Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function

Bee Ling Tan, Mohd Esa Norhaizan, Bee Ling Tan, Mohd Esa Norhaizan

Abstract

Cognitive dysfunction is linked to chronic low-grade inflammatory stress that contributes to cell-mediated immunity in creating an oxidative environment. Food is a vitally important energy source; it affects brain function and provides direct energy. Several studies have indicated that high-fat consumption causes overproduction of circulating free fatty acids and systemic inflammation. Immune cells, free fatty acids, and circulating cytokines reach the hypothalamus and initiate local inflammation through processes such as microglial proliferation. Therefore, the role of high-fat diet (HFD) in promoting oxidative stress and neurodegeneration is worthy of further discussion. Of particular interest in this article, we highlight the associations and molecular mechanisms of HFD in the modulation of inflammation and cognitive deficits. Taken together, a better understanding of the role of oxidative stress in cognitive impairment following HFD consumption would provide a useful approach for the prevention of cognitive dysfunction.

Keywords: cognitive impairment; high-fat diet; inflammation; neurodegeneration; oxidative stress.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The effect of a high-fat diet (HFD) on cognitive function. Consumption of HFD induces reactive oxygen species (ROS). Accumulation of ROS leads to DNA mutation and protein/lipid oxidation and subsequently reduced the mitochondrial function. Overproduction of reactive species that occur in the mitochondrial DNA can lead to neurodegenerative disease and brain dysfunction. Systemic inflammation and hypothalamic inflammation promotes cognitive decline via secretion of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6).

References

    1. World Health Organization Obesity and Overweight. [(accessed on 26 November 2018)];2015 Available online: .
    1. Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., Nakayama O., Makishima M., Matsuda M., Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2017;114:1752–1761. doi: 10.1172/JCI21625.
    1. Milaneschi Y., Lamers F., Bot M., Drent M.L., Penninx B.W.J.H. Leptin Dysregulation is specifically associated with major depression with atypical features: Evidence for a mechanism connecting obesity and depression. Biol. Psychiatry. 2017;81:807–814. doi: 10.1016/j.biopsych.2015.10.023.
    1. De Noronha S.R., Campos G.V., Abreu A.R., de Souza A.A., Chianca D.A., de Menezes R.C. High fat diet induced-obesity facilitates anxiety-like behaviors due to GABAergic impairment within the dorsomedial hypothalamus in rats. Behav. Brain Res. 2017;316:38–46. doi: 10.1016/j.bbr.2016.08.042.
    1. Vadiveloo M., Scott M., Quatromoni P., Jacques P., Parekh N. Trends in dietary fat and high-fat food intakes from 1991 to 2008 in the Framingham heart study participants. Br. J. Nutr. 2014;111:724–734. doi: 10.1017/S0007114513002924.
    1. DiNicolantonio C.J., Lucan S.C., O’Keefe J.H. The evidence for saturated fat and sugar related to coronary heart disease. Prog. Cardiovasc. Dis. 2016;58:464–472. doi: 10.1016/j.pcad.2015.11.006.
    1. Alzoubi K.H., Mayyas F.A., Mahafzah R., Khabour O.F. Melatonin prevents memory impairment induced by high-fat diet: Role of oxidative stress. Behav. Brain Res. 2018;336:93–98. doi: 10.1016/j.bbr.2017.08.047.
    1. Cordner Z.A., Tamashiro K.L. Effects of high-fat diet exposure on learning and memory. Physiol. Behav. 2015;152:363–371. doi: 10.1016/j.physbeh.2015.06.008.
    1. Kurhe Y., Mahesh R., Gupta D. Effect of a selective cyclooxygenase type 2 inhibitor celecoxib on depression associated with obesity in mice: An approach using behavioral tests. Neurochem. Res. 2014;39:1395–1402. doi: 10.1007/s11064-014-1322-2.
    1. Kurhe Y., Mahesh R. Ondansetron attenuates co-morbid depression and anxiety associated with obesity by inhibiting the biochemical alterations and improving serotonergic neurotransmission. Pharm. Biochem. Behav. 2015;136:107–116. doi: 10.1016/j.pbb.2015.07.004.
    1. Sivanathan S., Thavartnam K., Arif S., Elegino T., McGowan P.O. Chronic high fat feeding increases anxiety-like behaviour and reduces transcript abundance of glucocorticoid signaling genes in the hippocampus of female rats. Behav. Brain Res. 2015;286:265–270. doi: 10.1016/j.bbr.2015.02.036.
    1. Zemdegs J., Quesseveur G., Jarriault D., Pénicaud L., Fioramonti X., Guiard B.P. High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice. Br. J. Pharm. 2016;173:2095–2110. doi: 10.1111/bph.13343.
    1. Tan B.L., Norhaizan M.E., Liew W.-P.-P. Nutrients and oxidative stress: Friend or foe? Oxid. Med. Cell. Longev. 2018;2018 doi: 10.1155/2018/9719584.
    1. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035.
    1. Wang L., Chen X., Du Z., Li G., Chen M., Chen X., Liang G., Chen T. Curcumin suppresses gastric tumor cell growth via ROS-mediated DNA polymerase γ depletion disrupting cellular bioenergetics. J. Exp. Clin. Cancer Res. 2017;36:47. doi: 10.1186/s13046-017-0513-5.
    1. Mazon J.N., de Mello A.H., Ferreira G.K., Rezin G.T. The impact of obesity on neurodegenerative diseases. Life Sci. 2017;182:22–28. doi: 10.1016/j.lfs.2017.06.002.
    1. Muñoz A., Costa M. Nutritionally mediated oxidative stress and inflammation. Oxidat. Med. Cell. Longev. 2013;2013 doi: 10.1155/2013/610950.
    1. Knight J.A. Review: Free radicals, antioxidants, and the immune system. Ann. Clin. Lab. Sci. 2000;30:145–158.
    1. Angelova P.R., Abramov A.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. Febs Lett. 2018;592:692–702. doi: 10.1002/1873-3468.12964.
    1. Cobley J.N., Fiorello M.L., Bailey D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490–503. doi: 10.1016/j.redox.2018.01.008.
    1. Butterfield D.A., Reed T., Newman S.F., Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic. Biol. Med. 2007;43:658–677. doi: 10.1016/j.freeradbiomed.2007.05.037.
    1. Selfridge J.E., Lezi E., Lu J., Swerdlow R.H. Role of mitochondrial homeostasis and dynamics in Alzheimer’s disease. Neurobiol. Dis. 2013;51:3–12. doi: 10.1016/j.nbd.2011.12.057.
    1. Zhao Y., Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2013;2013:316523. doi: 10.1155/2013/316523.
    1. Marventano S., Godos J., Platania A., Galvano F., Mistretta A., Grosso G. Mediterranean diet adherence in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2018;69:100–107. doi: 10.1080/09637486.2017.1332170.
    1. Du X., Zhu Y., Peng Z., Cui Y., Zhang Q., Shi Z., Guan Y., Sha X., Shen T., Yang Y., et al. High concentrations of fatty acids and β-hydroxybutyrate impair the growth hormone-mediated hepatic JAK2-STAT5 pathway in clinically ketotic cows. J. Dairy Sci. 2018;101:3476–3487. doi: 10.3168/jds.2017-13234.
    1. Derosa G., Sahebkar A., Maffioli P. The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice. J. Cell. Physiol. 2018;233:153–161. doi: 10.1002/jcp.25804.
    1. Dong X., Tan P., Cai Z., Xu H., Li J., Ren W., Xu H., Zuo R., Zhou J., Mai K., et al. Regulation of FADS2 transcription by SREBP-1 and PPAR-α influences LC-PUFA biosynthesis in fish. Sci. Rep. 2017:7. doi: 10.1038/srep40024.
    1. Norris G.H., Porter C.M., Jiang C., Millar C.L., Blesso C.N. Dietary sphingomyelin attenuates hepatic steatosis and adipose tissue inflammation in high-fat-diet-induced obese mice. J. Nutr. Biochem. 2017;40:36–43. doi: 10.1016/j.jnutbio.2016.09.017.
    1. Maurizi G., Della Guardia L., Maurizi A., Poloni A. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J. Cell. Physiol. 2018;233:88–97. doi: 10.1002/jcp.25855.
    1. Shi Y., Sun X., Sun Y., Hou L., Yao M., Lian K., Li J., Lu X., Jiang L. Elevation of cortical C26:0 due to the decline of peroxisomal β-oxidation potentiates amyloid β generation and spatial memory deficits via oxidative stress in diabetic rats. Neuroscience. 2016;315:125–135. doi: 10.1016/j.neuroscience.2015.11.067.
    1. Van Veldhoven P.P. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J. Lipid Res. 2010;51:2863–2895. doi: 10.1194/jlr.R005959.
    1. Yagita Y., Shinohara K., Abe Y., Nakagawa K., Al-Owain M., Alkuraya F.S., Fujiki Y. Deficiency of a retinal dystrophy protein, acyl-CoA binding domain-containing 5 (ACBD5), impairs peroxisomal β-oxidation of very-long-chain fatty acids. J. Biol. Chem. 2017;292:691–705. doi: 10.1074/jbc.M116.760090.
    1. Kanamori S., Ishida H., Yamamoto K., Itoh T. Construction of a series of intermediates in the β-oxidation pathway from THA to EPA via DHA in free acid form. Bioorg. Med. Chem. 2018;26:4390–4401. doi: 10.1016/j.bmc.2018.07.004.
    1. Zheng F., Cai Y. Concurrent exercise improves insulin resistance and nonalcoholic fatty liver disease by upregulating PPAR-γ and genes involved in the beta-oxidation of fatty acids in ApoE-KO mice fed a high-fat diet. Lipids Health Dis. 2019;18:6. doi: 10.1186/s12944-018-0933-z.
    1. Le Cras T.D., Mobberley-Schuman P.S., Broering M., Fei L., Trenor C.C., 3rd, Adams D.M. Angiopoietins as serum biomarkers for lymphatic anomalies. Angiogenesis. 2017;20:163–173. doi: 10.1007/s10456-016-9537-2.
    1. Périchon R., Bourre J.M. Peroxisomal b-oxidation activity and catalase activity during development and aging in mouse liver. Biochimie. 1995;77:288–293. doi: 10.1016/0300-9084(96)88138-7.
    1. An H.J., Lee B., Kim S.M., Kim D.H., Chung K.W., Ha S.G., Park K.C., Park Y.J., Kim S.J., Yun H.Y., et al. A PPAR pan agonist, MHY2013 alleviates age-related hepatic lipid accumulation by promoting fatty acid oxidation and suppressing inflammation. Biol. Pharm. Bull. 2018;41:29–35. doi: 10.1248/bpb.b17-00371.
    1. Sanguino E., Roglans N., Alegret M., Sánchez R.M., Vázquez-Carrera M., Laguna J.C. Atorvastatin reverses age-related reduction in rat hepatic PPARalpha and HNF-4. Br. J. Pharm. 2005;145:853–861. doi: 10.1038/sj.bjp.0706260.
    1. Chee C., Shannon C.E., Burns A., Selby A.L., Wilkinson D., Smith K., Greenhaff P.L., Stephens F.B. Relative contribution of intramyocellular lipid to whole body fat oxidation is reduced with age, but subsarcolemmal lipid accumulation and insulin resistance are only associated with overweight individuals. Diabetes. 2016;65:840–850. doi: 10.2337/db15-1383.
    1. O’Brien P.D., Hinder L.M., Callaghan B.C., Feldman E.L. Neurological consequences of obesity. Lancet Neurol. 2017;16:465–477. doi: 10.1016/S1474-4422(17)30084-4.
    1. Okereke O.I., Rosner B.A., Kim D.H., Kang J.H., Cook N.R., Manson J.E., Buring J.E., Willett W.C., Grodstein F. Dietary fat types and 4-year cognitive change in community-dwelling older women. Ann. Neurol. 2012;72:124–134. doi: 10.1002/ana.23593.
    1. Pessayre D., Berson A., Fromenty B., Mansouri A. Mitochondria in steatohepatitis. Semin. Liver Dis. 2001;21:57–69. doi: 10.1055/s-2001-12929.
    1. Ference B.A., Ginsberg H.N., Graham I., Ray K.K., Packard C.J., Bruckert E., Hegele R.A., Krauss R.M., Raal F.J., Schunkert H., et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017;38:2459–2472. doi: 10.1093/eurheartj/ehx144.
    1. Pessayre D., Mansouri A., Fromenty B. Nonalcoholic steatosis and steatohepatitis. Mitochondrial dysfunction in steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2002;282:G193–G199. doi: 10.1152/ajpgi.00426.2001.
    1. Matsuzawa-Nagata N., Takamura T., Ando H., Nakamura S., Kurita S., Misu H., Ota T., Yokoyama M., Honda M., Miyamoto K., et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 2008;57:1071–1077. doi: 10.1016/j.metabol.2008.03.010.
    1. Dalvi P.S., Chalmers J.A., Luo V., Han D.-Y.D., Wellhauser L., Liu Y., Tran D.Q., Castel J., Luquet S., Wheeler M.B., et al. High fat induces acute and chronic inflammation in the hypothalamus: Effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons. Int. J. Obes. 2017;41:149–158. doi: 10.1038/ijo.2016.183.
    1. Tapias V., Hu X., Luk K.C., Sanders L.H., Lee V.M., Timothy Greenamyre J. Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production. Cell. Mol. Life Sci. 2017;74:2851–2874. doi: 10.1007/s00018-017-2541-x.
    1. Pistell P.J., Morrison C.D., Gupta S., Knight A.G., Keller J.N., Ingram D.K., Bruce-Keller A.J. Cognitive impairment following high fat diet consumption is associated with brain inflammation. J. Neuroimmunol. 2010;219:25–32. doi: 10.1016/j.jneuroim.2009.11.010.
    1. Ferreira M.R., Alvarez S.M., Illesca P., Giménez M.S., Lombardo Y.B. Dietary Salba (Salvia hispanica L.) ameliorates the adipose tissue dysfunction of dyslipemic insulin-resistant rats through mechanisms involving oxidative stress, inflammatory cytokines and peroxisome proliferator-activated receptor γ. Eur. J. Nutr. 2018;57:83–94. doi: 10.1007/s00394-016-1299-5.
    1. Ana C., Danila D.R., Ana M., Carmen G., Lidia M., Mariano R.-G., Nuria D.O. Inhibition of hippocampal long-term potentiation by high-fat diets: Is it related to an effect of palmitic acid involving glycogen synthase kinase-3? Neuroreport. 2017;28:354–359. doi: 10.1097/WNR.0000000000000774.
    1. McLean F.H., Grant C., Morris A.C., Horgan G.W., Polanski A.J., Allan K., Campbell F.M., Langston R.F., Williams L.M. Rapid and reversible impairment of episodic memory by a high-fat diet in mice. Sci. Rep. 2018;8:11976. doi: 10.1038/s41598-018-30265-4.
    1. Duffy C.M., Hofmeister J.J., Nixon J.P., Butterick T.A. High fat diet increases cognitive decline and neuroinflammation in a model of orexin loss. Neurobiol. Learn. Mem. 2019;157:41–47. doi: 10.1016/j.nlm.2018.11.008.
    1. Woodie L., Blythe S. The differential effects of high-fat and high-fructose diets on physiology and behavior in male rats. Nutr. Neurosci. 2018;21:328–336. doi: 10.1080/1028415X.2017.1287834.
    1. Stranahan A.M., Norman E.D., Lee K., Cutler R.G., Telljohann R.S., Egan J.M., Mattson M.P. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus. 2008;18:1085–1088. doi: 10.1002/hipo.20470.
    1. Greenwood C.E., Winocur G. High-fat diets, insulin resistance and declining cognitive function. Neurobiol. Aging. 2005;26:42–45. doi: 10.1016/j.neurobiolaging.2005.08.017.
    1. Jena P.K., Sheng L., Di Lucente J., Jin L.-W., Maezawa I., Yvonne Wan Y.-J. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB J. 2018;32:2866–2877. doi: 10.1096/fj.201700984RR.
    1. Holloway C.J., Cochlin L.E., Emmanuel Y., Murray A., Codreanu I., Edwards L.M., Szmigielski C., Tyler D.J., Knight N.S., Saxby B.K., et al. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. Am. J. Clin. Nutr. 2011;93:748–755. doi: 10.3945/ajcn.110.002758.
    1. Edwards L.M., Murray A.J., Holloway C.J., Carter E.E., Kemp G.J., Codreanu I., Brooker H., Tyler D.J., Robbins P.A., Clarke K. Short-term consumption of a high-fat diet impairs whole-body efficiency and cognitive function in sedentary men. FASEB J. 2011;25:1088–1096. doi: 10.1096/fj.10-171983.
    1. Mittal K., Katare D.P. Shared links between type 2 diabetes mellitus and Alzheimer’s disease: A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2016;10:S144–S149. doi: 10.1016/j.dsx.2016.01.021.
    1. Bernard N.D., Bunner A.E., Agarwal U. Saturated and trans fats and dementia: A systematic review. Neurobiol. Aging. 2014;35:S65–S73. doi: 10.1016/j.neurobiolaging.2014.02.030.
    1. Solfrizzi V., Colacicco A.M., D’Introno A., Capurso C., Del Parigi A., Capurso S.A., Argentieri G., Capurso A., Panza F. Dietary fatty acids intakes and rate of mild cognitive impairment. The Italian Longitudinal Study on Aging. Exp. Gerontol. 2006;41:619–627. doi: 10.1016/j.exger.2006.03.017.
    1. Cherbuin N., Anstey K.J. The Mediterranean diet is not related to cognitive change in a large prospective investigation: The PATH through life study. Am. J. Geriatr. Psychiatry. 2012;20:635–639. doi: 10.1097/JGP.0b013e31823032a9.
    1. Roberts R.O., Roberts L.A., Geda Y.E., Cha R.H., Pankratz V.S., O’Connor H.M., Knopman D.S., Petersen R.C. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J. Alzheimer’s Dis. 2012;32:329–339. doi: 10.3233/JAD-2012-120862.
    1. De Souza C.T., Araujo E.P., Bordin S., Ashimine R., Zollner R.L., Boschero A.C., Saad M.J., Velloso L.A. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146:4192–4199. doi: 10.1210/en.2004-1520.
    1. Jeon B.T., Jeong E.A., Shin H.J., Lee Y., Lee D.H., Kim H.J., Kang S.S., Cho G.J., Choi W.S., Roh G.S. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes. 2012;61:1444–1454. doi: 10.2337/db11-1498.
    1. Thaler J.P., Yi C.X., Schur E.A., Guyenet S.J., Hwang B.H., Dietrich M.O., Zhao X., Sarruf D.A., Izqur V., Maravilla K.R., et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 2012;122:153–162. doi: 10.1172/JCI59660.
    1. Wang X., Ge A., Cheng M., Guo F., Zhao M., Zhou X., Liu L., Yang N. Increased hypothalamic inflammation associated with the susceptibility to obesity in rats exposed to high-fat diet. Exp. Diabetes Res. 2012;2012 doi: 10.1155/2012/847246.
    1. Andre C., Dinel A.L., Ferreira G., Laye S., Castanon N. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behaviour: Focus on brain indoleamine 2,3-dioxygenase activation. Brain Behav. Immunol. 2014;41:10–21. doi: 10.1016/j.bbi.2014.03.012.
    1. Boitard C., Cavaroc A., Sauvant J., Aubert A., Castanon N., Laye S., Ferreira G. Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav. Immun. 2014;40:9–17. doi: 10.1016/j.bbi.2014.03.005.
    1. Tsai S.-F., Wu H.-T., Chen P.-C., Chen Y.-W., Yu M., Wang T.-F., Wu S.Y., Tzeng S.F., Kuo Y.M. High-fat diet suppresses the astrocytic process arborization and downregulates the glial glutamate transporters in the hippocampus of mice. Brain Res. 2018;1700:66–77. doi: 10.1016/j.brainres.2018.07.017.
    1. Schuster F., Huber G., Stölting I., Wing E.E., Saar K., Hübner N., Banks W.A., Raasch W. Telmisartan prevents diet-induced obesity and preserves leptin transport across the blood-brain barrier in high-fat diet-fed mice. Pflügers Arch. Eur. J. Physiol. 2018;470:1673–1689. doi: 10.1007/s00424-018-2178-0.
    1. Engelhart M.J., Geerlings M.I., Ruitenberg A., Van Swieten J.C., Hofman A., Witteman J.C., Breteler M.M. Diet and risk of dementia: Does fat matter? the Rotterdam Study. Neurology. 2002;59:1915–1921. doi: 10.1212/01.WNL.0000038345.77753.46.
    1. Luchsinger J.A., Tang M.X., Shea S., Mayeux R. Caloric intake and the risk of Alzheimer disease. Arch. Neurol. 2002;59:1258–1263. doi: 10.1001/archneur.59.8.1258.
    1. Swanson D., Block R., Mousa S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012;3:1–7. doi: 10.3945/an.111.000893.
    1. Luchtman D.W., Song C. Cognitive enhancement by omega-3 fatty acids from childhood to old age: Findings from animal and clinical studies. Neuropharmacol. 2013;64:550–565. doi: 10.1016/j.neuropharm.2012.07.019.
    1. Devore E.E., Grodstein F., van Rooij F.J., Hofman A., Rosner B., Stampfer M.J., Witteman J.C., Breteler M.M. Dietary intake of fish and omega-3 fatty acids in relation to long-term dementia risk. Am. J. Clin. Nutr. 2009;90:170–176. doi: 10.3945/ajcn.2008.27037.
    1. Bhat A.H., Dar K.B., Anees S., Zargar M.A., Masood A., Sofi M.A., Ganie S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharm. 2015;74:101–110. doi: 10.1016/j.biopha.2015.07.025.
    1. Swerdlow R.H., Burns J.M., Khan S.M. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim. Biophys. Acta. 2014;1842:1219–1231. doi: 10.1016/j.bbadis.2013.09.010.
    1. Wang C.H., Wu S.B., Wu Y.T., Wei Y.H. Oxidative stress response elicited by mitochondrial dysfunction: Implication in the pathophysiology of aging. Exp. Biol. Med. 2013;238:450–460. doi: 10.1177/1535370213493069.
    1. Guo C.Y., Sun L., Chen X.P., Zhang D.S. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 2013;8:2003–2014. doi: 10.3969/j.issn.1673-5374.2013.21.009.
    1. Unamuno X., Gómez-Ambrosi J., Rodríguez A., Becerril S., Frühbeck G., Catalán V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Investig. 2018;48:e12997. doi: 10.1111/eci.12997.
    1. Danielski L.G., Giustina A.D., Badawy M., Barichello T., Quevedo J., Dal-Pizzol F., Petronilho F. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis. Mol. Neurobiol. 2018;55:1045–1053. doi: 10.1007/s12035-016-0356-7.
    1. Jagan K., Priya C.S., Kalpana K., Vidhya R., Anuradha C.V. Apigenin attenuates hippocampal oxidative events, inflammation and pathological alterations in rats fed high fat, fructose diet. Biomed. Pharm. 2017;89:323–331. doi: 10.1016/j.biopha.2017.01.162.
    1. Feng X., Valdearcos M., Uchida Y., Lutrin D., Maze M., Koliwad S.K. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight. 2017;2:e91229. doi: 10.1172/jci.insight.91229.
    1. Romano A., Koczwara J.B., Gallelli C.A., Vergara D., Di Bonaventura M.V.M., Gaetani S., Giudetti A.M. Fats for thoughts: An update on brain fatty acid metabolism. Int. J. Biochem. Cell Biol. 2017;84:40–45. doi: 10.1016/j.biocel.2016.12.015.
    1. Karmi A., Iozzo P., Viljanen A., Hirvonen J., Fielding B.A., Virtanen K., Oikonen V., Kemppainen J., Viljanen T., Guiducci L., et al. Increased brain fatty acid uptake in metabolic syndrome. Diabetes. 2010;59:2171–2177. doi: 10.2337/db09-0138.
    1. Williams L.M. Hypothalamic dysfunction in obesity. Proc. Nutr. Soc. 2012;71:521–533. doi: 10.1017/S002966511200078X.
    1. Calsolaro V., Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s Dement. 2016;12:719–732. doi: 10.1016/j.jalz.2016.02.010.
    1. Pugazhenthi S., Qin L., Reddy H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863:1037–1045. doi: 10.1016/j.bbadis.2016.04.017.
    1. Lai K.S., Liu C.S., Rau A., Lanctôt K.L., Köhler C.A., Pakosh M., Carvalho A.F., Herrmann N. Peripheral inflammatory markers in Alzheimer’s disease: A systematic review and meta-analysis of 175 studies. J. Neurol. Neurosurg. Psychiatry. 2017;88:876–882. doi: 10.1136/jnnp-2017-316201.
    1. Asghar A., Sheikh N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell. Immunol. 2017;315:18–26. doi: 10.1016/j.cellimm.2017.03.001.
    1. Shu C.J., Benoist C., Mathis D. The immune system’s involvement in obesity-driven type 2 diabetes. Semin. Immunol. 2012;24:436–442. doi: 10.1016/j.smim.2012.12.001.
    1. Schram M.T., Euser S.M., De Craen A.J.M., Witteman J.C., Frölich M., Hofman A., Jolles J., Breteler M.M., Westendorp R.G. Systemic markers of inflammation and cognitive decline in old age. J. Am. Geriatr. Soc. 2007;55:708–716. doi: 10.1111/j.1532-5415.2007.01159.x.
    1. Dziedzic T. Systemic inflammatory markers and risk of dementia. Am. J. Alzheimers Dis Other Demen. 2006;21:258–262. doi: 10.1177/1533317506289260.
    1. Ojo B., Rezaie P., Gabbott P.L., Davies H., Colyer F., Cowley T.R., Lynch M., Stewart M.G. Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain Behav. Immun. 2012;26:778–788. doi: 10.1016/j.bbi.2011.09.013.
    1. Godbout J.P., Chen J., Abraham J., Richwine A.F., Berg B.M., Kelley K.W., Johnson R.W. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 2005;19:1329–1331. doi: 10.1096/fj.05-3776fje.
    1. Wynne A.M., Henry C.J., Huang Y., Cleland A., Godbout J.P. Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav. Immun. 2010;24:1190–1201. doi: 10.1016/j.bbi.2010.05.011.
    1. Villaran R.F., Espinosa-Oliva A.M., Sarmiento M., De Pablos R.M., Arguelles S., Delgado-Cortes M.J., Sobrino V., Van Rooijen N., Venero J.L., Herrera A.J., et al. Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: Potential risk factor in Parkinson’s disease. J. Neurochem. 2010;114:1687–1700. doi: 10.1111/j.1471-4159.2010.06879.x.
    1. Trollor J.N., Smith E., Agars E., Kuan S.A., Baune B.T., Campbell L., Samaras K., Crawford J., Lux O., Kochan N.A., et al. The association between systemic inflammation and cognitive performance in the elderly: The Sydney Memory and Ageing Study. Age. 2012;34:1295–1308. doi: 10.1007/s11357-011-9301-x.
    1. Erion J.R., Wosiski-Kuhn M., Dey A., Hao S., Davis C.L., Pollock N.K., Stranahan A.M. Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. J. Neurosci. 2014;34:2618–2631. doi: 10.1523/JNEUROSCI.4200-13.2014.
    1. Hu J., Feng X., Valdearcos M., Lutrin D., Uchida Y., Koliwad S.K., Maze M. Interleukin-6 is both necessary and sufficient to produce perioperative neurocognitive disorder in mice. Br. J. Anaesth. 2018;120:537–545. doi: 10.1016/j.bja.2017.11.096.
    1. Calvo-Rodríguez M., de la Fuente C., García-Durillo M., García-Rodríguez C., Villalobos C., Núñez L. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons. J. Neuroinflammation. 2017;14:24. doi: 10.1186/s12974-017-0802-0.
    1. Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008;9:46–56. doi: 10.1038/nrn2297.
    1. Miller A.A., Spencer S.J. Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behav. Immun. 2014;42:10–21. doi: 10.1016/j.bbi.2014.04.001.
    1. Hummel K.P., Dickie M.M., Coleman D.L. Diabetes, a new mutation in the mouse. Science. 1966;153:1127–1128. doi: 10.1126/science.153.3740.1127.
    1. Dinel A.L., Andre C., Aubert A., Ferreira G., Laye S., Castanon N. Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS ONE. 2011;6:e24325. doi: 10.1371/journal.pone.0024325.
    1. Reilly S.M., Saltiel A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 2017;13:633–643. doi: 10.1038/nrendo.2017.90.
    1. Odegaard J.I., Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Sci. 2013;339:172–177. doi: 10.1126/science.1230721.
    1. Ouchi N., Parker J.L., Lugus J.J., Walsh K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011;11:85–97. doi: 10.1038/nri2921.
    1. Hermsdorff H.H., Zulet M.A., Puchau B., Martinez J.A. Central adiposity rather than total adiposity measurements are specifically involved in the inflammatory status from healthy young adults. Inflammation. 2011;34:161–170. doi: 10.1007/s10753-010-9219-y.
    1. Nguyen J.C.D., Killcross A.S., Jenkins T.A. Obesity and cognitive decline: Role of inflammation and vascular changes. Front. Neurosci. 2014;8:375. doi: 10.3389/fnins.2014.00375.
    1. Sumarac-Dumanovic M., Stevanovic D., Ljubic A., Jorga J., Simic M., Stamenkovic-Pejkovic D., Starcevic V., Trajkovic V., Micic D. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int. J. Obes. 2009;33:151–156. doi: 10.1038/ijo.2008.216.
    1. Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science. 1993;259:87–91. doi: 10.1126/science.7678183.
    1. Misiak B., Stańczykiewicz B., Kotowicz K., Rybakowski J.K., Samochowiec J., Frydecka D. Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: A systematic review. Schizophr. Res. 2018;192:16–29. doi: 10.1016/j.schres.2017.04.015.
    1. Harrison N.A., Doeller C.F., Voon V., Burgess N., Critchley H.D. Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism. Biol. Psychiatry. 2014;76:585–593. doi: 10.1016/j.biopsych.2014.01.005.
    1. Charlton R.A., Lamar M., Zhang A., Ren X., Ajilore O., Pandey G.N., Kumar A. Associations between pro-inflammatory cytokines, learning, and memory in late-life depression and healthy aging. Int. J. Geriatr. Psychiatry. 2018;33:104–112. doi: 10.1002/gps.4686.
    1. Afonso M.S., Lavrador M.S.F., Koike M.K., Cintra D.E., Ferreira F.S., Nunes V.S., Castilho G., Gioielli L.A., Paula Bombo R., Catanozi S., et al. Dietary interesterified fat enriched with palmitic acid induces atherosclerosis by impairing macrophage cholesterol efflux and eliciting inflammation. J. Nutr. Biochem. 2016;32:91–100. doi: 10.1016/j.jnutbio.2016.01.005.
    1. Nishimura Y., Moriyama M., Kawabe K., Satoh H., Takano K., Azuma Y.-T., Nakamura Y. Lauric acid alleviates neuroinflammatory responses by activated microglia: Involvement of the GPR40-dependent pathway. Neurochem. Res. 2018;43:1723–1735. doi: 10.1007/s11064-018-2587-7.
    1. Almeida-Suhett C.P., Graham A., Chen Y., Deuster P. Behavioral changes in male mice fed a high-fat diet are associated with IL-1β expression in specific brain regions. Physiol. Behav. 2017;169:130–140. doi: 10.1016/j.physbeh.2016.11.016.
    1. Yirmiya R., Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 2011;25:181–213. doi: 10.1016/j.bbi.2010.10.015.
    1. Barrientos R.M., Frank M.G., Hein A.M., Higgins E.A., Watkins L.R., Rudy J.W., Maier S.F. Time course of hippocampal IL-1 beta and memory consolidation impairments in aging rats following peripheral infection. Brain Behav. Immun. 2009;23:46–54. doi: 10.1016/j.bbi.2008.07.002.
    1. Barrientos R.M., Hein A.M., Frank M.G., Watkins L.R., Maier S.F. Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J. Neurosci. 2012;32:14641–14648. doi: 10.1523/JNEUROSCI.2173-12.2012.
    1. Hall J.R., Wiechmann A.R., Johnson L.A., Edwards M., Barber R.C., Winter A.S., Singh M., O’Bryant S.E. Biomarkers of vascular risk, systemic inflammation, and microvascular pathology and neuropsychiatric symptoms in Alzheimer’s disease. J. Alzheimer’s Dis. 2013;35:363–371. doi: 10.3233/JAD-122359.
    1. Viscogliosi G., Andreozzi P., Chiriac I.M., Cipriani E., Servello A., Marigliano B., Ettorre E., Marigliano V. Depressive symptoms in older people with metabolic syndrome: Is there a relationship with inflammation? Int. J. Geriatr. Psychiatry. 2013;28:242–247. doi: 10.1002/gps.3817.
    1. de Sousa Rodrigues M.E., Bekhbat M., Houser M.C., Chang J., Walker D.I., Jones D.P., Oller do Nascimento C.M.P., Barnum C.J., Tansey M.G. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav. Immun. 2017;59:158–172. doi: 10.1016/j.bbi.2016.08.021.
    1. Hotamisligil G.S. Inflammation, metaflammation and immunometabolic disorders. Nat. 2017;542:177–185. doi: 10.1038/nature21363.
    1. Lu P., Gonzales C., Chen Y., Adedoyin A., Hummel M., Kennedy J.D., Whiteside G.T. CNS penetration of small molecules following local inflammation, widespread systemic inflammation or direct injury to the nervous system. Life Sci. 2009;85:450–456. doi: 10.1016/j.lfs.2009.07.009.
    1. Koyama A., O’Brien J., Weuve J., Blacker D., Metti A.L., Yaffe K. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2013;68:433–440. doi: 10.1093/gerona/gls187.
    1. Najam S.S., Zglinicki B., Vinnikov I.A., Konopka W. MicroRNAs in the hypothalamic control of energy homeostasis. Cell Tissue Res. 2019;375:173–177. doi: 10.1007/s00441-018-2876-0.
    1. Petrovich G.D. Lateral hypothalamus as a motivation-cognition interface in the control of feeding behaviour. Front. Syst. Neurosci. 2018;12:14. doi: 10.3389/fnsys.2018.00014.
    1. Reppermund S., Zihl J., Lucae S., Horstmann S., Kloiber S., Holsboer F., Ising M. Persistent cognitive impairment in depression: The role of psychopathology and altered hypothalamic-pituitary-adrenocortical (HPA) system regulation. Biol. Psychiatry. 2007;62:400–406. doi: 10.1016/j.biopsych.2006.09.027.
    1. Young K.D., Siegle G.J., Zotev V., Phillips R., Misaki M., Yuan H., Drevets W.C., Bodurka J. Randomized clinical trial of real-time fMRI amygdala neurofeedback for major depressive disorder: Effects on symptoms and autobiographical memory recall. Am. J. Psychiatry. 2017;174:748–755. doi: 10.1176/appi.ajp.2017.16060637.
    1. Jais A., Brüning J.C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Investig. 2017;127:24–32. doi: 10.1172/JCI88878.
    1. Baufeld C., Osterloh A., Prokop S., Miller K.R., Heppner F.L. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia. Acta Neuropathol. 2016;132:361–375. doi: 10.1007/s00401-016-1595-4.
    1. Chen Z., Trapp B.D. Microglia and neuroprotection. J. Neurochem. 2016;136:10–17. doi: 10.1111/jnc.13062.
    1. Sofroniew M.V., Vinters H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010;119:7–35. doi: 10.1007/s00401-009-0619-8.
    1. Garcia-Caceres C., Yi C.X., Tschop M.H. Hypothalamic astrocytes in obesity. Endocrinol. Metab. Clin. N. Am. 2013;42:57–66. doi: 10.1016/j.ecl.2012.11.003.
    1. Mayo L., Quintana F.J., Weiner H.L. The innate immune system in demyelinating disease. Immunol. Rev. 2012;248:170–187. doi: 10.1111/j.1600-065X.2012.01135.x.
    1. Tucsek Z., Toth P., Sosnowska D., Gautam T., Mitschelen M., Koller A., Szalai G., Sonntag W.E., Ungvari Z., Csiszar A. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: Effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69:1212–1226. doi: 10.1093/gerona/glt177.
    1. Cai Z., Yan Y., Wang Y. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder. Clin. Interv. Aging. 2013;8:1089–1095. doi: 10.2147/CIA.S46536.
    1. Pepping J.K., Freeman L.R., Gupta S., Keller J.N., Bruce-Keller A.J. NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet. Am. J. Physiol. Endocrinol. Metab. 2013;304:E392–E404. doi: 10.1152/ajpendo.00398.2012.
    1. Zhang X., Zhang G., Zhang H., Karin M., Bai H., Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135:61–73. doi: 10.1016/j.cell.2008.07.043.
    1. Milanski M., Degasperi G., Coope A., Morari J., Denis R., Cintra D.E., Tsukumo D.M., Anhe G., Amaral M.E., Takahashi H.K., et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: Implications for the pathogenesis of obesity. J. Neurosci. 2009;29:359–370. doi: 10.1523/JNEUROSCI.2760-08.2009.
    1. Posey K.A., Clegg D.J., Printz R.L., Byun J., Morton G.J., Vivekanandan-Giri A., Pennathur S., Baskin D.G., Heinecke J.W., Woods S.C., et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 2009;296:E1003–E1012. doi: 10.1152/ajpendo.90377.2008.
    1. Lizarbe B., Cherix A., Duarte J.M.N., Cardinaux J.-R., Gruetter R. High-fat diet consumption alters energy metabolism in the mouse hypothalamus. Int. J. Obes. 2019;43:1295–1304. doi: 10.1038/s41366-018-0224-9.
    1. Johnson J.D., O’Connor K.A., Deak T., Stark M., Watkins L.R., Maier S.F. Prior stressor exposure sensitizes LPS-induced cytokine production. Brain Behav. Immun. 2002;16:461–476. doi: 10.1006/brbi.2001.0638.
    1. Wohleb E.S., Powell N.D., Godbout J.P., Sheridan J.F. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J. Neurosci. 2013;33:13820–13833. doi: 10.1523/JNEUROSCI.1671-13.2013.
    1. Wohleb E.S., McKim D.B., Shea D.T., Powell N.D., Tarr A.J., Sheridan J.F., Godbout J.P. Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol. Psychiatry. 2013;75:970–981. doi: 10.1016/j.biopsych.2013.11.029.
    1. Guillemot-Legris O., Muccioli G.G. Obesity-induced neuroinflammation: Beyond the hypothalamus. Trends Neurosci. 2017;40:237–253. doi: 10.1016/j.tins.2017.02.005.
    1. Castrén E., Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol. Dis. 2017;97:119–126. doi: 10.1016/j.nbd.2016.07.010.
    1. Kowiański P., Lietzau G., Czuba E., Waśkow M., Steliga A., Moryś J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 2018;38:579–593. doi: 10.1007/s10571-017-0510-4.
    1. Molteni R., Barnard R.J., Ying Z., Roberts C.K., Gómez-Pinilla F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 2002;112:803–814. doi: 10.1016/S0306-4522(02)00123-9.
    1. Jabri M.-A., Sakly M., Marzouki L., Sebai H. Chamomile (Matricaria recutita L.) decoction extract inhibits in vitro intestinal glucose absorption and attenuates high fat diet-induced lipotoxicity and oxidative stress. Biomed. Pharm. 2017;87:153–159. doi: 10.1016/j.biopha.2016.12.043.
    1. Molteni R., Wu A., Vaynman S., Ying Z., Bernard R.J., Gómez-Pinilla F. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience. 2004;123:429–440. doi: 10.1016/j.neuroscience.2003.09.020.
    1. Mi Y., Qi G., Fan R., Qiao Q., Sun Y., Gao Y., Liu X. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB J. 2017;31:4998–5011. doi: 10.1096/fj.201700400RR.
    1. Beilharz J.E., Maniam J., Morris M.J. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats. Brain Behav. Immun. 2014;37:134–141. doi: 10.1016/j.bbi.2013.11.016.
    1. Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell. Mol. Neurobiol. 2018;38:121–132. doi: 10.1007/s10571-017-0554-5.

Source: PubMed

3
Tilaa