Procalcitonin and lung ultrasound algorithm to diagnose severe pneumonia in critical paediatric patients (PROLUSP study). A randomised clinical trial

Javier Rodríguez-Fanjul, Carmina Guitart, Sara Bobillo-Perez, Mònica Balaguer, Iolanda Jordan, Javier Rodríguez-Fanjul, Carmina Guitart, Sara Bobillo-Perez, Mònica Balaguer, Iolanda Jordan

Abstract

Background: Lung ultrasound (LUS) in combination with a biomarker has not yet been studied. We propose a clinical trial where the primary aims are: 1. To assess whether an algorithm with LUS and procalcitonin (PCT) may be useful for diagnosing bacterial pneumonia; 2. To analyse the sensitivity and specificity of LUS vs chest X-ray (CXR).

Methods/design: A 3-year clinical trial.

Inclusion criteria: children younger than 18 years old with suspected pneumonia in a Paediatric Intensive Care Unit. Patients will be randomised into two groups: Experimental Group: LUS will be performed as first lung image.

Control group: CXR will be performed as first pulmonary image. Patients will be classified according to the image and the PCT: a) PCT < 1 ng/mL and LUS/CXR are not suggestive of bacterial pneumonia (BN), no antibiotic will be prescribed; b) LUS/CXR are suggestive of BN, regardless of the PCT, antibiotic therapy is recommended; c) LUS/CXR is not suggestive of BN and PCT > 1 ng/mL, antibiotic therapy is recommended.

Conclusion: This algorithm will help us to diagnose bacterial pneumonia and to prescribe the correct antibiotic treatment. A reduction of antibiotics per patient, of the treatment length, and of the exposure to ionizing radiation and in costs is expected.

Trial registration: NCT04217980 .

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. United Nations Children’s Fund (UNICEF) Commiting to child survival: a promise renewed. 2014.
    1. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign. 2017.
    1. Li Y, Liang Y, Ling Y, Duan M, Pan L, Chen Z. The spectrum of viral pathogens in children with severe acute lower respiratory tract infection: a 3-year prospective study in the pediatric intensive care unit. J Med Virol. 2019;91:1633–1642. doi: 10.1002/jmv.25502.
    1. JM M, PA P, SJ T, et al. Prospective multicenter study of viral etiology and hospital length of stay in children with severe bronchiolitis. Arch Pediatr Adolesc Med. 2012;166:700. doi: 10.1001/archpediatrics.2011.1669.
    1. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228. doi: 10.1007/s00134-012-2769-8.
    1. Voiriot G, Visseaux B, Cohen J, et al. Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia. Crit Care. 2016;20:1–9. doi: 10.1186/s13054-016-1517-9.
    1. Torres A, Chalmers JD, Dela Cruz CS, et al. Challenges in severe community-acquired pneumonia: a point-of-view review. Intensive Care Med. 2019;45:159–171. doi: 10.1007/s00134-019-05519-y.
    1. Tramper-Stranders GA. Childhood community-acquired pneumonia: a review of etiology- and antimicrobial treatment studies. Paediatr Respir Rev. 2018;26:41–48. doi: 10.1016/j.prrv.2017.06.013.
    1. Self WH, Courtney DM, McNaughton CD, et al. High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ED patients: implications for diagnosing pneumonia. Am J Emerg Med. 2013;31(2):401-5. 10.1016/j.ajem.2012.08.041.
    1. Gullett J, Donnelly JP, Sinert R, et al. Interobserver agreement in the evaluation of B-lines using bedside ultrasound. J Crit Care. 2015;30:1395–1399. doi: 10.1016/j.jcrc.2015.08.021.
    1. Staub LJ, Biscaro RRM, Maurici R. Accuracy and applications of lung ultrasound to diagnose ventilator-associated pneumonia: a systematic review. J Intensive Care Med. 2018;33:447–455. doi: 10.1177/0885066617737756.
    1. Brogi E, Gargani L, Bignami E, et al. Thoracic ultrasound for pleural effusion in the intensive care unit : a narrative review from diagnosis to treatment. Crit Care. 2017;21:1–11. doi: 10.1186/s13054-017-1897-5.
    1. Lui JK, Banauch GI. Diagnostic bedside ultrasonography for acute respiratory failure and severe hypoxemia in the medical intensive care unit: basics and comprehensive approaches. J Intensive Care Med. 2017;32:355–372. doi: 10.1177/0885066616658475.
    1. Raimondi F, Rodriguez Fanjul J, Aversa S, et al. Lung ultrasound for diagnosing pneumothorax in the critically ill neonate. J Pediatr. 2015;175:74–78.e1. doi: 10.1016/j.jpeds.2016.04.018.
    1. Mackenzie G. The definition and classification of pneumonia. Pneumonia. 2016;8:1–5. doi: 10.1186/s41479-016-0012-z.
    1. Bobillo-Perez S, Rodríguez-Fanjul J, Jordan GI. Is Procalcitonin useful in pediatric critical care patients. Biomark Insights. 2018;13:117727191879224. doi: 10.1177/1177271918792244.
    1. Eschborn S, Weitkamp JH. Procalcitonin versus C-reactive protein: review of kinetics and performance for diagnosis of neonatal sepsis. J Perinatol. 2019;39:893–903. doi: 10.1038/s41372-019-0363-4.
    1. Memar MY, Varshochi M, Shokouhi B, Asgharzadeh M, Kafil HS. Procalcitonin: the marker of pediatric bacterial infection. Biomed Pharmacother. 2017;96:936–943. doi: 10.1016/j.biopha.2017.11.149.
    1. Bobillo Pérez S, Rodríguez-Fanjul J, García IJ, Hernando JM, Sanz MI. Procalcitonin is a better biomarker than C-reactive protein in newborns undergoing cardiac surgery: the PROKINECA study. Biomark Insights. 2016;11:123–129.
    1. Pepper DJ, Sun J, Rhee C, et al. Procalcitonin-guided antibiotic discontinuation and mortality in critically ill adults: a systematic review and meta-analysis. Chest. 2019;155:1109–1118. doi: 10.1016/j.chest.2018.12.029.
    1. Póvoa P, Martin-Loeches I, Ramirez P, et al. Biomarkers kinetics in the assessment of ventilator-associated pneumonia response to antibiotics - results from the BioVAP study. J Crit Care. 2017;41:91–97. doi: 10.1016/j.jcrc.2017.05.007.
    1. Bobillo-Perez S, Sole-Ribalta A, Balaguer M, et al. Procalcitonin to stop antibiotics after cardiovascular surgery in a pediatric intensive care unit—the PROSACAB study. PLoS One. 2019;14:e0220686. doi: 10.1371/journal.pone.0220686.
    1. Akagi T, Nagata N, Wakamatsu K, et al. Procalcitonin-guided antibiotic discontinuation might shorten the duration of antibiotic treatment without increasing pneumonia recurrence. Am J Med Sci. 2019;358:33–44. doi: 10.1016/j.amjms.2019.04.005.
    1. Ericksen RT, Guthrie C, Carroll T. The use of Procalcitonin for prediction of pulmonary bacterial coinfection in children with respiratory failure associated with viral bronchiolitis. Clin Pediatr (Phila) 2019;58:288–294. doi: 10.1177/0009922818816432.
    1. McMillan TR, Hyzy RC. Bringing quality improvement into the intensive care unit. Crit Care Med. 2007;35:59–65. doi: 10.1097/01.CCM.0000252914.22497.44.
    1. Shah VP, Tunik MG, Tsung JW. Prospective evaluation of point-of-care ultrasonography for the diagnosis of pneumonia in children and young adults. JAMA Pediatr. 2013;167:119–125. doi: 10.1001/2013.jamapediatrics.107.
    1. Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38:577–591. doi: 10.1007/s00134-012-2513-4.
    1. Balk DS, Lee C, Schafer J, et al. Lung ultrasound compared to chest X-ray for diagnosis of pediatric pneumonia: A meta-analysis. Pediatr Pulmonol. 2018;53(8):1130-9.
    1. Stadler JAM, Andronikou S, Zar HJ. Lung ultrasound for the diagnosis of community-acquired pneumonia in children. Pediatr Radiol. 2017;47:1412–1419. doi: 10.1007/s00247-017-3910-1.
    1. Llamas-Álvarez AM, Tenza-Lozano EM, Latour-Pérez J. Accuracy of lung ultrasonography in the diagnosis of pneumonia in adults: systematic review and meta-analysis. Chest. 2017;151:374–382. doi: 10.1016/j.chest.2016.10.039.
    1. Zhou J, Song J, Gong S, et al. Lung ultrasound combined with procalcitonin for a diagnosis of ventilator-associated pneumonia. Respir Care. 2019;64:519–527. doi: 10.4187/respcare.06377.
    1. Varshney T, Mok E, Shapiro AJ, Li P, Dubrovsky AS. Point-of-care lung ultrasound in young children with respiratory tract infections and wheeze. Emerg Med J. 2016;33:603–610. doi: 10.1136/emermed-2015-205302.
    1. Supino MC, Buonsenso D, Scateni S, et al. Point-of-care lung ultrasound in infants with bronchiolitis in the pediatric emergency department: a prospective study. Eur J Pediatr. 2019;178:623–632. doi: 10.1007/s00431-019-03335-6.
    1. Skillings JH, Mack GA. On the use of a friedman-type statistic in balanced and unbalanced block designs. Technometrics. 1981;23:171–177. doi: 10.1080/00401706.1981.10486261.
    1. Pereda MA, Chavez MA, Hooper-Miele CC, et al. Lung ultrasound for the diagnosis of pneumonia in children: a meta-analysis. Pediatrics. 2015;135:714–722. doi: 10.1542/peds.2014-2833.
    1. del Rey Hurtado de Mendoza B, Sánchez-de-Toledo J, Bobillo Perez S, Girona M, Balaguer Gargallo M, Rodríguez-Fanjul J. Lung ultrasound to assess the etiology of persistent pulmonary hypertension of the newborn (LUPPHYN study): a pilot study. Neonatology. 2019:1–7 .
    1. Rodríguez-Fanjul J, Balcells C, Aldecoa-Bilbao V, Moreno J, Iriondo M. Lung ultrasound as a predictor of mechanical ventilation in neonates older than 32 weeks. Neonatology. 2016;110:198–203. doi: 10.1159/000445932.
    1. Raimondi F, Yousef N, Rodriguez Fanjul J, et al. A multicenter lung ultrasound study on transient tachypnea of the neonate. Neonatology. 2019;115:263–268. doi: 10.1159/000495911.
    1. Garcia IJ, Gargallo MB, Torné EE, et al. Procalcitonin: a useful biomarker to discriminate infection after cardiopulmonary bypass in children. Pediatr Crit Care Med. 2012;13:441–445. doi: 10.1097/PCC.0b013e31823890de.
    1. Launes C, Esteban E, Balaguer M, Alsina M, Cambra FJ, Jordan I. Procalcitonin-guidance reduces antibiotic exposure in children with nosocomial infection (PRORANI) J Inf Secur. 2016;72:250–253.

Source: PubMed

3
Tilaa