheehy S. H., O'hara G. A., et al. . (2013). Comparison of modeling methods to determine liver-to-blood inocula and parasite multiplication rates during controlled human malaria infection. J. Infect. Dis. 208, 340–345. 10.1093/infdis/jit156
    1. Douglas A. D., Williams A. R., Illingworth J. J., Kamuyu G., Biswas S., Goodman A. L., et al. . (2011). The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat. Commun. 2, 601. 10.1038/ncomms1615
    1. Duncan C. J., Draper S. J. (2012). Controlled human blood stage malaria infection: current status and potential applications. Am. J. Trop. Med. Hyg. 86, 561–565. 10.4269/ajtmh.2012.11-0504
    1. Duncan C. J., Hill A. V., Ellis R. D. (2012). Can growth inhibition assays (GIA) predict blood-stage malaria vaccine efficacy? Hum. Vaccin. Immunother. 8, 706–714. 10.4161/hv.19712
    1. Duncan C. J., Sheehy S. H., Ewer K. J., Douglas A. D., Collins K. A., Halstead F. D., et al. . (2011). Impact on malaria parasite multiplication rates in infected volunteers of the protein-in-adjuvant vaccine AMA1-C1/Alhydrogel+CPG 7909. PLoS ONE 6:e22271. 10.1371/journal.pone.0022271
    1. Elias S. C., Choudhary P., De Cassan S. C., Biswas S., Collins K. A., Halstead F. D., et al. . (2014). Analysis of human B-cell responses following ChAd63-MVA MSP1 and AMA1 immunization and controlled malaria infection. Immunology 141, 628–644. 10.1111/imm.12226
    1. Epstein J. E. (2013). Taking a bite out of malaria: controlled human malaria infection by needle and syringe. Am. J. Trop. Med. Hyg. 88, 3–4. 10.4269/ajtmh.2013.12-0715
    1. Gómez-Pérez G. P., Legarda A., Muñoz J., Sim B. K. L., Ballester M. R., Dobaño C., et al. . (2015). Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naive volunteers: effect of injection volume and dose on infectivity rates. Malar. J. 14, 306. 10.1186/s12936-015-0817-x
    1. Halbroth B. R., Draper S. J. (2015). Recent developments in malaria vaccinology. Adv. Parasitol. 88, 1–49. 10.1016/bs.apar.2015.03.001
    1. Hodgson S. H., Juma E., Salim A., Magiri C., Kimani D., Njenga D., et al. . (2014). Evaluating controlled human malaria infection in Kenyan adults with varying degrees of prior exposure to Plasmodium falciparum using sporozoites administered by intramuscular injection. Front. Microbiol. 5:686. 10.3389/fmicb.2014.00686
    1. Hodgson S. H., Juma E., Salim A., Magiri C., Njenga D., Molyneux S., et al. . (2015). Lessons learnt from the first controlled human malaria infection study conducted in Nairobi, Kenya. Malar. J. 14, 182. 10.1186/s12936-015-0671-x
    1. Joos C., Marrama L., Polson H. E., Corre S., Diatta A. M., Diouf B., et al. . (2010). Clinical protection from falciparum malaria correlates with neutrophil respiratory bursts induced by merozoites opsonized with human serum antibodies. PLoS ONE 5:e9871. 10.1371/journal.pone.0009871
    1. Kapelski S., Klockenbring T., Fischer R., Barth S., Fendel R. (2014). Assessment of the neutrophilic antibody-dependent respiratory burst (ADRB) response to Plasmodium falciparum. J. Leukoc. Biol. 96, 1131–1142. 10.1189/jlb.4A0614-283RR
    1. Llewellyn D., de Cassan S. C., Williams A. R., Douglas A. D., Forbes E. K., Adame-Gallegos J. R., et al. . (2014). Assessment of antibody-dependent respiratory burst activity from mouse neutrophils on Plasmodium yoelii malaria challenge outcome. J. Leukoc. Biol. 95, 369–382. 10.1189/jlb.0513274
    1. Llewellyn D., Miura K., Fay M. P., Williams A. R., Murungi L. M., Shi J., et al. . (2015). Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria. Sci. Rep. 5:14081. 10.1038/srep14081
    1. Lyke K. E., Laurens M. B., Strauss K., Adams M., Billingsley P. F., James E., et al. . (2015). Optimizing intradermal administration of cryopreserved Plasmodium falciparum sporozoites in controlled human malaria infection. Am. J. Trop. Med. Hyg. 93, 1274–1284. 10.4269/ajtmh.15-0341
    1. Malkin E. M., Diemert D. J., McArthur J. H., Perreault J. R., Miles A. P., Giersing B. K., et al. . (2005). Phase 1 clinical trial of apical membrane antigen 1: an asexual blood-stage vaccine for Plasmodium falciparum malaria. Infect. Immun. 73, 3677–3685. 10.1128/IAI.73.6.3677-3685.2005
    1. McCarthy J. S., Sekuloski S., Griffin P. M., Elliott S., Douglas N., Peatey C., et al. . (2011). A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs. PLoS ONE 6:e21914. 10.1371/journal.pone.0021914
    1. Miura K., Orcutt A. C., Muratova O. V., Miller L. H., Saul A., Long C. A. (2008). Development and characterization of a standardized ELISA including a reference serum on each plate to detect antibodies induced by experimental malaria vaccines. Vaccine 26, 193–200. 10.1016/j.vaccine.2007.10.064
    1. Murungi L. M., Kamuyu G., Lowe B., Bejon P., Theisen M., Kinyanjui S. M., et al. . (2013). A threshold concentration of anti-merozoite antibodies is required for protection from clinical episodes of malaria. Vaccine 31, 3936–3942. 10.1016/j.vaccine.2013.06.042
    1. Murungi L. M., Sondén K., Llewellyn D., Rono J., Guleid F., Williams A. R., et al. . (2016). Targets and mechanisms associated with protection from severe Plasmodium falciparum malaria in kenyan children. Infect. Immun. 84, 950–963. 10.1128/IAI.01120-15
    1. Ndungu F. M., Olotu A., Mwacharo J., Nyonda M., Apfeld J., Mramba L. K., et al. . (2012). Memory B cells are a more reliable archive for historical antimalarial responses than plasma antibodies in no-longer exposed children. Proc. Natl. Acad. Sci. U.S.A. 109, 8247–8252. 10.1073/pnas.1200472109
    1. Okiro E. A., Hay S. I., Gikandi P. W., Sharif S. K., Noor A. M., Peshu N., et al. . (2007). The decline in paediatric malaria admissions on the coast of Kenya. Malar. J. 6:151. 10.1186/1475-2875-6-151
    1. Payne R. O., Milne K. H., Elias S. C., Edwards N. J., Douglas A. D., Brown R. E., et al. . (2016). Demonstration of the blood-stage Plasmodium falciparum controlled human malaria infection model to assess efficacy of the P. falciparum apical membrane antigen 1 vaccine, FMP2.1/AS01. J. Infect. Dis. 213, 1743–1751. 10.1093/infdis/jiw039
    1. Roestenberg M., Bijker E. M., Sim B. K., Billingsley P. F., James E. R., Bastiaens G. J., et al. . (2013). Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. Am. J. Trop. Med. Hyg. 88, 5–13. 10.4269/ajtmh.2012.12-0613
    1. Roestenberg M., de Vlas S. J., Nieman A. E., Sauerwein R. W., Hermsen C. C. (2012). Efficacy of preerythrocytic and blood-stage malaria vaccines can be assessed in small sporozoite challenge trials in human volunteers. J. Infect. Dis. 206, 319–323. 10.1093/infdis/jis355
    1. Rono J., Osier F. H., Olsson D., Montgomery S., Mhoja L., Rooth I., et al. . (2013). Breadth of anti-merozoite antibody responses is associated with the genetic diversity of asymptomatic Plasmodium falciparum infections and protection against clinical malaria. Clin. Infect. Dis. 57, 1409–1416. 10.1093/cid/cit556
    1. Sauerwein R. W., Roestenberg M., Moorthy V. S. (2011). Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat. Rev. Immunol. 11, 57–64. 10.1038/nri2902
    1. Sheehy S. H., Douglas A. D., Draper S. J. (2013a). Challenges of assessing the clinical efficacy of asexual blood-stage Plasmodium falciparum malaria vaccines. Hum. Vaccin. Immunother. 9, 1831–1840. 10.4161/hv.25383
    1. Sheehy S. H., Duncan C. J., Elias S. C., Biswas S., Collins K. A., O'Hara G. A., et al. . (2012a). Phase Ia clinical evaluation of the safety and immunogenicity of the Plasmodium falciparum blood-stage antigen AMA1 in ChAd63 and MVA vaccine vectors. PLoS ONE 7:e31208. 10.1371/journal.pone.0031208
    1. Sheehy S. H., Duncan C. J., Elias S. C., Choudhary P., Biswas S., Halstead F. D., et al. . (2012b). ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans. Mol. Ther. 20, 2355–2368. 10.1038/mt.2012.223
    1. Sheehy S. H., Spencer A. J., Douglas A. D., Sim B. K., Longley R. J., Edwards N. J., et al. . (2013b). Optimising controlled human malaria infection studies using cryopreserved parasites administered by needle and syringe. PLoS ONE 8:e65960. 10.1371/journal.pone.0065960
    1. Shekalaghe S., Rutaihwa M., Billingsley P. F., Chemba M., Daubenberger C. A., James E. R., et al. . (2014). Controlled human malaria infection of Tanzanians by intradermal injection of aseptic, purified, cryopreserved Plasmodium falciparum sporozoites. Am. J. Trop. Med. Hyg. 91, 471–480. 10.4269/ajtmh.14-0119
    1. Singh S., Miura K., Zhou H., Muratova O., Keegan B., Miles A., et al. . (2006). Immunity to recombinant plasmodium falciparum merozoite surface protein 1 (MSP1): protection in Aotus nancymai monkeys strongly correlates with anti-MSP1 antibody titer and in vitro parasite-inhibitory activity. Infect. Immun. 74, 4573–4580. 10.1128/IAI.01679-05
    1. Tran T. M., Ongoiba A., Coursen J., Crosnier C., Diouf A., Huang C. Y., et al. . (2014). Naturally acquired antibodies specific for Plasmodium falciparum reticulocyte-binding protein homologue 5 inhibit parasite growth and predict protection from malaria. J. Infect. Dis. 209, 789–798. 10.1093/infdis/jit553
    1. Villasis E., Lopez-Perez M., Torres K., Gamboa D., Neyra V., Bendezu J., et al. . (2012). Anti-Plasmodium falciparum invasion ligand antibodies in a low malaria transmission region, Loreto, Peru. Malar. J. 11:361. 10.1186/1475-2875-11-361
    1. WHO (2015). World Malaria Report. WHO.

Source: PubMed

3
Tilaa