Complete manuscript Title: Changes in RANKL during the first two years after cART initiation in HIV-infected cART naïve adults

Inger Hee Mathiesen, Mohammad Salem, Jan Gerstoft, Julie Christine Gaardbo, Niels Obel, Court Pedersen, Henrik Ullum, Susanne Dam Nielsen, Ann-Brit Eg Hansen, Inger Hee Mathiesen, Mohammad Salem, Jan Gerstoft, Julie Christine Gaardbo, Niels Obel, Court Pedersen, Henrik Ullum, Susanne Dam Nielsen, Ann-Brit Eg Hansen

Abstract

Background: By assessing the changes in concentration of soluble receptor activator of nuclear factor κ B ligand (RANKL) and osteoprotegrin (OPG) after initiation of combination antiretroviral therapy (cART) in treatment-naïve HIV-infected patients we aimed to evaluate whether the initial accelerated bone loss could be mediated by increased soluble RANKL (sRANKL) levels associated with CD4+ T cell recovery.

Methods: We used multiplex immunoassays to determine sRANKL and OPG concentrations in plasma from 48 HIV patients at baseline and 12, 24, 48 and 96 weeks after cART initiation.

Results: Soluble RANKL changed significantly over time (overall p = 0.02) with 25% decrease (95% CI: -42 to -5) at week 24 compared to baseline and stabilized at a lower level thereafter. We found no correlation between CD4+ T cell count increment and changes in sRANKL or between percentage change in BMD and changes in sRANKL.

Conclusion: In this study there was no indication that the accelerated bone loss after cART initiation was mediated by early changes in sRANKL due to CD4+ T cell recovery. Future studies should focus on the initial weeks after initiation of cART.

Trial registration: Clinical-Trial.gov . id NCT00135460 , August 25, 2005. The study was approved by the Danish Data Protection Agency, Danish Medicines Agency and Regional Ethics Committee.

Keywords: BMD; HIV infection; OPG; RANKL; cART.

Figures

Fig. 1
Fig. 1
Overall mean RANKL, OPG and RANKL/OPG ratio. Mean levels (95% CI) of (1a) RANKL, (1b) OPG and (1c) RANKL/OPG ratio. Data are logarithmically transformed. 1 unit change in log2 unit corresponds to a doubling in original unit. *p < 0.05 compared to baseline value

References

    1. Hansen AB, Obel N, Nielsen H, Pedersen C, Gerstoft J. Bone mineral density changes in protease inhibitor-sparing vs. nucleoside reverse transcriptase inhibitor-sparing highly active antiretroviral therapy: data from a randomized trial. HIV Med. 2011;12:157–165. doi: 10.1111/j.1468-1293.2010.00864.x.
    1. Brown TT, Moser C, Currier JS, Ribaudo HJ, Rothenberg J, Kelesidis T, et al. Changes in Bone Mineral Density After Initiation of Antiretroviral Treatment With Tenofovir Disoproxil Fumarate/Emtricitabine Plus Atazanavir/Ritonavir, Darunavir/Ritonavir, or Raltegravir. J Infect Dis. 2015;212:1241–1249. doi: 10.1093/infdis/jiv194.
    1. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis. 2011;203:1791–1801. doi: 10.1093/infdis/jir188.
    1. Stellbrink HJ, Orkin C, Arribas JR, Compston J, Gerstoft J, Van WE, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis. 2010;51:963–972. doi: 10.1086/656417.
    1. van Vonderen MG, Lips P, van Agtmael MA, Hassink EA, Brinkman K, Geerlings SE, et al. First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared to nevirapine/lopinavir/ritonavir. AIDS. 2009;23:1367–1376. doi: 10.1097/QAD.0b013e32832c4947.
    1. Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr. 2009;51:554–561. doi: 10.1097/QAI.0b013e3181adce44.
    1. Yin MT, Overton ET. Increasing clarity on bone loss associated with antiretroviral initiation. J Infect Dis. 2011;203:1705–1707. doi: 10.1093/infdis/jir184.
    1. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142:5050–5055. doi: 10.1210/endo.142.12.8536.
    1. Zaidi M. Skeletal remodeling in health and disease. Nat Med. 2007;13:791–801. doi: 10.1038/nm1593.
    1. Vikulina T, Fan X, Yamaguchi M, Roser-Page S, Zayzafoon M, Guidot DM, et al. Alterations in the immuno-skeletal interface drive bone destruction in HIV-1 transgenic rats. Proc Natl Acad Sci U S A. 2010;107:13848–13853. doi: 10.1073/pnas.1003020107.
    1. Titanji K, Vunnava A, Sheth AN, Delille C, Lennox JL, Sanford SE, et al. Dysregulated B cell expression of RANKL and OPG correlates with loss of bone mineral density in HIV infection. PLoS Pathog. 2014;10 doi: 10.1371/journal.ppat.1004497.
    1. Ofotokun I, Titanji K, Vikulina T, Roser-Page S, Yamaguchi M, Zayzafoon M, et al. Role of T-cell reconstitution in HIV-1 antiretroviral therapy-induced bone loss. Nat Commun. 2015;6:8282. doi: 10.1038/ncomms9282.
    1. Totsuka T, Kanai T, Nemoto Y, Tomita T, Okamoto R, Tsuchiya K, et al. RANK-RANKL signaling pathway is critically involved in the function of CD4+CD25+ regulatory T cells in chronic colitis. J Immunol. 2009;182:6079–6087. doi: 10.4049/jimmunol.0711823.
    1. Moyle GJ, Hardy H, Farajallah A, McGrath SJ, Kaplita S, Ward D. Changes in bone mineral density after 96 weeks of treatment with atazanavir/ritonavir or lopinavir/ritonavir plus tenofovir DF/emtricitabine in treatment-naive patients with HIV-1 infection: the CASTLE body composition substudy. J Acquir Immune Defic Syndr. 2015;68:40–45. doi: 10.1097/QAI.0000000000000383.
    1. Grant PM, Kitch D, McComsey GA, Dube MP, Haubrich R, Huang J, et al. Low baseline CD4+ count is associated with greater bone mineral density loss after antiretroviral therapy initiation. Clin Infect Dis. 2013;57:1483–1488. doi: 10.1093/cid/cit538.
    1. Brown TT, Ross AC, Storer N, Labbato D, McComsey GA. Bone turnover, osteoprotegerin/RANKL and inflammation with antiretroviral initiation: tenofovir versus non-tenofovir regimens. Antivir Ther. 2011;16:1063–1072. doi: 10.3851/IMP1874.
    1. Bernardino JI, Mocroft A, Mallon PW, Wallet C, Gerstoft J, Russell C, et al. Bone mineral density and inflammatory and bone biomarkers after darunavir-ritonavir combined with either raltegravir or tenofovir-emtricitabine in antiretroviral-naive adults with HIV-1: a substudy of the NEAT001/ANRS143 randomised trial. Lancet HIV. 2015;2:e464–e473. doi: 10.1016/S2352-3018(15)00181-2.
    1. Ofotokun I, Titanji K, Vunnava A, Roser-Page S, Vikulina T, Villinger F, et al. Antiretroviral therapy induces a rapid increase in bone resorption that is positively associated with the magnitude of immune reconstitution in HIV infection. AIDS. 2016;30:405–414. doi: 10.1097/QAD.0000000000000918.
    1. Hikita A, Yana I, Wakeyama H, Nakamura M, Kadono Y, Oshima Y, et al. Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-kappaB ligand. J Biol Chem. 2006;281:36846–36855. doi: 10.1074/jbc.M606656200.
    1. Bowsher RR, Sailstad JM. Insights in the application of research-grade diagnostic kits for biomarker assessments in support of clinical drug development: bioanalysis of circulating concentrations of soluble receptor activator of nuclear factor kappaB ligand. J Pharm Biomed Anal. 2008;48:1282–1289. doi: 10.1016/j.jpba.2008.09.026.

Source: PubMed

3
Tilaa