The first case of COVID-19 treated with the complement C3 inhibitor AMY-101

Sara Mastaglio, Annalisa Ruggeri, Antonio M Risitano, Piera Angelillo, Despina Yancopoulou, Dimitrios C Mastellos, Markus Huber-Lang, Simona Piemontese, Andrea Assanelli, Cecilia Garlanda, John D Lambris, Fabio Ciceri, Sara Mastaglio, Annalisa Ruggeri, Antonio M Risitano, Piera Angelillo, Despina Yancopoulou, Dimitrios C Mastellos, Markus Huber-Lang, Simona Piemontese, Andrea Assanelli, Cecilia Garlanda, John D Lambris, Fabio Ciceri

Abstract

Acute respiratory distress syndrome (ARDS) is a devastating clinical manifestation of COVID-19 pneumonia and is mainly based on an immune-driven pathology. Mounting evidence suggests that COVID-19 is fueled by a maladaptive host inflammatory response that involves excessive activation of innate immune pathways. While a "cytokine storm" involving IL-6 and other cytokines has been documented, complement C3 activation has been implicated as an initial effector mechanism that exacerbates lung injury in preclinical models of SARS-CoV infection. C3-targeted intervention may provide broader therapeutic control of complement-mediated inflammatory damage in COVID-19 patients. Herein, we report the clinical course of a patient with severe ARDS due to COVID-19 pneumonia who was safely and successfully treated with the compstatin-based complement C3 inhibitor AMY-101.

Copyright © 2020 Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
A. Chest X-ray at enrollment. The X-ray demonstrates the bilateral infiltration of the lungs leading to the diagnosis of bilateral interstitial pneumonia. B. Chest X-ray on day 19. The X-ray demonstrates a marked improvement of pneumonia with re-expansion of the lungs, bilaterally.
Fig. 2
Fig. 2
Biomarkers of systemic inflammation during AMY-101 treatment. Changes of biomarkers of systemic inflammation during the 14-day treatment period; WBC: white blood cells; ANC: absolute neutrophil count; ALC: absolute lymphocyte count; LDH: lactate de‑hydrogenase; CRP: C-reactive protein.
Fig. 3
Fig. 3
Changes of lung function during the 14-day treatment period, displayed as need of oxygen support; Panel A: Continuous Positive Air-Pressure, measured as hours of C-PAP per 12 h; Panel B: % pf Fraction of Inspired Oxygen in Ventimask.

References

    1. Reis E.S., Mastellos D.C., Yancopoulou D., Risitano A.M., Ricklin D., Lambris J.D. Applying complement therapeutics to rare diseases. Clin. Immunol. 2015;161:225–240.
    1. Gralinski L.E., Sheahan T.P., Morrison T.E., Menachery V.D., Jensen K., Leist S.R., Whitmore A., Heise M.T., Baric R.S. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9 doi: 10.1128/mBio.01753-18.
    1. Risitano A.M., Mastellos D.C., Huber-Lang M., Yancopoulou D., Garlanda C., Ciceri F., Lambris J.D. Complement as a target in COVID-19? Nat. Rev. Immunol. 2020;2020:1–2. doi: 10.1038/s41577-020-0320-7.
    1. Jiang Y., Zhao G., Song N., Li P., Chen Y., Guo Y., Li J., Du L., Jiang S., Guo R., Sun S., Zhou Y. Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV article. Emerg. Microbes Infect. 2018;7 doi: 10.1038/s41426-018-0063-8.
    1. Thompson B.T., Chambers R.C., Liu K.D. Acute respiratory distress syndrome. N. Engl. J. Med. 2017;377:562–572. doi: 10.1056/NEJMra1608077.
    1. Campbell C.M., Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation. 2020 doi: 10.1161/CIRCULATIONAHA.120.047419.
    1. Ciceri F., Beretta L., Scandroglio A.M., Colombo S., Landoni G., Ruggeri A., Peccatori J., D’Angelo A., De Cobelli F., Rovere-Querini P., Tresoldi M., Dagna L., Zangrillo A. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 2020 (accessed April 27, 2020), Ahead of print.
    1. Mastellos D.C., Yancopoulou D., Kokkinos P., Huber-Lang M., Hajishengallis G., Biglarnia A.R., Lupu F., Nilsson B., Risitano A.M., Ricklin D., Lambris J.D. Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. Eur. J. Clin. Investig. 2015;45:423–440.
    1. Lindorfer M.A., Cook E.M., Reis E.S., Ricklin D., Risitano A.M., Lambris J.D., Taylor R.P. Compstatin Cp40 blocks hematin-mediated deposition of C3b fragments on erythrocytes: implications for treatment of malarial anemia. Clin. Immunol. 2016;171:32–35.
    1. Berger N., Alayi T.D., Resuello R.R.G., Tuplano J.V., Reis E.S., Lambris J.D. New Analogs of the complement C3 inhibitor compstatin with increased solubility and improved pharmacokinetic profile. J. Med. Chem. 2018;61:6153–6162. doi: 10.1021/acs.jmedchem.8b00560.
    1. Mastellos D.C., Ricklin D., Lambris J.D. Clinical promise of next-generation complement therapeutics. Nat. Rev. Drug Discov. 2019;18:707–729. doi: 10.1038/s41573-019-0031-6.
    1. Mastellos D.C., Reis E.S., Biglarnia A.-R., Waldman M., Quigg R.J., Huber-Lang M., Seelen M.A., Daha M.R., Lambris J.D. Taming hemodialysis-induced inflammation: are complement C3 inhibitors a viable option? Clin. Immunol. 2019;198:102–105. doi: 10.1016/j.clim.2018.11.010.
    1. Silasi-Mansat R., Zhu H., Georgescu C., Popescu N., Keshari R.S., Peer G., Lupu C., Taylor F.B., Pereira H.A., Kinasewitz G., Lambris J.D., Lupu F. Complement inhibition decreases early fibrogenic events in the lung of septic baboons. J. Cell. Mol. Med. 2015;19:2549–2563. doi: 10.1111/jcmm.12667.
    1. Van Griensven M., Ricklin D., Denk S., Halbgebauer R., Braun C.K., Schultze A., Hönes F., Koutsogiannaki S., Primikyri A., Reis E., Messerer D., Hafner S., Radermacher P., Biglarnia A.R., Resuello R.R.G., Tuplano J.V., Mayer B., Nilsson K., Nilsson B., Lambris J.D., Huber-Lang M. Protective effects of the complement inhibitor compstatin CP40 in hemorrhagic shock. Shock. 2019;51:78–87. doi: 10.1097/SHK.0000000000001127.
    1. Zimmerman J.L., Dellinger R.P., Straube R.C., Levin J.L. Phase I trial of the recombinant soluble complement receptor 1 in acute lung injury and acute respiratory distress syndrome. Crit. Care Med. 2000;28:3149–3154. doi: 10.1097/00003246-200009000-00004.
    1. Reis E.S., Berger N., Wang X., Koutsogiannaki S., Doot R.K., Gumas J.T., Foukas P.G., Resuello R.R.G., Tuplano J.V., Kukis D., Tarantal A.F., Young A.J., Kajikawa T., Soulika A.M., Mastellos D.C., Yancopoulou D., Biglarnia A.-R., Huber-Lang M., Hajishengallis G., Nilsson B., Lambris J.D. Safety profile after prolonged C3 inhibition. Clin. Immunol. 2018;197:96–106. doi: 10.1016/j.clim.2018.09.004.
    1. Hajishengallis G., Kajikawa T., Hajishengallis E., Maekawa T., Reis E.S., Mastellos D.C., Yancopoulou D., Hasturk H., Lambris J.D. Complement-dependent mechanisms and interventions in periodontal disease. Front. Immunol. 2019;10:406. doi: 10.3389/fimmu.2019.00406.
    1. Magro C., Mulvey J.J., Berlin D., Nuovo G., Salvatore S., Harp J., Baxter-Stoltzfus A., Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 2020 doi: 10.1016/j.trsl.2020.04.007.
    1. Gao T., Hu M., Zhang X., Li H., Zhu L., Liu H., Dong Q., Zhang Z., Wang Z., Hu Y., Fu Y., Jin Y., Li K., Zhao S., Xiao Y., Luo S., Li L., Zhao L., Liu J., Zhao H., Liu Y., Yang W., Peng J., Chen X., Li P., Liu Y., Xie Y., Song J., Zhang L., Ma Q., Bian X., Chen W., Liu X., Mao Q., Cao C. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. MedRxiv. 2020 doi: 10.1101/2020.03.29.20041962.

Source: PubMed

3
Tilaa