Lung function trajectories in children with post-prematurity respiratory disease: identifying risk factors for abnormal growth

Jonathan C Levin, Catherine A Sheils, Jonathan M Gaffin, Craig P Hersh, Lawrence M Rhein, Lystra P Hayden, Jonathan C Levin, Catherine A Sheils, Jonathan M Gaffin, Craig P Hersh, Lawrence M Rhein, Lystra P Hayden

Abstract

Background: Survivors of prematurity are at risk for abnormal childhood lung function. Few studies have addressed trajectories of lung function and risk factors for abnormal growth in childhood. This study aims to describe changes in lung function in a contemporary cohort of children born preterm followed longitudinally in pulmonary clinic for post-prematurity respiratory disease and to assess maternal and neonatal risk factors associated with decreased lung function trajectories.

Methods: Observational cohort of 164 children born preterm ≤ 32 weeks gestation followed in pulmonary clinic at Boston Children's Hospital with pulmonary function testing. We collected demographics and neonatal history. We used multivariable linear regression to identify the impact of neonatal and maternal risk factors on lung function trajectories in childhood.

Results: We identified 264 studies from 82 subjects with acceptable longitudinal FEV1 data and 138 studies from 47 subjects with acceptable longitudinal FVC and FEV1/FVC data. FEV1% predicted and FEV1/FVC were reduced compared to childhood norms. Growth in FVC outpaced FEV1, resulting in an FEV1/FVC that declined over time. In multivariable analyses, longer duration of mechanical ventilation was associated with a lower rate of rise in FEV1% predicted and greater decline in FEV1/FVC, and postnatal steroid exposure in the NICU was associated with a lower rate of rise in FEV1 and FVC % predicted. Maternal atopy and asthma were associated with a lower rate of rise in FEV1% predicted.

Conclusions: Children with post-prematurity respiratory disease demonstrate worsening obstruction in lung function throughout childhood. Neonatal risk factors including exposure to mechanical ventilation and postnatal steroids, as well as maternal atopy and asthma, were associated with diminished rate of rise in lung function. These results may have implications for lung function trajectories into adulthood.

Keywords: Bronchopulmonary dysplasia; Chronic lung disease of prematurity; Pulmonary function tests.

Conflict of interest statement

CP Hersh discloses relevant financial activities in the forms of grants and personal fees, outside of the submitted work (see attached ICMJE COI form). Remaining authors (JCL, CAS, JMG, LMR, LPH) have no conflicts of interests related to this study to disclose.

Figures

Fig. 1
Fig. 1
Study flow diagram. *Studies performed at different ages
Fig. 2
Fig. 2
Best pulmonary function over childhood and adolescence. Error bars represent median, 25th and 75th percentile. There were no significant differences between groups
Fig. 3
Fig. 3
Spirometry trends for study population through age 12. Lines represent best fit trend over time by locally estimated scatterplot smoothing; grey area is 95% CI. BPD Severity by NHLBI Workshop Criteria (O2 for 28 days + respiratory support at 36 weeks)

References

    1. Bhandari A, Panitch HB. Pulmonary outcomes in bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):219–226. doi: 10.1053/j.semperi.2006.05.009.
    1. Broström EB, Thunqvist P, Adenfelt G, Borling E, Katz-Salamon M. Obstructive lung disease in children with mild to severe BPD. Respir Med. 2010;104(3):362–370. doi: 10.1016/j.rmed.2009.10.008.
    1. Carraro S, Filippone M, Da Dalt L, Ferraro V, Maretti M, Bressan S, et al. Bronchopulmonary dysplasia: the earliest and perhaps the longest lasting obstructive lung disease in humans. Early Hum Dev. 2013;89(Suppl 3):S3–5. doi: 10.1016/j.earlhumdev.2013.07.015.
    1. Gibson A-M, Reddington C, McBride L, Callanan C, Robertson C, Doyle LW. Lung function in adult survivors of very low birth weight, with and without bronchopulmonary dysplasia. Pediatr Pulmonol. 2015;50(10):987–994. doi: 10.1002/ppul.23093.
    1. Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, et al. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J. 2008;32(2):321–328. doi: 10.1183/09031936.00127107.
    1. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA. 2015;314(10):1039–1051. doi: 10.1001/jama.2015.10244.
    1. Martin JA, Osterman MJK. Describing the increase in preterm births in the United States, 2014–2016. NCHS Data Brief. 2018;312:1–8.
    1. Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182(2):237–245. doi: 10.1164/rccm.200912-1806OC.
    1. Vom Hove M, Prenzel F, Uhlig HH, Robel-Tillig E. Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. J Pediatr. 2014;164(1):40–45.e4. doi: 10.1016/j.jpeds.2013.07.045.
    1. Verheggen M, Wilson AC, Pillow JJ, Stick SM, Hall GL. Respiratory function and symptoms in young preterm children in the contemporary era. Pediatr Pulmonol. 2016;51(12):1347–1355. doi: 10.1002/ppul.23487.
    1. Vollsæter M, Clemm HH, Satrell E, Eide GE, Røksund OD, Markestad T, et al. Adult respiratory outcomes of extreme preterm birth. A regional cohort study. Ann Am Thorac Soc. 2015;12(3):313–322. doi: 10.1513/AnnalsATS.201406-285OC.
    1. Landry JS, Tremblay GM, Li PZ, Wong C, Benedetti A, Taivassalo T. Lung function and bronchial hyperresponsiveness in adults born prematurely. A cohort study. Ann Am Thorac Soc. 2016;13(1):17–24. doi: 10.1513/AnnalsATS.201508-553OC.
    1. Um-Bergström P, Hallberg J, Pourbazargan M, Berggren-Broström E, Ferrara G, Eriksson MJ, et al. Pulmonary outcomes in adults with a history of Bronchopulmonary Dysplasia differ from patients with asthma. Respir Res. 2019;20(1):102. doi: 10.1186/s12931-019-1075-1.
    1. Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res. 1999;46(6):641–643. doi: 10.1203/00006450-199912000-00007.
    1. Bhandari A, McGrath-Morrow S. Long-term pulmonary outcomes of patients with bronchopulmonary dysplasia. Semin Perinatol. 2013;37(2):132–137. doi: 10.1053/j.semperi.2013.01.010.
    1. Keller RL, Feng R, DeMauro SB, Ferkol T, Hardie W, Rogers EE, et al. Bronchopulmonary dysplasia and perinatal characteristics predict 1-year respiratory outcomes in newborns born at extremely low gestational age: a prospective cohort study. J Pediatr. 2017;187(89–97):e3.
    1. Baker CD, Alvira CM. Disrupted lung development and bronchopulmonary dysplasia: opportunities for lung repair and regeneration. Curr Opin Pediatr. 2014;26(3):306–314. doi: 10.1097/MOP.0000000000000095.
    1. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med. 2007;357(19):1946–1955. doi: 10.1056/NEJMra067279.
    1. Filippone M, Bonetto G, Cherubin E, Carraro S, Baraldi E. Childhood course of lung function in survivors of bronchopulmonary dysplasia. JAMA. 2009;302(13):1418–1420. doi: 10.1001/jama.2009.1419.
    1. Vollsæter M, Røksund OD, Eide GE, Markestad T, Halvorsen T. Lung function after preterm birth: development from mid-childhood to adulthood. Thorax. 2013;68(8):767–776. doi: 10.1136/thoraxjnl-2012-202980.
    1. Fortuna M, Carraro S, Temporin E, Berardi M, Zanconato S, Salvadori S, et al. Mid-childhood lung function in a cohort of children with “new bronchopulmonary dysplasia”. Pediatr Pulmonol. 2016;51(10):1057–1064. doi: 10.1002/ppul.23422.
    1. Doyle LW, Adams A-M, Robertson C, Ranganathan S, Davis NM, Lee KJ, et al. Increasing airway obstruction from 8 to 18 years in extremely preterm/low-birthweight survivors born in the surfactant era. Thorax. 2017;72(8):712–719. doi: 10.1136/thoraxjnl-2016-208524.
    1. Um-Bergström P, Hallberg J, Thunqvist P, Berggren-Broström E, Anderson M, Adenfelt G, et al. Lung function development after preterm birth in relation to severity of bronchopulmonary dysplasia. BMC Pulm Med. 2017;17(1):97. doi: 10.1186/s12890-017-0441-3.
    1. Simpson SJ, Turkovic L, Wilson AC, Verheggen M, Logie KM, Pillow JJ, et al. Lung function trajectories throughout childhood in survivors of very preterm birth: a longitudinal cohort study. Lancet Child Adolesc Health. 2018;2(5):350–359. doi: 10.1016/S2352-4642(18)30064-6.
    1. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–1729. doi: 10.1164/ajrccm.163.7.2011060.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
    1. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–1343. doi: 10.1183/09031936.00080312.
    1. Fitzmaurice GM, Laird NM, Ware JH. Applied longitudinal analysis. 2. Hoboken: Wiley; 2011. p. 752.
    1. Prais D, Kaplan E, Klinger G, Mussaffi H, Mei-Zahav M, Bar-Yishay E, et al. Short- and long-term pulmonary outcome of palivizumab in children born extremely prematurely. Chest. 2016;149(3):801–808. doi: 10.1378/chest.15-0328.
    1. Amitai N, Stafler P, Blau H, Kaplan E, Mussaffi H, Levine H, et al. Palivizumab following extremely premature birth does not affect pulmonary outcomes in adolescence. Chest. 2020;158(2):660–669. doi: 10.1016/j.chest.2020.02.075.
    1. Green M, Mead J, Turner JM. Variability of maximum expiratory flow-volume curves. J Appl Physiol. 1974;37(1):67–74. doi: 10.1152/jappl.1974.37.1.67.
    1. Yammine S, Schmidt A, Sutter O, Fouzas S, Singer F, Frey U, et al. Functional evidence for continued alveolarisation in former preterms at school age? Eur Respir J. 2016;47(1):147–155. doi: 10.1183/13993003.00478-2015.
    1. Duke JW, Gladstone IM, Sheel AW, Lovering AT. Premature birth affects the degree of airway dysanapsis and mechanical ventilatory constraints. Exp Physiol. 2018;103(2):261–275. doi: 10.1113/EP086588.
    1. Kennedy JD. Lung function outcome in children of premature birth. J Paediatr Child Health. 1999;35(6):516–521. doi: 10.1046/j.1440-1754.1999.00422.x.
    1. Quanjer PH, Stanojevic S, Stocks J, Hall GL, Prasad KVV, Cole TJ, et al. Changes in the FEV1/FVC ratio during childhood and adolescence: an intercontinental study. Eur Respir J. 2010;36(6):1391–1399. doi: 10.1183/09031936.00164109.
    1. Keszler M, Sant’Anna G. Mechanical ventilation and bronchopulmonary dysplasia. Clin Perinatol. 2015;42(4):781–796. doi: 10.1016/j.clp.2015.08.006.
    1. Bui DS, Lodge CJ, Burgess JA, Lowe AJ, Perret J, Bui MQ, et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life. Lancet Respir Med. 2018;6(7):535–544. doi: 10.1016/S2213-2600(18)30100-0.
    1. Beltempo M, Isayama T, Vento M, Lui K, Kusuda S, Lehtonen L, et al. Respiratory management of extremely preterm infants: an international survey. Neonatology. 2018;114(1):28–36. doi: 10.1159/000487987.
    1. Walsh MC, Wilson-Costello D, Zadell A, Newman N, Fanaroff A. Safety, reliability, and validity of a physiologic definition of bronchopulmonary dysplasia. J Perinatol. 2003;23(6):451–456. doi: 10.1038/sj.jp.7210963.
    1. Wai KC, Hibbs AM, Steurer MA, Black DM, Asselin JM, Eichenwald EC, et al. Maternal black race and persistent wheezing illness in former extremely low gestational age newborns: secondary analysis of a randomized trial. J Pediatr. 2018;198:201–208.e3. doi: 10.1016/j.jpeds.2018.02.032.

Source: PubMed

3
Tilaa