Broad blockade antibody responses in human volunteers after immunization with a multivalent norovirus VLP candidate vaccine: immunological analyses from a phase I clinical trial

Lisa C Lindesmith, Martin T Ferris, Clancy W Mullan, Jennifer Ferreira, Kari Debbink, Jesica Swanstrom, Charles Richardson, Robert R Goodwin, Frank Baehner, Paul M Mendelman, Robert F Bargatze, Ralph S Baric, Lisa C Lindesmith, Martin T Ferris, Clancy W Mullan, Jennifer Ferreira, Kari Debbink, Jesica Swanstrom, Charles Richardson, Robert R Goodwin, Frank Baehner, Paul M Mendelman, Robert F Bargatze, Ralph S Baric

Abstract

Background: Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers.

Methods and findings: Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated.

Conclusions: Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an efficacious multivalent NoV VLP vaccine for future use in human populations.

Trial registration: ClinicalTrials.gov NCT01168401.

Conflict of interest statement

MTF, CWM, KD, and JS do not have any competing interests. LCL and RSB have received royalties from a licensing agreement with Ligocyte (now Takeda). FB is an employee of Takeda Pharmaceuticals International. CR, RRG, RFB, and PMM are employees of Takeda Vaccines. RRG has stock in Takeda Vaccines, Inc. CR holds stock or options in Takeda Pharmaceuticals. RFB holds patents on Takeda's norovirus vaccine drug substance, owns Takeda stock, is PI of a research contract from the Department of Defense for norovirus vaccine development, is a board member of the Montana BioScience Alliance, and is a registered lobbyist. JF is an employee of EMMES and is contracted through Takeda Vaccines.

Figures

Fig 1. Temporal relationship between epidemiologically important…
Fig 1. Temporal relationship between epidemiologically important GII.4 strains, relative to the virus-like particles and sera used in this study.
The vaccine GII.4 component (GII.4C) is a consensus VLP composed of GII.4.2002, GII.4.2006a, and GII.4.2006b sequences. GII.4.2006b.P.D302 represents a strain that evolved in vivo and was isolated from an immune-compromised person.
Fig 2. Characteristics of virus-like particles.
Fig 2. Characteristics of virus-like particles.
Ab responses to a diverse panel of GI (blue), GII.4 (grey), and non-GII.4 GII (green) VLPs were compared in this study.
Fig 3. Mean EC 50 IgG titer…
Fig 3. Mean EC50 IgG titer in vaccinated participants.
Serum samples collected from participants who received the 50/50-μg VLP dose were assayed for IgG reactivity to a panel of GI (blue), GII.4 (grey), and non-GII.4 GII (green) VLPs. The seroresponse rate is the ratio of the number of participants with a ≥4-fold titer increase above day 0 titer compared to the total number of samples tested at day 0 for each VLP. Bolded values denote significant increases in GMFR above baseline.
Fig 4. Mean EC 50 blockade antibody…
Fig 4. Mean EC50 blockade antibody titer in vaccinated participants.
Serum samples collected from participants who received the 50/50-μg VLP dose were assayed for blockade Ab to a panel of GI (blue), GII.4 (grey), and non-GII.4 GII (green) VLPs. The seroresponse rate is the ratio of the number of participants with a ≥4-fold titer increase above day 0 titer compared to the total number of samples tested at day 0 for each VLP. Bolded values denote significant increases in GMFR above baseline.
Fig 5. Day 0 blockade antibody titers…
Fig 5. Day 0 blockade antibody titers below the assay limit of detection for any norovirus virus-like particle are predictive of a ≥4-fold increase, but not overall blockade Ab titer, at day 7.
Day 0 blockade Ab titers for all of the NoV VLPs studied were compared to the corresponding day 7 fold increase (A) and titer of blockade Ab (B) using GEEs (n = 10 participants, 82 samples). The likelihood of responding to vaccination with a ≥4-fold increase in blockade Ab titer to any NoV VLP was 3-fold greater if the day 0 titer was below the assay limit of detection. Day 0 blockade Ab titer did not correspond with day 7 titer. The dotted lines mark the lower limit of detection of the blockade Ab assay. The solid grey line marks a 4-fold increase in blockade titer at day 7. RR, relative risk.
Fig 6. Mean EC 50 IgG titers…
Fig 6. Mean EC50 IgG titers to novel GII.4 strain virus-like particles.
Serum samples collected from participants who received the 50/50-μg VLP dose were assayed for IgG reactivity to the vaccine components and to two novel GII.4 VLPs. GI VLP is shaded blue; GII.4 VLPs are shaded grey. The seroresponse rate is the ratio of the number of participants with a ≥4-fold titer increase above day 0 titer compared to the total number of samples tested at day 0 for each VLP. Bolded values denote significant increases in GMFR above baseline.
Fig 7. Mean EC 50 blockade antibody…
Fig 7. Mean EC50 blockade antibody titers to novel GII.4 strain virus-like particles.
Serum samples collected from participants who received the 50/50-μg VLP dose were assayed for blockade Ab to the vaccine components and to two novel GII.4 VLPs. GI VLP is shaded blue; GII.4 VLPs are shaded grey. The seroresponse rate is the ratio of the number of participants with a ≥4-fold titer increase above day 0 titer compared to the total number of samples tested at day 0 for each VLP. Bolded values denote significant increases in GMFR above baseline.
Fig 8. Amino acid sequence of identified…
Fig 8. Amino acid sequence of identified GII.4 blockade antibody epitopes (A, D, and E) and the regulating domain of epitope F (NERK motif) in GII.4 virus-like particles relevant to this study.
Color indicates antigenic groupings based on epitope A sequence. *The amino acid coordinates of epitope F are unknown. The NERK motif is a temperature-sensitive regulator of Ab access to epitope F [32].
Fig 9. Evolving IgG responses to virus-like…
Fig 9. Evolving IgG responses to virus-like particles throughout the time course of the study.
Individual points represent VLPs, and the distances between points represent the overall differences in the magnitude of IgG responses from all ten participants against these NoV VLPs on day 0 (A–C), day 7 (D–F), and day 180 (G–I). Specifically, the distance between VLPs (with each unit in any dimension [D] relating to a 3.4-fold difference in total IgG responses) shows how similar total IgG responses across the ten participants were to each pair of VLPs tested within this study and how vaccine components (noted in each panel) cluster with other NoV strain VLPs. Despite similarities across these responses, we are able to show that GI VLPs (orange) cluster with the GI.1 vaccine component, early GII.4 VLPs (blue) cluster with the GII.4C vaccine component, and late GII.4 VLPs (green) and the other GII VLPs (pink) cluster together and away from the other VLPs. For each time point, the x-axis is that showing the most variation between all VLPs, then the y-axis, then the z-axis. Therefore, down each column, we can see how immune responses change and track through the time course of the study. Of note are the clusterings of each virus subtype through these responses.
Fig 10. Evolving blockade antibody responses to…
Fig 10. Evolving blockade antibody responses to virus-like particles throughout the time course of the study.
Individual points represent VLPs, and the distances between points represent the overall differences in the magnitude of blockade Ab responses from all ten participants against these NoV VLPs on day 0 (A–C), day 7 (D–F), and day 180 (G–I). Specifically, the distance between VLPs (with each unit in any dimension [D] relating to a 3.2-fold difference in blockade Ab, or EC50 response) shows how similar total blockade Ab responses across the ten participants were between each pair of VLPs tested within this study, and how vaccine components (noted in each panel) cluster with other NoV strain VLPs. Across these responses, we are able to show that GI VLPs (orange) cluster with the GI.1 vaccine component, early GII.4 VLPs (blue) cluster with the GII.4C vaccine component, and the late GII.4 VLPs (green) and the other GII VLPs (pink) cluster together and away from the other VLPs. For each time point, the x-axis is that showing the most variation between all VLPs, then the y-axis, then the z-axis. Therefore, down each column, we can see how immune responses change and track through the time course of the study. Of note are the clusterings of each virus subtype through time, although with clear distinction of the vaccine components at day 7. At day 180, as titers have fallen, the blockade Ab distinctions between VLPs are diminished across the panels (G–I), with the exception of responses to GII.4.1997, suggesting that a memory Ab response to this strain may be driving the GII.4-reactive vaccine response.
Fig 11. Vaccination results in a rapid…
Fig 11. Vaccination results in a rapid but transient increase in antibody titer to multiple blockade epitopes in multiple GII.4 strains.
Serum samples were evaluated for ability to block binding of mouse mAbs to epitope (Epi) A or F in GII.4.1997 and GII.4.2006b using a BOB assay. Sigmoidal curves were fit to the mean percent control binding (percent of mouse mAb bound to VLP in the presence of serum pretreatment compared to the amount of mouse mAb bound in the absence of serum pretreatment), and the mean EC50 titer (1/serum dilution) for BOB calculated. Dotted line marks 0.5 times the assay limit of detection. Error bars represent 95% confidence intervals. An asterisk indicates that the EC50 titer is significantly different from that of day 0.
Fig 12. Proposed mechanisms for antibody responses…
Fig 12. Proposed mechanisms for antibody responses induced by GI.1/GII.4C multivalent vaccine.
At the time of vaccination, adult participants have a lifetime of NoV exposure history and a pool of NoV-reactive memory B cells (Bmem cells), both strain-specific and strain cross-reactive clones. Vaccination activates memory B cells to undergo SHM of the variable region of the Ab gene, to proliferate, and, for some cells, to differentiate into plasma cells secreting high-affinity Ab by day 7 post-vaccination. The GI.1 vaccine component elicits activation of both GI.1-specific memory B cells and memory B cells with specificity for shared GI epitopes, resulting in increased Ab to the panel of GI VLPs, but the strongest response to the homotypic GI.1 VLP because more blockade epitopes are unique to GI.1 than are shared across the GI VLPs. By day 180, low levels of GI.1-specific Ab persist (A). In comparison, the GII.4C vaccine component does not elicit a strong strain-specific response but could in theory activate memory B cells with GII.4.2002, GII.4.2006a, or GII.4.2006b specificity. However, the uniformity in the GII.4 VLP response across an antigenically diverse panel suggests that GII.4C preferentially activates memory B cells for conserved GII.4 epitopes and a smaller subset of memory B cells for a conserved GII epitope, resulting in more potent GII.4 and less potent GII blockade Ab production at day 7. The GII.4C Ab response continues to track with GII.4.2002 and GII.4.1997 through day 35, but by day 180, only GII.4.1997 Ab responses remain distinct, suggesting that the common GII.4 blockade epitopes recognized by the vaccine-induced Abs are most similar to sequences found in GII.4.1997, possibly because of extensive long-term immune focusing for this strain. Ab responses to at least two epitopes are maintained. Epitope F is a conserved GII.4 blockade epitope located sub-surface on the particle, and proposed epitope A′ is likely a surface-exposed blockade epitope physically near, overlapping, or within epitope A (B).

References

    1. World Health Organization (2013) Diarrhoeal disease Fact sheet No. 330. Geneva: World Health Organization.
    1. Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (2011) Updated norovirus outbreak management and disease prevention guidelines. MMWR Recomm Rep 60: 1–18.
    1. Trivedi TK, Desai R, Hall AJ, Patel M, Parashar UD, et al. (2013) Clinical characteristics of norovirus-associated deaths: a systematic literature review. Am J Infect Control 41: 654–657. 10.1016/j.ajic.2012.08.002
    1. Bok K, Green KY (2012) Norovirus gastroenteritis in immunocompromised patients. N Engl J Med 367: 2126–2132. 10.1056/NEJMra1207742
    1. Trivedi TK, DeSalvo T, Lee L, Palumbo A, Moll M, et al. (2012) Hospitalizations and mortality associated with norovirus outbreaks in nursing homes, 2009–2010. JAMA 308: 1668–1675.
    1. Hutson AM, Atmar RL, Estes MK (2004) Norovirus disease: changing epidemiology and host susceptibility factors. Trends Microbiol 12: 279–287.
    1. Estes MK, Prasad BV, Atmar RL (2006) Noroviruses everywhere: has something changed? Curr Opin Infect Dis 19: 467–474.
    1. Koopmans M, Vinje J, de Wit M, Leenen I, van der Poel W, et al. (2000) Molecular epidemiology of human enteric caliciviruses in The Netherlands. J Infect Dis 181 (Suppl 2): S262–S269.
    1. Centers for Disease Control and Prevention (2007) Norovirus activity—United States, 2006–2007. MMWR Morb Mortal Wekly Rep 56: 842–846.
    1. Okada M, Tanaka T, Oseto M, Takeda N, Shinozaki K (2006) Genetic analysis of noroviruses associated with fatalities in healthcare facilities. Arch Virol 151: 1635–1641.
    1. Harris JP, Edmunds WJ, Pebody R, Brown DW, Lopman BA (2008) Deaths from norovirus among the elderly, England and Wales. Emerg Infect Dis 14: 1546–1552. 10.3201/eid1410.080188
    1. Schorn R, Hohne M, Meerbach A, Bossart W, Wuthrich RP, et al. (2010) Chronic norovirus infection after kidney transplantation: molecular evidence for immune-driven viral evolution. Clin Infect Dis 51: 307–314. 10.1086/653939
    1. Hall AJ, Eisenbart VG, Etingue AL, Gould LH, Lopman BA, et al. (2012) Epidemiology of foodborne norovirus outbreaks, United States, 2001–2008. Emerg Infect Dis 18: 1566–1573. 10.3201/eid1810.120833
    1. Kroneman A, Harris J, Vennema H, Duizer E, van Duynhoven Y, et al. (2008) Data quality of 5 years of central norovirus outbreak reporting in the European Network for food-borne viruses. J Public Health (Oxf) 30: 82–90.
    1. Zheng DP, Ando T, Fankhauser RL, Beard RS, Glass RI, et al. (2006) Norovirus classification and proposed strain nomenclature. Virology 346: 312–323.
    1. Green KY, Lew JF, Jiang X, Kapikian AZ, Estes MK (1993) Comparison of the reactivities of baculovirus-expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations. J Clin Microbiol 31: 2185–2191.
    1. Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, et al. (1999) X-ray crystallographic structure of the Norwalk virus capsid. Science 286: 287–290.
    1. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, et al. (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9: 548–553.
    1. Lindesmith LC, Donaldson EF, Lobue AD, Cannon JL, Zheng DP, et al. (2008) Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med 5: e0050031 10.1371/journal.pmed.0050031
    1. Lindesmith LC, Costantini V, Swanstrom J, Debbink K, Donaldson EF, et al. (2013) Emergence of a norovirus GII.4 strain correlates with changes in evolving blockade epitopes. J Virol 87: 2803–2813. 10.1128/JVI.03106-12
    1. Bok K, Parra GI, Mitra T, Abente E, Shaver CK, et al. (2011) Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc Natl Acad Sci U S A 108: 325–330. 10.1073/pnas.1014577107
    1. Reeck A, Kavanagh O, Estes MK, Opekun AR, Gilger MA, et al. (2010) Serological correlate of protection against norovirus-induced gastroenteritis. J Infect Dis 202: 1212–1218. 10.1086/656364
    1. Atmar RL, Bernstein DI, Harro CD, Al-Ibrahim MS, Chen WH, et al. (2011) Norovirus vaccine against experimental human Norwalk Virus illness. N Engl J Med 365: 2178–2187. 10.1056/NEJMoa1101245
    1. Siebenga JJ, Vennema H, Renckens B, de Bruin E, van der Veer B, et al. (2007) Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. J Virol 81: 9932–9941.
    1. Lindesmith LC, Beltramello M, Donaldson EF, Corti D, Swanstrom J, et al. (2012) Immunogenetic mechanisms driving norovirus GII.4 antigenic variation. PLoS Pathog 8: e1002705 10.1371/journal.ppat.1002705
    1. Lindesmith LC, Donaldson EF, Baric RS (2011) Norovirus GII.4 strain antigenic variation. J Virol 85: 231–242. 10.1128/JVI.01364-10
    1. Debbink K, Donaldson EF, Lindesmith LC, Baric RS (2012) Genetic mapping of a highly variable norovirus GII.4 blockade epitope: potential role in escape from human herd immunity. J Virol 86: 1214–1226. 10.1128/JVI.06189-11
    1. Cannon JL, Lindesmith LC, Donaldson EF, Saxe L, Baric RS, et al. (2009) Herd immunity to GII.4 noroviruses is supported by outbreak patient sera. J Virol 83: 5363–5374. 10.1128/JVI.02518-08
    1. Debbink K, Lindesmith LC, Donaldson EF, Costantini V, Beltramello M, et al. (2013) Emergence of new pandemic GII.4 Sydney norovirus strain correlates with escape from herd immunity. J Infect Dis 208: 1877–1887. 10.1093/infdis/jit370
    1. Donaldson EF, Lindesmith LC, Lobue AD, Baric RS (2008) Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol Rev 225: 190–211. 10.1111/j.1600-065X.2008.00680.x
    1. Lindesmith LC, Debbink K, Swanstrom J, Vinje J, Costantini V, et al. (2012) Monoclonal antibody-based antigenic mapping of norovirus GII.4-2002. J Virol 86: 873–883. 10.1128/JVI.06200-11
    1. Lindesmith LC, Donaldson EF, Beltramello M, Pintus S, Corti D, et al. (2014) Particle conformation regulates antibody access to a conserved GII.4 norovirus blockade epitope. J Virol 88: 8826–8842. 10.1128/JVI.01192-14
    1. Eden JS, Tanaka MM, Boni MF, Rawlinson WD, White PA (2013) Recombination within the pandemic norovirus GII.4 lineage. J Virol 87: 6270–6282. 10.1128/JVI.03464-12
    1. Bull RA, Eden JS, Rawlinson WD, White PA (2010) Rapid evolution of pandemic noroviruses of the GII.4 lineage. PLoS Pathog 6: e1000831 10.1371/journal.ppat.1000831
    1. Siebenga JJ, Lemey P, Kosakovsky Pond SL, Rambaut A, Vennema H, et al. (2010) Phylodynamic reconstruction reveals norovirus GII.4 epidemic expansions and their molecular determinants. PLoS Pathog 6: e1000884 10.1371/journal.ppat.1000884
    1. Richardson C, Bargatze RF, Goodwin R, Mendelman PM (2013) Norovirus virus-like particle vaccines for the prevention of acute gastroenteritis. Expert Rev Vaccines 12: 155–167. 10.1586/erv.12.145
    1. Treanor JJ, Atmar RL, Frey SE, Gormley R, Chen WH, et al. (2014) A novel intramuscular bivalent norovirus virus-like particle vaccine candidate-reactogenicity, safety, and immunogenicity in a phase 1 trial in healthy adults. J Infect Dis 210: 1763–1771. 10.1093/infdis/jiu337
    1. Donaldson EF, Lindesmith LC, Lobue AD, Baric RS (2010) Viral shape-shifting: norovirus evasion of the human immune system. Nat Rev Microbiol 8: 231–241. 10.1038/nrmicro2296
    1. Nordgren J, Kindberg E, Lindgren PE, Matussek A, Svensson L (2010) Norovirus gastroenteritis outbreak with a secretor-independent susceptibility pattern, Sweden. Emerg Infect Dis 16: 81–87. 10.3201/eid1601.090633
    1. Frenck R, Bernstein DI, Xia M, Huang P, Zhong W, et al. (2012) Predicting susceptibility to norovirus GII.4 by use of a challenge model involving humans. J Infect Dis 206: 1386–1393. 10.1093/infdis/jis514
    1. Lindesmith L, Moe C, Lependu J, Frelinger JA, Treanor J, et al. (2005) Cellular and humoral immunity following Snow Mountain virus challenge. J Virol 79: 2900–2909.
    1. Bernstein DI, Atmar RL, Lyon GM, Treanor JJ, Chen WH, et al. (2014) Norovirus vaccine against experimental human GII.4 virus illness: a challenge study in healthy adults. J Infect Dis. E-pub ahead of print. 10.1093/infdis/jiu497
    1. Swanstrom J, Lindesmith LC, Donaldson EF, Yount B, Baric RS (2014) Characterization of blockade antibody responses in GII.2.1976 Snow Mountain virus-infected subjects. J Virol 88: 829–837. 10.1128/JVI.02793-13
    1. LoBue AD, Lindesmith L, Yount B, Harrington PR, Thompson JM, et al. (2006) Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. Vaccine 24: 5220–5234.
    1. Debbink K, Lindesmith LC, Ferris MT, Swanstrom J, Beltramello M, et al. (2014) Within-host evolution results in antigenically distinct GII.4 noroviruses. J Virol 88: 7244–7255. 10.1128/JVI.00203-14
    1. Cai Z, Zhang T, Wan XF (2010) A computational framework for influenza antigenic cartography. PLoS Comput Biol 6: e1000949 10.1371/journal.pcbi.1000949
    1. Wang F, Sen S, Zhang Y, Ahmad I, Zhu X, et al. (2013) Somatic hypermutation maintains antibody thermodynamic stability during affinity maturation. Proc Natl Acad Sci U S A 110: 4261–4266. 10.1073/pnas.1301810110
    1. Hoffmann D, Hutzenthaler M, Seebach J, Panning M, Umgelter A, et al. (2012) Norovirus GII.4 and GII.7 capsid sequences undergo positive selection in chronically infected patients. Infect Genet Evol 12: 461–466. 10.1016/j.meegid.2012.01.020
    1. Barnett JL, Yang J, Cai Z, Zhang T, Wan XF (2012) AntigenMap 3D: an online antigenic cartography resource. Bioinformatics 28: 1292–1293. 10.1093/bioinformatics/bts105
    1. Debbink K, Lindesmith LC, Donaldson EF, Baric RS (2012) Norovirus immunity and the great escape. PLoS Pathog 8: e1002921 10.1371/journal.ppat.1002921
    1. Lindesmith LC, Donaldson E, Leon J, Moe CL, Frelinger JA, et al. (2010) Heterotypic humoral and cellular immune responses following Norwalk virus infection. J Virol 84: 1800–1815. 10.1128/JVI.02179-09
    1. Schmidt AG, Xu H, Khan AR, O’Donnell T, Khurana S, et al. (2013) Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proc Natl Acad Sci U S A 110: 264–269. 10.1073/pnas.1218256109
    1. Li GM, Chiu C, Wrammert J, McCausland M, Andrews SF, et al. (2012) Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc Natl Acad Sci U S A 109: 9047–9052. 10.1073/pnas.1118979109
    1. Kobayashi M, Ohfuji S, Fukushima W, Maeda A, Maeda K, et al. (2012) Immunogenicity and reactogenicity of a monovalent inactivated 2009 influenza A vaccine in adolescents: with special reference to pre-existing antibody. J Pediatr 160: 632–637. 10.1016/j.jpeds.2011.09.055
    1. Knuchel MC, Marty RR, Morin TN, Ilter O, Zuniga A, et al. (2013) Relevance of a pre-existing measles immunity prior immunization with a recombinant measles virus vector. Hum Vaccin Immunother 9: 599–606.
    1. Liang XF, Wang HQ, Wang JZ, Fang HH, Wu J, et al. (2010) Safety and immunogenicity of 2009 pandemic influenza A H1N1 vaccines in China: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 375: 56–66. 10.1016/S0140-6736(09)62003-1
    1. Zhu FC, Wang H, Fang HH, Yang JG, Lin XJ, et al. (2009) A novel influenza A (H1N1) vaccine in various age groups. N Engl J Med 361: 2414–2423. 10.1056/NEJMoa0908535
    1. Wrammert J, Smith K, Miller J, Langley WA, Kokko K, et al. (2008) Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453: 667–671. 10.1038/nature06890
    1. Mora JR (2008) Homing imprinting and immunomodulation in the gut: role of dendritic cells and retinoids. Inflamm Bowel Dis 14: 275–289.
    1. Kuklin NA, Rott L, Feng N, Conner ME, Wagner N, et al. (2001) Protective intestinal anti-rotavirus B cell immunity is dependent on alpha 4 beta 7 integrin expression but does not require IgA antibody production. J Immunol 166: 1894–1902.
    1. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, et al. (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305: 371–376.
    1. Huang SW, Hsu YW, Smith DJ, Kiang D, Tsai HP, et al. (2009) Reemergence of enterovirus 71 in 2008 in taiwan: dynamics of genetic and antigenic evolution from 1998 to 2008. J Clin Microbiol 47: 3653–3662. 10.1128/JCM.00630-09
    1. Debbink K, Lindesmith LC, Donaldson EF, Swanstrom J, Baric RS (2014) Chimeric GII.4 norovirus virus-like-particle-based vaccines induce broadly blocking immune responses. J Virol 88: 7256–7266. 10.1128/JVI.00785-14
    1. Corti D, Suguitan AL Jr, Pinna D, Silacci C, Fernandez-Rodriguez BM, et al. (2010) Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J Clin Invest 120: 1663–1673. 10.1172/JCI41902
    1. Lessler J, Riley S, Read JM, Wang S, Zhu H, et al. (2012) Evidence for antigenic seniority in influenza A (H3N2) antibody responses in southern China. PLoS Pathog 8: e1002802 10.1371/journal.ppat.1002802

Source: PubMed

3
Tilaa