Collateral circulation: past and present

Wolfgang Schaper, Wolfgang Schaper

Abstract

Following an arterial occlusion outward remodeling of pre-existent inter-connecting arterioles occurs by proliferation of vascular smooth muscle and endothelial cells. This is initiated by deformation of the endothelial cells through increased pulsatile fluid shear stress (FSS) caused by the steep pressure gradient between the high pre-occlusive and the very low post-occlusive pressure regions that are interconnected by collateral vessels. Shear stress leads to the activation and expression of all NOS isoforms and NO production, followed by endothelial VEGF secretion, which induces MCP-1 synthesis in endothelium and in the smooth muscle of the media. This leads to attraction and activation of monocytes and T-cells into the adventitial space (peripheral collateral vessels) or attachment of these cells to the endothelium (coronary collaterals). Mononuclear cells produce proteases and growth factors to digest the extra-cellular scaffold and allow motility and provide space for the new cells. They also produce NO from iNOS, which is essential for arteriogenesis. The bulk of new tissue production is carried by the smooth muscles of the media, which transform their phenotype from a contractile into a synthetic and proliferative one. Important roles are played by actin binding proteins like ABRA, cofilin, and thymosin beta 4 which determine actin polymerization and maturation. Integrins and connexins are markedly up-regulated. A key role in this concerted action which leads to a 2-to-20 fold increase in vascular diameter, depending on species size (mouse versus human) are the transcription factors AP-1, egr-1, carp, ets, by the Rho pathway and by the Mitogen Activated Kinases ERK-1 and -2. In spite of the enormous increase in tissue mass (up to 50-fold) the degree of functional restoration of blood flow capacity is incomplete and ends at 30% of maximal conductance (coronary) and 40% in the vascular periphery. The process of arteriogenesis can be drastically stimulated by increases in FSS (arterio-venous fistulas) and can be completely blocked by inhibition of NO production, by pharmacological blockade of VEGF-A and by the inhibition of the Rho-pathway. Pharmacological stimulation of arteriogenesis, important for the treatment of arterial occlusive diseases, seems feasible with NO donors.

Figures

Fig. 1
Fig. 1
Network analysis of differentially expressed proteins (red symbols) involved in arteriogenesis. We performed a literature scan (Pathway Studio) in order to retrieve an extract of regulatory and interaction pathways. Different ligands and receptors act in concert leading to an activation of a variety of transcription factors and signalling pathways via the central players calcium and NO. Bold arrows indicate a fluid shear stress activated new pathway, which resulted from the molecular investigation of the shunt model. (FSS fluid shear stress, MCP-1 monocyte chemo-attractant protein, Dll1 delta-like1, JAG1 jagged1, VEGF vascular endothelial growth factor, FN1 fibronectin, Trpv4 transient receptor potential cation channel, subfamily V, member 4, NOS1 neuronal nitric oxide synthase, NOS2A inducible nitric oxide synthase, NOS3 endothelial nitric oxide synthase, ITGA5: αVβ3 Integrin, EFNB2 Ephrin B2, NO nitric oxide, KLF2 Krueppel-like factor2, SRF serum response factor, EGR1 early growth response1, RHOA ras homolog gene family, member A, CFL1 cofilin1, Abra actin binding Rho activator, Dream DRE antagonist modulator, TMSB4X thymosinβ4, Dstn destrin)

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17544026', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17544026/'}]}
    2. Ahanchi SS, Tsihlis ND, Kibbe MR (2007) The role of nitric oxide in the pathophysiology of intimal hyperplasia. J Vasc Surg 45:64–73
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8766856', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8766856/'}]}
    2. Arras M, Hoche A, Bohle R, Eckert P, Riedel W, Schaper J (1996) Tumor necrosis factor-alpha in macrophages of heart, liver, kidney, and in the pituitary gland. Cell Tissue Res 285:39–49
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC508538', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc508538/'}, {'type': 'PubMed', 'value': '9421464', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9421464/'}]}
    2. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101:40–50
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9487522', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9487522/'}]}
    2. Arras M, Mollnau H, Strasser R, Wenz R, Ito WD, Schaper J, Schaper W (1998) The delivery of angiogenic factors to the heart by microsphere therapy. Nat Biotechnol 16:159–162
    1. None
    2. Baroldi G, Scomazzoni G (1967) Coronary circulation in the normal and the pathological heart. Office of the Surgeon General, Department of the Army. Washington, DC
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '2293307', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/2293307/'}]}
    2. Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77–165
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9859738', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9859738/'}]}
    2. Baumgartner I, Isner JM (1998) Stimulation of peripheral angiogenesis by vascular endothelial growth factor (VEGF). Vasa 27:201–206
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9124448', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9124448/'}]}
    2. Ben Driss A, Benessiano J, Poitevin P, Levy BI, Michel JB (1997) Arterial expansive remodeling induced by high flow rates. Am J Physiol 272:H851–H858
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16684892', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16684892/'}]}
    2. Bergmann CE, Hoefer IE, Meder B, Roth H, van Royen N, Breit SM, Jost MM, Aharinejad S, Hartmann S, Buschmann IR (2006) Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice. J Leukoc Biol 80:59–65
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '14499858', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14499858/'}]}
    2. Boengler K, Pipp F, Fernandez B, Ziegelhoeffer T, Schaper W, Deindl E (2003) Arteriogenesis is associated with an induction of the cardiac ankyrin repeat protein (carp). Cardiovasc Res 59:573–581
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '5312802', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/5312802/'}]}
    2. Borgers M, Schaper J, Schaper W (1970) Acute vascular lesions in developing coronary collaterals. Virchows Arch A Pathol Pathol Anat 351:1–11
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17644565', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17644565/'}]}
    2. Bouallegue A, Daou GB, Srivastava AK (2007) Nitric oxide attenuates endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 in vascular smooth muscle cells by a cGMP-dependent pathway. Am J Physiol Heart Circ Physiol 293:H2072–H2079
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC386686', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc386686/'}, {'type': 'PubMed', 'value': '3532107', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/3532107/'}]}
    2. Burgess WH, Mehlman T, Marshak DR, Fraser BA, Maciag T (1986) Structural evidence that endothelial cell growth factor beta is the precursor of both endothelial cell growth factor alpha and acidic fibroblast growth factor. Proc Natl Acad Sci USA 83:7216–7220
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9588870', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9588870/'}]}
    2. Busse R, Fleming I (1998) Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors. J Vasc Res 35:73–84
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9762851', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9762851/'}]}
    2. Busse R, Fleming I (1998) Regulation of NO synthesis in endothelial cells. Kidney Blood Press Res 21:264–266
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC2289675', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2289675/'}, {'type': 'PubMed', 'value': '1383237', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/1383237/'}]}
    2. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L, Coffer A, Comoglio PM (1992) Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119:629–641
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11463726', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11463726/'}]}
    2. Buus CL, Pourageaud F, Fazzi GE, Janssen G, Mulvany MJ, De Mey JG (2001) Smooth muscle cell changes during flow-related remodeling of rat mesenteric resistance arteries. Circ Res 89:180–186
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15532705', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15532705/'}]}
    2. Cai WJ, Kocsis E, Scholz D, Luo X, Schaper W, Schaper J (2004) Presence of Cx37 and lack of desmin in smooth muscle cells are early markers for arteriogenesis. Mol Cell Biochem 262:17–23
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11343418', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11343418/'}]}
    2. Cai WJ, Koltai S, Kocsis E, Scholz D, Schaper W, Schaper J (2001) Connexin37, not Cx40 and Cx43, is induced in vascular smooth muscle cells during coronary arteriogenesis. J Mol Cell Cardiol 33:957–967
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10742145', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10742145/'}]}
    2. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8602241', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8602241/'}]}
    2. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439
    1. Chen G, Quian HS, Liu P, Brooks A, Rubanyi G, Kauser K (2006) iNOS-derived NO substitutes for endothelial NO in tumor growth in the absence of eNOS expression. Nitric Oxide 4:16–20
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17043168', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17043168/'}]}
    2. Chittenden TW, Sherman JA, Xiong F, Hall AE, Lanahan AA, Taylor JM, Duan H, Pearlman JD, Moore JH, Schwartz SM, Simons M (2006) Transcriptional profiling in coronary artery disease: indications for novel markers of coronary collateralization. Circulation 114:1811–1820
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16580653', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16580653/'}]}
    2. Dao HH, Bouvet C, Moreau S, Beaucage P, Lariviere R, Servant MJ, de Champlain J, Moreau P (2006) Endothelin is a dose-dependent trophic factor and a mitogen in small arteries in vivo. Cardiovasc Res 71:61–68
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '4726844', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/4726844/'}]}
    2. De Brabander M, Schaper W, Verheyen F (1973) Regenerative changes in the porcine heart after gradual and chronic coronary artery occlusion. Beitr Pathol 149:170–185
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12524226', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12524226/'}]}
    2. de Waard V, van Achterberg TA, Beauchamp NJ, Pannekoek H, de Vries CJ (2003) Cardiac ankyrin repeat protein (CARP) expression in human and murine atherosclerotic lesions: activin induces CARP in smooth muscle cells. Arterioscler Thromb Vasc Biol 23:64–68
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17576142', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17576142/'}]}
    2. Dedkov EI, Thomas MT, Sonka M, Yang F, Chittenden TW, Rhodes JM, Simons M, Ritman EL, Tomanek RJ (2007) Synectin/syndecan-4 regulate coronary arteriolar growth during development. Dev Dyn 236:2004–2010
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15226297', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15226297/'}]}
    2. Deepa SS, Yamada S, Zako M, Goldberger O, Sugahara K (2004) Chondroitin sulfate chains on syndecan-1 and syndecan-4 from normal murine mammary gland epithelial cells are structurally and functionally distinct and cooperate with heparan sulfate chains to bind growth factors: a novel function to control binding of midkine, pleiotrophin, and basic fibroblast growth factor. J Biol Chem 279:37368–37376
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '18000596', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18000596/'}]}
    2. Deindl E (2007) Arteriogenesis: a focus on signal transduction cascades and transcription factors. Thromb Haemost 98:940–943
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12600883', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12600883/'}]}
    2. Deindl E, Hoefer IE, Fernandez B, Barancik M, Heil M, Strniskova M, Schaper W (2003) Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis. Circ Res 92:561–568
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12176889', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12176889/'}]}
    2. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698
    1. Demicheva E, Hecker M, Korff T (2008) Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis. Circ Res (in press)
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC15911', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc15911/'}, {'type': 'PubMed', 'value': '10077653', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10077653/'}]}
    2. DePaola N, Davies PF, Pritchard WF, Jr., Florez L, Harbeck N, Polacek DC (1999) Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci USA 96:3154–3159
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC2682334', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2682334/'}, {'type': 'PubMed', 'value': '17466957', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17466957/'}]}
    2. Dudzinski DM, Michel T (2007) Life history of eNOS: partners and pathways. Cardiovasc Res 75:247–260
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16931799', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16931799/'}]}
    2. Eitenmuller I, Volger O, Kluge A, Troidl K, Barancik M, Cai WJ, Heil M, Pipp F, Fischer S, Horrevoets AJ, Schmitz-Rixen T, Schaper W (2006) The range of adaptation by collateral vessels after femoral artery occlusion. Circ Res 99:656–662
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '5551139', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/5551139/'}]}
    2. Elliot EC, Bloor CM, Jones EL, Mitchell WJ, Gregg DE (1971) Effect of controlled coronary occlusion on collateral circulation in conscious dogs. Am J Physiol 220:857–861
    1. None
    2. Fernandez B, Broich K (2004) Cell–cell and cell-matrix interactions. In: Schaper W, Schaper J (ed) Arteriogenesis. Kluwer Academic, Boston
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10926871', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10926871/'}]}
    2. Fernandez B, Buehler A, Wolfram S, Kostin S, Espanion G, Franz WM, Niemann H, Doevendans PA, Schaper W, Zimmermann R (2000) Transgenic myocardial overexpression of fibroblast growth factor-1 increases coronary artery density and branching. Circ Res 87:207–213
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8602242', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8602242/'}]}
    2. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17244683', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17244683/'}]}
    2. Fledderus JO, van Thienen JV, Boon RA, Dekker RJ, Rohlena J, Volger OL, Bijnens AP, Daemen MJ, Kuiper J, van Berkel TJ, Pannekoek H, Horrevoets AJ (2007) Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood 109:4249–4257
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7491498', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7491498/'}]}
    2. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500–1502
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC1768107', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1768107/'}, {'type': 'PubMed', 'value': '14966033', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14966033/'}]}
    2. Fujita M, Tambara K (2004) Recent insights into human coronary collateral development. Heart 90:246–250
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7883651', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7883651/'}]}
    2. Fujita M, Yamanishi K, Araie E, Sasayama S, McKown DP, Franklin D (1994) Determinants of collateral development in a canine model with repeated coronary occlusion. Heart Vessels 9:292–299
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC1018078', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1018078/'}, {'type': 'PubMed', 'value': '14106121', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14106121/'}]}
    2. Fulton W (1964) Anastomotic enlargement and ischemic myocardial damage. Br Heart J 26:1–15
    1. Fulton W (1969) The morphology of coronary arterial anastomoses in health and disease and their influence on ischaemic myocardial damage. Acta Cardiol 12:38–67
    1. None
    2. Fulton WFM (1965) The coronary arteries. Charles C Thomas Springfield, Illinois
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '14103801', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14103801/'}]}
    2. Fulton WFM (1964) The time factor in the enlargement of anastomoses in coronary artery disease. Scot Med J 9:18–23
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8616711', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8616711/'}]}
    2. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH, Mathieu-Costello O, Hammond HK (1996) Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2:534–539
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7534769', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7534769/'}]}
    2. Girard PR, Nerem RM (1995) Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J Cell Physiol 163:179–193
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17544375', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17544375/'}]}
    2. Gluzman Z, Koren B, Preis M, Cohen T, Tsaba A, Cosset FL, Shofti R, Lewis BS, Virmani R, Flugelman MY (2007) Endothelial cells are activated by angiopoeitin-1 gene transfer and produce coordinated sprouting in vitro and arteriogenesis in vivo. Biochem Biophys Res Commun 359:263–268
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC2517163', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2517163/'}, {'type': 'PubMed', 'value': '17656667', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17656667/'}]}
    2. Gray C, Packha, IM, Wurmser F, Eastley N, Hellewell P, Ingham P, Crossman D, Chico T (2007) Ischemia is not required for arteriogenesis in zebrafish embryos. Arterioscler Thromb Vasc Biol 10:2135–2141
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '4608623', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/4608623/'}]}
    2. Gregg DE (1974) The natural history of coronary collateral development. Circ Res 35:335–344
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11180113', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11180113/'}]}
    2. Grimshaw MJ, Balkwill FR (2001) Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation—a potential mechanism. Eur J Immunol 31:480–489
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8566750', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8566750/'}]}
    2. Guo L, Degenstein L, Fuchs E (1996) Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 10:165–175
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9288132', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9288132/'}]}
    2. Guzman RJ, Abe K, Zarins CK (1997) Flow-induced arterial enlargement is inhibited by suppression of nitric oxide synthase activity in vivo. Surgery 122:273–279; discussion 279–280
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8769773', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8769773/'}]}
    2. Hacking WJ, VanBavel E, Spaan JA (1996) Shear stress is not sufficient to control growth of vascular networks: a model study. Am J Physiol 270:H364–H375
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11087242', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11087242/'}]}
    2. Haug C, Schmid-Kotsas A, Zorn U, Bachem MG, Schuett S, Gruenert A, Rozdzinski E (2000) Hepatocyte growth factor is upregulated by low-density lipoproteins and inhibits endothelin-1 release. Am J Physiol Heart Circ Physiol 279:H2865–H2871
    1. None
    2. Heil M, Grimm S, Martin S, Zolk O, Schaper W, Zimmermann R (2007) Adenoviral transfer of the cardiac ankyrin repeat protein/ankyrin repeat proteindomain 1/CARP/ANKRD1) gene enhances arteriogenesis in an ischemic hindlimb model. Clin Res Cardiol (Abstract) 96(Suppl 1):P490
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12388258', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12388258/'}]}
    2. Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, Schaper W (2002) Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 283:H2411–H2419
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '14963007', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14963007/'}]}
    2. Heil M, Ziegelhoeffer T, Wagner S, Fernandez B, Helisch A, Martin S, Tribulova S, Kuziel WA, Bachmann G, Schaper W (2004) Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ Res 94:671–677
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC1162684', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1162684/'}, {'type': 'PubMed', 'value': '7305965', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7305965/'}]}
    2. Heldin CH, Westermark B, Wasteson A (1981) Platelet-derived growth factor: isolation by a large-scale procedure and analysis of subunit composition. Biochem J 193:907–913
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16397137', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16397137/'}]}
    2. Helisch A, Wagner S, Khan N, Drinane M, Wolfram S, Heil M, Ziegelhoeffer T, Brandt U, Pearlman JD, Swartz HM, Schaper W (2006) Impact of mouse strain differences in innate hindlimb collateral vasculature. Arterioscler Thromb Vasc Biol 26:520–526
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '14965373', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14965373/'}]}
    2. Herold J, Pipp F, Fernandez B, Xing Z, Heil M, Tillmanns H, Braun-Dullaeus RC (2004) Transplantation of monocytes: a novel strategy for in vivo augmentation of collateral vessel growth. Hum Gene Ther 15:1–12
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12384480', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12384480/'}]}
    2. Herzog S, Sager H, Khmelevski E, Deylig A, Ito WD (2002) Collateral arteries grow from preexisting anastomoses in the rat hindlimb. Am J Physiol Heart Circ Physiol 283:H2012–H2020
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '3802450', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/3802450/'}]}
    2. Heusch G, Guth BD, Seitelberger R, Ross J, Jr (1987) Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary vasodilator reserve by nifedipine. Circulation 75:482–490
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15563526', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15563526/'}]}
    2. Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288:H984–H999
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '18297727', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18297727/'}]}
    2. Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BC, Bax WH, Van der Laarse A, Deruiter MC, Horrevoets AJ, Poelmann RE (2008) Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 237:725–735
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11940540', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11940540/'}]}
    2. Hoefer IE, van Royen N, Rectenwald JE, Bray EJ, Abouhamze Z, Moldawer LL, Voskuil M, Piek JJ, Buschmann IR, Ozaki CK (2002) Direct evidence for tumor necrosis factor-alpha signaling in arteriogenesis. Circulation 105:1639–1641
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15059933', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15059933/'}]}
    2. Hoefer IE, van Royen N, Rectenwald JE, Deindl E, Hua J, Jost M, Grundmann S, Voskuil M, Ozaki CK, Piek JJ, Buschmann IR (2004) Arteriogenesis proceeds via ICAM-1/mac-1- mediated mechanisms. Circ Res 94:1179–1185
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '18295111', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18295111/'}]}
    2. Huang J, Lin SC, Nadershahi A, Watts SW, Sarkar R (2008) Role of redox signaling and poly (adenosine diphosphate-ribose) polymerase activation in vascular smooth muscle cell growth inhibition by nitric oxide and peroxynitrite. J Vasc Surg 47:599–607
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15191702', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15191702/'}]}
    2. Ignarro LJ, Napoli C (2004) Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Atheroscler Rep 6:281–287
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12433832', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12433832/'}]}
    2. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91:877–887
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12615960', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12615960/'}]}
    2. Ingber DE (2003) Tensegrity I: cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12640025', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12640025/'}]}
    2. Ingber DE (2003) Tensegrity II: how structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC2570054', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2570054/'}, {'type': 'PubMed', 'value': '18406455', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18406455/'}]}
    2. Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97:163–179
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11385475', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11385475/'}]}
    2. Isner JM (2001) Still more debate over VEGF. Nat Med 7:639–641
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9321814', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9321814/'}]}
    2. Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W (1997) Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol 273:H1255–H1265
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9168785', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9168785/'}]}
    2. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W (1997) Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res 80:829–837
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '13628477', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/13628477/'}]}
    2. Kadatz R (1959) Pharmacological properties of a new coronary dilator substance 2, 6-bis(diethanolamino)-4, 8-dipiperidino-pyrimido[5,4-d]pyrimidine. Arzneimittelforschung 9:39–45
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC16255', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc16255/'}, {'type': 'PubMed', 'value': '10725398', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10725398/'}]}
    2. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97:3422–3427
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7622446', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7622446/'}]}
    2. Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12756191', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12756191/'}]}
    2. Koerselman J, van der Graaf Y, de Jaegere PP, Grobbee DE (2003) Coronary collaterals: an important and underexposed aspect of coronary artery disease. Circulation 107:2507–2511
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17967972', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17967972/'}]}
    2. Korff T, Aufgebauer K, Hecker M (2007) Cyclic stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-beta1 response. Circulation 116:2288–2297
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '18445690', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18445690/'}]}
    2. Korff T, Braun J, Pfaff D, Augustin HG, Hecker M (2008) Role of ephrinB2 expression in endothelial cells during arteriogenesis: impact on smooth muscle cell migration and monocyte recruitment. Blood 112:73–81
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7681126', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7681126/'}]}
    2. Langille BL (1993) Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J Cardiovasc Pharmacol 21(Suppl 1):S11–S17
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10679512', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10679512/'}]}
    2. Lauth M, Berger MM, Cattaruzza M, Hecker M (2000) Elevated perfusion pressure upregulates endothelin-1 and endothelin B receptor expression in the rabbit carotid artery. Hypertension 35:648–654
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7805195', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7805195/'}]}
    2. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayagam S, Hunsberger S, Robison WG, Jr., Stiber JA, Correa R, Epstein SE, et al (1995) Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 91:145–153
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15668343', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15668343/'}]}
    2. Lehoux S, Esposito B, Merval R, Tedgui A (2005) Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation 111:643–649
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17234965', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17234965/'}]}
    2. Limbourg A, Ploom M, Elligsen D, Sorensen I, Ziegelhoeffer T, Gossler A, Drexler H, Limbourg FP (2007) Notch ligand delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100:363–371
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15471974', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15471974/'}]}
    2. Lloyd PG, Prior BM, Li H, Yang HT, Terjung RL (2005) VEGF receptor antagonism blocks arteriogenesis, but only partially inhibits angiogenesis, in skeletal muscle of exercise-trained rats. Am J Physiol Heart Circ Physiol 288:H759–H768
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11009554', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11009554/'}]}
    2. Majesky MW (2000) Novel genes for mitogen-independent smooth muscle replication. Circ Res 87:532–534
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17258181', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17258181/'}]}
    2. Martin C, Schulz R, Post H, Boengler K, Kelm M, Kleinbongard P, Gres P, Skyschally A, Konietzka I, Heusch G (2007) Microdialysis-based analysis of interstitial NO in situ: NO synthase-independent NO formation during myocardial ischemia. Cardiovasc Res 74:46–55
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11120701', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11120701/'}]}
    2. Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM (2000) Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation 102:3098–3103
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17556651', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17556651/'}]}
    2. Mees B, Wagner S, Ninci E, Tribulova S, Martin S, van Haperen R, Kostin S, Heil M, de Crom R, Schaper W (2007) Endothelial nitric oxide synthase activity is essential for vasodilation during blood flow recovery but not for arteriogenesis. Arterioscler Thromb Vasc Biol 27:1926–1933
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16623825', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16623825/'}]}
    2. Meini A, Garcia JB, Pessina GP, Aldinucci C, Frosini M, Palmi M (2006) Role of intracellular Ca2+ and calmodulin/MAP kinase kinase/extracellular signal-regulated protein kinase signalling pathway in the mitogenic and antimitogenic effect of nitric oxide in glia- and neurone-derived cell lines. Eur J Neurosci 23:1690–1700
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15718494', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15718494/'}]}
    2. Miyagi M, Miwa Y, Takahashi-Yanaga F, Morimoto S, Sasaguri T (2005) Activator protein-1 mediates shear stress-induced prostaglandin d synthase gene expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 25:970–975
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12965087', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12965087/'}]}
    2. Moll W (2003) Structure adaptation and blood flow control in the uterine arterial system after hemochorial placentation. Eur J Obstet Gynecol Reprod Biol 110(Suppl 1):S19–S27
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10872843', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10872843/'}]}
    2. Morla AO, Mogford JE (2000) Control of smooth muscle cell proliferation and phenotype by integrin signaling through focal adhesion kinase. Biochem Biophys Res Commun 272:298–302
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15466886', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15466886/'}]}
    2. Muramatsu H, Zou P, Suzuki H, Oda Y, Chen GY, Sakaguchi N, Sakuma S, Maeda N, Noda M, Takada Y, Muramatsu T (2004) alpha4beta1- and alpha6beta1-integrins are functional receptors for midkine, a heparin-binding growth factor. J Cell Sci 117:5405–5415
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17679999', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17679999/'}]}
    2. Murry CE (2007) Cardiac aid to the injured but not the elderly? Nat Med 13:901–902
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC3071982', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3071982/'}, {'type': 'PubMed', 'value': '18285569', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18285569/'}]}
    2. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7091342', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7091342/'}]}
    2. Pasyk S, Schaper W, Schaper J, Pasyk K, Miskiewicz G, Steinseifer B (1982) DNA synthesis in coronary collaterals after coronary artery occlusion in conscious dog. Am J Physiol 242:H1031–H1037
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC2174838', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2174838/'}, {'type': 'PubMed', 'value': '18045549', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18045549/'}]}
    2. Pearce CG, Najjar SF, Kapadia MR, Murar J, Eng J, Lyle B, Aalami OO, Jiang Q, Hrabie JA, Saavedra JE, Keefer LK, Kibbe MR (2008) Beneficial effect of a short-acting NO donor for the prevention of neointimal hyperplasia. Free Radic Biol Med 44:73–81
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9236424', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9236424/'}]}
    2. Piek JJ, van Liebergen RA, Koch KT, de Winter RJ, Peters RJ, David GK (1997) Pharmacological modulation of the human collateral vascular resistance in acute and chronic coronary occlusion assessed by intracoronary blood flow velocity analysis in an angioplasty model. Circulation 96:106–115
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8462157', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8462157/'}]}
    2. Pijls N, van Son J, Kirkeeide R, De Bruyne R, Gould K (1993) Experimental basis of determining maximum coronary, myocardial and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87:1354–1367
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15242864', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15242864/'}]}
    2. Pipp F, Boehm S, Cai WJ, Adili F, Ziegler B, Karanovic G, Ritter R, Balzer J, Scheler C, Schaper W, Schmitz-Rixen T (2004) Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler Thromb Vasc Biol 24:1664–1668
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12600898', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12600898/'}]}
    2. Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Golomb G, Carmeliet P, Schaper W, Clauss M (2003) VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 92:378–385
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '18316496', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18316496/'}]}
    2. Poelmann RE, Van der Heiden K, Gittenberger-de Groot A, Hierck BP (2008) Deciphering the endothelial shear stress sensor. Circulation 117:1124–1126
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '3080370', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/3080370/'}]}
    2. Pohl U, Holtz J, Busse R, Bassenge E (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8:37–44
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9546378', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9546378/'}]}
    2. Popp R, Fleming I, Busse R (1998) Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: a modulator of arterial compliance. Circ Res 82:696–703
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17226792', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17226792/'}]}
    2. Pyriochou A, Zhou Z, Koika V, Petrou C, Cordopatis P, Sessa WC, Papapetropoulos A (2007) The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway. J Cell Physiol 211:197–204
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '2714282', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/2714282/'}]}
    2. Quinkler W, Maasberg M, Bernotat-Danielowski S, Luthe N, Sharma HS, Schaper W (1989) Isolation of heparin-binding growth factors from bovine, porcine and canine hearts. Eur J Biochem 181:67–73
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7615157', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7615157/'}]}
    2. Resnick N, Gimbrone MAJ (1995) Hemodynamic forces are complex regulators of endothelial gene expression. Faseb J 9:874–882
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12732261', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12732261/'}]}
    2. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81:177–199
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16399305', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16399305/'}]}
    2. Sarateanu CS, Retuerto MA, Beckmann JT, McGregor L, Carbray J, Patejunas G, Nayak L, Milbrandt J, Rosengart TK (2006) An Egr-1 master switch for arteriogenesis: studies in Egr-1 homozygous negative and wild-type animals. J Thorac Cardiovasc Surg 131:138–145
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC2615563', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2615563/'}, {'type': 'PubMed', 'value': '18599867', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18599867/'}]}
    2. Sawada N, Salomone S, Kim HH, Kwiatkowski DJ, Liao JK (2008) Regulation of endothelial nitric oxide synthase and postnatal angiogenesis by Rac1. Circ Res 103:360–368
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '5033728', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/5033728/'}]}
    2. Schaper J, Borgers M, Schaper W (1972) Ultrastructure of ischemia-induced changes in the precapillary anastomotic network of the heart. Am J Cardiol 29:851–859
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '4204209', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/4204209/'}]}
    2. Schaper J, Borgers M, Xhonneux R, Schaper W (1973) Cortisone influences developing collaterals. 1: a morphologic study. Virchows Arch A Pathol Pathol Anat 361:263–282
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '821235', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/821235/'}]}
    2. Schaper J, Konig R, Franz D, Schaper W (1976) The endothelial surface of growing coronary collateral arteries: intimal margination and diapedesis of monocytes. A combined SEM and TEM study. Virchows Arch A Pathol Anat Histol 370:193–205
    1. None
    2. Schaper W (1993) Collateral circulation, heart, brain, kidney, limbs. Kluwer Academic, Boston
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '6057764', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/6057764/'}]}
    2. Schaper W (1967) Tangential wall stress as a molding force in the development of collateral vessels in the canine heart. Experientia 23:595–596
    1. None
    2. Schaper W (1971) The collateral circulation of the heart. Elsevier North Holland Publishing Company, Amsterdam
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '5087328', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/5087328/'}]}
    2. Schaper W, DeBrabander M, Lewi P (1971) DNA-synthesis and mitoses in coronary collateral vessels of the dog. Circ Res 28:671–679
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '954167', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/954167/'}]}
    2. Schaper W, Flameng W, Winkler B, Wuesten B, Türschmann W, Neugebauer G, Carl M, Pasyk S (1976) Quantification of collateral resistance in acute and chronic experimental coronary occlusion in the dog. Circ Res 39:371–377
    1. None
    2. Schaper W, Schaper J (2004) Arteriogenesis. Kluwer Acadenic Publishers, Boston
    1. None
    2. Schaper W, Winkler B (1978) Determinants of peripheral coronary pressure in coronary occlusion. In: Maseri A, Lesch M, Klassen GA (eds) Primary and secondary angina pectoris. Grune and Stratton, New York, pp 351–361
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '5944369', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/5944369/'}]}
    2. Schaper WK, Xhoneux R, Jageneau AH, Janssen PA (1966) The cardiovascular pharmacology of lidoflazine, a long-acting coronary vasodilator. J Pharmacol Exp Ther 152:265–274
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8646761', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8646761/'}]}
    2. Scholz D, Devaux B, Hirche A, Potzsch B, Kropp B, Schaper W, Schaper J (1996) Expression of adhesion molecules is specific and time-dependent in cytokine-stimulated endothelial cells in culture. Cell Tissue Res 284:415–423
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10782885', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10782885/'}]}
    2. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M, Busse R, Schaper J, Schaper W (2000) Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch 436:257–270
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12099717', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12099717/'}]}
    2. Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34:775–787
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10430770', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10430770/'}]}
    2. Schultz A, Lavie L, Hochberg I, Beyar R, Stone T, Skorecki K, Lavie P, Roguin A, Levy AP (1999) Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 100:547–552
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11673338', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11673338/'}]}
    2. Seiler C, Pohl T, Wustmann K, Hutter D, Nicolet PA, Windecker S, Eberli FR, Meier B (2001) Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation 104:2012–2017
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10611972', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10611972/'}]}
    2. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17585066', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17585066/'}]}
    2. Senthilkumar A, Smith RD, Khitha J, Arora N, Veerareddy S, Langston W, Chidlow JH Jr., Barlow SC, Teng X, Patel RP, Lefer DJ, Kevil CG (2007) Sildenafil promotes ischemia-induced angiogenesis through a PKG-dependent pathway. Arterioscler Thromb Vasc Biol 27:1947–1954
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17056326', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17056326/'}]}
    2. Sherman JA, Hall A, Malenka DJ, De Muinck ED, Simons M (2006) Humoral and cellular factors responsible for coronary collateral formation. Am J Cardiol 98:1194–1197
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17108969', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17108969/'}]}
    2. Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, Riley PR (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445:177–182
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12821542', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12821542/'}]}
    2. Stabile E, Burnett MS, Watkins C, Kinnaird T, Bachis A, la Sala A, Miller JM, Shou M, Epstein SE, Fuchs S (2003) Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108:205–210
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16380545', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16380545/'}]}
    2. Stabile E, Kinnaird T, la Sala A, Hanson SK, Watkins C, Campia U, Shou M, Zbinden S, Fuchs S, Kornfeld H, Epstein SE, Burnett MS (2006) CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of interleukin-16. Circulation 113:118–124
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '5827660', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/5827660/'}]}
    2. Strandness DE Jr (1965) Peripheral arterial disease. Postgrad Med 38:409–414
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10202935', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10202935/'}]}
    2. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16954339', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16954339/'}]}
    2. Taniguchi J, Tsuruoka S, Mizuno A, Sato J, Fujimura A, Suzuki M (2007) TRPV4 as a flow sensor in flow-dependent K+ secretion from the cortical collecting duct. Am J Physiol Renal Physiol 292:F667–F673
    1. None
    2. Thoma R (1893) Untersuchungen über die Histogenese und Histomechanik des Gefäßsystems. F.Enke, Stuttgart
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15544033', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15544033/'}]}
    2. Toyota E, Matsunaga T, Chilian WM (2004) Myocardial angiogenesis. Mol Cell Biochem 264:35–44
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16203926', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16203926/'}]}
    2. Toyota E, Warltier DC, Brock T, Ritman E, Kolz C, O’Malley P, Rocic P, Focardi M, Chilian WM (2005) Vascular endothelial growth factor is required for coronary collateral growth in the rat. Circulation 112:2108–2113
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8857922', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8857922/'}]}
    2. Tronc F, Wassef M, Esposito B, Henrion D, Glagov S, Tedgui A (1996) Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol 16:1256–1262
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8521574', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8521574/'}]}
    2. Tsao PS, Lewis NP, Alpert S, Cooke JP (1995) Exposure to shear stress alters endothelial adhesiveness: role of nitric oxide. Circulation 92:3513–3519
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9264504', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9264504/'}]}
    2. Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP (1997) Nitric oxide regulates monocyte chemotactic protein-1. Circulation 96:934–940
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC125600', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc125600/'}, {'type': 'PubMed', 'value': '11532928', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11532928/'}]}
    2. Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA (2001) Activation of integrins in endothelial cells by fluid shear stress mediates rho-dependent cytoskeletal alignment. Embo J 20:4639–4647
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16163360', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16163360/'}]}
    2. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11166263', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11166263/'}]}
    2. Unger EF (2001) Experimental evaluation of coronary collateral development. Cardiovasc Res 49:497–506
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17717295', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17717295/'}]}
    2. van Weel V, Toes RE, Seghers L, Deckers MM, de Vries MR, Eilers PH, Sipkens J, Schepers A, Eefting D, van Hinsbergh VW, van Bockel JH, Quax PH (2007) Natural killer cells and CD4+ T-cells modulate collateral artery development. Arterioscler Thromb Vasc Biol 27:2310–2318
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '1255735', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/1255735/'}]}
    2. Verheyen A, Xhonneux R, Borgers M, Reneman RS (1976) Cell proliferation in developing coronary collaterals and the influence of Lidoflazine on this process. J Mol Cell Cardiol 8:53–60
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15678621', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15678621/'}]}
    2. Voskuil M, Hoefer IE, van Royen N, Hua J, de Graaf S, Bode C, Buschmann IR, Piek JJ (2004) Abnormal monocyte recruitment and collateral artery formation in monocyte chemoattractant protein-1 deficient mice. Vasc Med 9:287–292
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12881479', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12881479/'}]}
    2. Voswinckel R, Ziegelhoeffer T, Heil M, Kostin S, Breier G, Mehling T, Haberberger R, Clauss M, Gaumann A, Schaper W, Seeger W (2003) Circulating vascular progenitor cells do not contribute to compensatory lung growth. Circ Res 93:372–379
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC314196', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc314196/'}, {'type': 'PubMed', 'value': '14691263', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14691263/'}]}
    2. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101:396–401
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15011247', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15011247/'}]}
    2. Wagner S, Helisch A, Ziegelhoeffer T, Bachmann G, Schaper W (2004) Magnetic resonance angiography of collateral vessels in a murine femoral artery ligation model. NMR Biomed 17:21–27
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7614716', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7614716/'}]}
    2. Wang DL, Wung BS, Shyy YJ, Lin CF, Chao YJ, Usami S, Chien S (1995) Mechanical strain induces monocyte chemotactic protein-1 gene expression in endothelial cells: effects of mechanical strain on monocyte adhesion to endothelial cells. Circ Res 77:294–302
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15531748', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15531748/'}]}
    2. Wedgwood S, Black SM (2005) Endothelin-1 decreases endothelial NOS expression and activity through ETA receptor-mediated generation of hydrogen peroxide. Am J Physiol Lung Cell Mol Physiol 288:L480–L487
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC2133044', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2133044/'}, {'type': 'PubMed', 'value': '9679155', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9679155/'}]}
    2. Weerasinghe D, McHugh KP, Ross FP, Brown EJ, Gisler RH, Imhof BA (1998) A role for the alphavbeta3 integrin in the transmigration of monocytes. J Cell Biol 142:595–607
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15473861', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15473861/'}]}
    2. Wei CJ, Xu X, Lo CW (2004) Connexins and cell signaling in development and disease. Annu Rev Cell Dev Biol 20:811–838
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '13626543', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/13626543/'}]}
    2. Wezler K (1959) The flow law of blood circulation and its practical significance. Acta Neuroveg (Wien) 19:169–206
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '4934742', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/4934742/'}]}
    2. Wilken DEC, Paolini HJ, Eickens E (1971) Evidence for intravenous dipyridamole producing a coronary steal effect in ischaemic myocardium. NZ Med J 1:8–14
    1. None
    2. Winkler B (1979) The tracer microsphere method. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland Biomedical Press, Amsterdam
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC1852989', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1852989/'}, {'type': 'PubMed', 'value': '9708799', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9708799/'}]}
    2. Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N, Kearney M, Hu JS, Isner JM (1998) Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 153:381–394
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '2465924', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/2465924/'}]}
    2. Yoshimura T, Yuhki N, Moore SK, Appella E, Lerman MI, Leonard EJ (1989) Human monocyte chemoattractant protein-1 (MCP-1): full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett 244:487–493
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17446804', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17446804/'}]}
    2. Zbinden R, Zbinden S, Meier P, Hutter D, Billinger M, Wahl A, Schmid JP, Windecker S, Meier B, Seiler C (2007) Coronary collateral flow in response to endurance exercise training. Eur J Cardiovasc Prev Rehabil 14:250–257
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC1768523', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1768523/'}, {'type': 'PubMed', 'value': '15486146', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15486146/'}]}
    2. Zbinden R, Zbinden S, Windecker S, Meier B, Seiler C (2004) Direct demonstration of coronary collateral growth by physical endurance exercise in a healthy marathon runner. Heart 90:1350–1351
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7758169', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7758169/'}]}
    2. Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R (1995) Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 76:980–986
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16251502', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16251502/'}]}
    2. Zheng J, Wen Y, Austin JL, Chen DB (2006) Exogenous nitric oxide stimulates cell proliferation via activation of a mitogen-activated protein kinase pathway in ovine fetoplacental artery endothelial cells. Biol Reprod 74:375–382
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC3850292', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3850292/'}, {'type': 'PubMed', 'value': '9461194', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9461194/'}]}
    2. Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC, Yin M, Coffin JD, Kong L, Kranias EG, Luo W, Boivin GP, Duffy JJ, Pawlowski SA, Doetschman T (1998) Fibroblast growth factor 2 control of vascular tone. Nat Med 4:201–207
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC294636', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc294636/'}, {'type': 'PubMed', 'value': '7525653', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7525653/'}]}
    2. Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94:2036–2044
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '14656934', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14656934/'}]}
    2. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94:230–238
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12054667', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12054667/'}]}
    2. Zolk O, Frohme M, Maurer A, Kluxen FW, Hentsch B, Zubakov D, Hoheisel JD, Zucker IH, Pepe S, Eschenhagen T (2002) Cardiac ankyrin repeat protein, a negative regulator of cardiac gene expression, is augmented in human heart failure. Biochem Biophys Res Commun 293:1377–1382
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9043061', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9043061/'}]}
    2. Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR (1997) CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 124:793–804

Source: PubMed

3
Tilaa