Cardiovascular health effects following exposure of human volunteers during fire extinction exercises

Maria Helena Guerra Andersen, Anne Thoustrup Saber, Peter Bøgh Pedersen, Steffen Loft, Åse Marie Hansen, Ismo Kalevi Koponen, Julie Elbæk Pedersen, Niels Ebbehøj, Eva-Carina Nørskov, Per Axel Clausen, Anne Helene Garde, Ulla Vogel, Peter Møller, Maria Helena Guerra Andersen, Anne Thoustrup Saber, Peter Bøgh Pedersen, Steffen Loft, Åse Marie Hansen, Ismo Kalevi Koponen, Julie Elbæk Pedersen, Niels Ebbehøj, Eva-Carina Nørskov, Per Axel Clausen, Anne Helene Garde, Ulla Vogel, Peter Møller

Abstract

Background: Firefighters have increased risk of cardiovascular disease and of sudden death from coronary heart disease on duty while suppressing fires. This study investigated the effect of firefighting activities, using appropriate personal protective equipment (PPE), on biomarkers of cardiovascular effects in young conscripts training to become firefighters.

Methods: Healthy conscripts (n = 43) who participated in a rescue educational course for firefighting were enrolled in the study. The exposure period consisted of a three-day training course where the conscripts participated in various firefighting exercises in a constructed firehouse and flashover container. The subjects were instructed to extinguish fires of either wood or wood with electrical cords and mattresses. The exposure to particulate matter (PM) was assessed at various locations and personal exposure was assessed by portable PM samplers and urinary excretion of 1-hydroxypyrene. Cardiovascular measurements included microvascular function and heart rate variability (HRV).

Results: The subjects were primarily exposed to PM in bystander positions, whereas self-contained breathing apparatus effectively abolished pulmonary exposure. Firefighting training was associated with elevated urinary excretion of 1-hydroxypyrene (105%, 95% CI: 52; 157%), increased body temperature, decreased microvascular function (-18%, 95% CI: -26; -9%) and altered HRV. There was no difference in cardiovascular measurements for the two types of fires.

Conclusion: Observations from this fire extinction training show that PM exposure mainly occurs in situations where firefighters removed the self-contained breathing apparatus. Altered cardiovascular disease endpoints after the firefighting exercise period were most likely due to complex effects from PM exposure, physical exhaustion and increased core body temperature.

Keywords: Cardiovascular disease; Firefighter; Ultrafine particles.

Conflict of interest statement

Authors’ information

Correspondence regarding this study should be addressed to UV (ubv@nrcwe.dk) or PM (pemo@sund.ku.dk).

Ethics approval and consent to participate

The Danish Committee on Health Research Ethics of the Capital Region (H-15003862) approved the study and study subjects participated in information meeting and provided written informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Creatinine-adjusted urinary concentration of 1-hydroxypyrene in three exposure scenarios (before and after as control measurements, and exposure measurement). Grey symbols and dashed lines are individual results in each subject. Black line is a graphical output of the mixed effect model
Fig. 2
Fig. 2
Cardiovascular endpoints in the three exposure scenarios (before and after as control measurements, and exposure measurement). Natural base log of reactive hyperemia index (one subject was eliminated due to missing data in both control measurements) (a), time domain heart rate variability in pNN50 (b) and RMSSD (c), frequency domain heart rate variability (d), augmentation index corrected for 75 bpm (e) and baseline heart rate (f). Grey symbols and dashed lines are individual results in each subject. Black line is a graphical output of the mixed effect model. pNN50, proportion of successive NN intervals differing by more than 50 milliseconds divided by total number of NN intervals; RMSSD, square root of the mean squared differences of successive NN intervals; bpm, beat per minute; ms, millisecond

References

    1. Soteriades ES, Smith DL, Tsismenakis AJ, Baur DM, Kales SN. Cardiovascular disease in US firefighters: a systematic review. Cardiol Rev. 2011;19(4):202–215. doi: 10.1097/CRD.0b013e318215c105.
    1. Kales SN, Soteriades ES, Christophi CA, Christiani DC. Emergency duties and deaths from heart disease among firefighters in the United States. N Engl J Med. 2007;356(12):1207–1215. doi: 10.1056/NEJMoa060357.
    1. Fahs CA, Yan H, Ranadive S, Rossow LM, Agiovlasitis S, Echols G, Smith D, Horn GP, Rowland T, Lane A, et al. Acute effects of firefighting on arterial stiffness and blood flow. Vasc Med. 2011;16(2):113–118. doi: 10.1177/1358863X11404940.
    1. Fernhall B, Fahs CA, Horn G, Rowland T, Smith D. Acute effects of firefighting on cardiac performance. Eur J Appl Physiol. 2012;112(2):735–741. doi: 10.1007/s00421-011-2033-x.
    1. Carter HH, Spence AL, Atkinson CL, Pugh CJ, Naylor LH, Green DJ. Repeated core temperature elevation induces conduit artery adaptation in humans. Eur J Appl Physiol. 2014;114(4):859–865. doi: 10.1007/s00421-013-2817-2.
    1. Ganio MS, Brothers RM, Shibata S, Hastings JL, Crandall CG. Effect of passive heat stress on arterial stiffness. Exp Physiol. 2011;96(9):919–926. doi: 10.1113/expphysiol.2011.057091.
    1. Lefferts WK, Heffernan KS, Hultquist EM, Fehling PC, Smith DL. Vascular and central hemodynamic changes following exercise-induced heat stress. Vasc Med. 2015;20(3):222–229. doi: 10.1177/1358863X14566430.
    1. Brook RD, Rajagopalan S, Pope CA, 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–2378. doi: 10.1161/CIR.0b013e3181dbece1.
    1. Pieters N, Plusquin M, Cox B, Kicinski M, Vangronsveld J, Nawrot TS. An epidemiological appraisal of the association between heart rate variability and particulate air pollution: a meta-analysis. Heart. 2012;98(15):1127–1135. doi: 10.1136/heartjnl-2011-301505.
    1. Moller P, Mikkelsen L, Vesterdal LK, Folkmann JK, Forchhammer L, Roursgaard M, Danielsen PH, Loft S. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit Rev Toxicol. 2011;41(4):339–368. doi: 10.3109/10408444.2010.533152.
    1. Moller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia AC, Andersen MH, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, et al. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol. 2016;46(5):437–476. doi: 10.3109/10408444.2016.1149451.
    1. Forchhammer L, Moller P, Riddervold IS, Bonlokke J, Massling A, Sigsgaard T, Loft S. Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function. Part Fibre Toxicol. 2012;9:7. doi: 10.1186/1743-8977-9-7.
    1. Hunter AL, Unosson J, Bosson JA, Langrish JP, Pourazar J, Raftis JB, Miller MR, Lucking AJ, Boman C, Nystrom R, et al. Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters. Part Fibre Toxicol. 2014;11:62. doi: 10.1186/s12989-014-0062-4.
    1. Unosson J, Blomberg A, Sandstrom T, Muala A, Boman C, Nystrom R, Westerholm R, Mills NL, Newby DE, Langrish JP, et al. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Part Fibre Toxicol. 2013;10:20. doi: 10.1186/1743-8977-10-20.
    1. Hansen AM, Mathiesen L, Pedersen M, Knudsen LE. Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies--a review. Int J Hyg Environ Health. 2008;211(5–6):471–503. doi: 10.1016/j.ijheh.2007.09.012.
    1. Jongeneelen FJ, van Leeuwen FE, Oosterink S, Anzion RB, van der Loop F, Bos RP, van Veen HG. Ambient and biological monitoring of cokeoven workers: determinants of the internal dose of polycyclic aromatic hydrocarbons. Br J Ind Med. 1990;47(7):454–461.
    1. Hansen AM, Poulsen OM, Christensen JM, Hansen SH. Determination of 1-hydroxypyrene in human urine by high-performance liquid chromatography. J Anal Toxicol. 1993;17(1):38–41. doi: 10.1093/jat/17.1.38.
    1. Brauner EV, Forchhammer L, Moller P, Barregard L, Gunnarsen L, Afshari A, Wahlin P, Glasius M, Dragsted LO, Basu S, et al. Indoor particles affect vascular function in the aged: an air filtration-based intervention study. Am J Respir Crit Care Med. 2008;177(4):419–425. doi: 10.1164/rccm.200704-632OC.
    1. Bates D, Machler M, Bolker BM, Walker SC. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01.
    1. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50(3):346–363. doi: 10.1002/bimj.200810425.
    1. Demetriou CA, Raaschou-Nielsen O, Loft S, Moller P, Vermeulen R, Palli D, Chadeau-Hyam M, Xun WW, Vineis P. Biomarkers of ambient air pollution and lung cancer: a systematic review. Occup Environ Med. 2012;69(9):619–627. doi: 10.1136/oemed-2011-100566.
    1. IARC. Painting, firefighting, and shiftwork. In: Monographs on the Evaluation of the Carcinogenic Risks to Humans vol 98. Edited by International Agency for Research on Cancer, vol. 98; 2010: 9–764.
    1. Andersen MH, Saber AT, Clausen PA, Pedersen JE, Lohr M, Kermanizadeh A, Loft S, Ebbehoj N, Hansen AM, Pedersen PB, et al. Association between polycyclic aromatic hydrocarbons exposure and peripheral blood mononuclear cell DNA damage in human volunteers during fire extinction exercises. Mutagenesis. 2017; in press
    1. Moen BE, Ovrebo S. Assessment of exposure to polycyclic aromatic hydrocarbons during firefighting by measurement of urinary 1-hydroxypyrene. J Occup Environ Med. 1997;39(6):515–519. doi: 10.1097/00043764-199706000-00005.
    1. Caux C, O'Brien C, Viau C. Determination of firefighter exposure to polycyclic aromatic hydrocarbons and benzene during fire fighting using measurement of biological indicators. Appl Occup Environ Hyg. 2002;17(5):379–386. doi: 10.1080/10473220252864987.
    1. Fernando S, Shaw L, Shaw D, Gallea M, VandenEnden L, House R. Verma DK, Britz-McKibbin P, McCarry BE. Evaluation of Firefighter Exposure to Wood Smoke during Training Exercises at Burn Houses. Environ Sci Technol. 2016;50(3):1536–1543. doi: 10.1021/acs.est.5b04752.
    1. Oliveira M, Slezakova K, Alves MJ, Fernandes A, Teixeira JP, Delerue-Matos C, Pereira MD, Morais S. Firefighters' exposure biomonitoring: Impact of firefighting activities on levels of urinary monohydroxyl metabolites. Int J Hyg Environ Health. 2016;219(8):857–866. doi: 10.1016/j.ijheh.2016.07.011.
    1. Robinson MS, Anthony TR, Littau SR, Herckes P, Nelson X, Poplin GS, Burgess JL. Occupational PAH exposures during prescribed pile burns. Ann Occup Hyg. 2008;52(6):497–508.
    1. Hemmingsen JG, Rissler J, Lykkesfeldt J, Sallsten G, Kristiansen J, Moller PP, Loft S. Controlled exposure to particulate matter from urban street air is associated with decreased vasodilation and heart rate variability in overweight and older adults. Part Fibre Toxicol. 2015;12:6. doi: 10.1186/s12989-015-0081-9.
    1. Brauner EV, Moller P, Barregard L, Dragsted LO, Glasius M, Wahlin P, Vinzents P, Raaschou-Nielsen O, Loft S. Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals. Part Fibre Toxicol. 2008;5:13. doi: 10.1186/1743-8977-5-13.
    1. Weichenthal S, Hatzopoulou M, Goldberg MS. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study. Part Fibre Toxicol. 2014;11:70. doi: 10.1186/s12989-014-0070-4.
    1. Barath S, Mills NL, Lundback M, Tornqvist H, Lucking AJ, Langrish JP, Soderberg S, Boman C, Westerholm R, Londahl J, et al. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Part Fibre Toxicol. 2010;7:19. doi: 10.1186/1743-8977-7-19.
    1. Anderson TJ, Charbonneau F, Title LM, Buithieu J, Rose MS, Conradson H, Hildebrand K, Fung M, Verma S, Lonn EM. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the Firefighters and Their Endothelium (FATE) study. Circulation. 2011;123(2):163–169. doi: 10.1161/CIRCULATIONAHA.110.953653.
    1. Buteau S, Goldberg MS. A structured review of panel studies used to investigate associations between ambient air pollution and heart rate variability. Environ Res. 2016;148:207–247. doi: 10.1016/j.envres.2016.03.013.
    1. Peretz A, Kaufman JD, Trenga CA, Allen J, Carlsten C, Aulet MR, Adar SD, Sullivan JH. Effects of diesel exhaust inhalation on heart rate variability in human volunteers. Environ Res. 2008;107(2):178–184. doi: 10.1016/j.envres.2008.01.012.
    1. Tong H, Rappold AG, Caughey M, Hinderliter AL, Graff DW, Berntsen JH, Cascio WE, Devlin RB, Samet JM. Cardiovascular effects caused by increasing concentrations of diesel exhaust in middle-aged healthy GSTM1 null human volunteers. Inhal Toxicol. 2014;26(6):319–326. doi: 10.3109/08958378.2014.889257.
    1. Hillebrand S, Gast KB, de Mutsert R, Swenne CA, Jukema JW, Middeldorp S, Rosendaal FR, Dekkers OM. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose-response meta-regression. Europace. 2013;15(5):742–749. doi: 10.1093/europace/eus341.
    1. Yang J, Teehan D, Farioli A, Baur DM, Smith D, Kales SN. Sudden cardiac death among firefighters </=45 years of age in the United States. Am J Cardiol. 2013;112(12):1962–1967. doi: 10.1016/j.amjcard.2013.08.029.
    1. Pope CA., 3rd Mortality effects of longer term exposures to fine particulate air pollution: review of recent epidemiological evidence. Inhal Toxicol. 2007;19(Suppl 1):33–38. doi: 10.1080/08958370701492961.
    1. Singh JP, Larson MG, Tsuji H, Evans JC, O'Donnell CJ, Levy D. Reduced heart rate variability and new-onset hypertension: insights into pathogenesis of hypertension: the Framingham Heart Study. Hypertension. 1998;32(2):293–297. doi: 10.1161/01.HYP.32.2.293.

Source: PubMed

3
Tilaa