Home-based motor imagery intervention improves functional performance following total knee arthroplasty in the short term: a randomized controlled trial

Armin H Paravlic, Nicola Maffulli, Simon Kovač, Rado Pisot, Armin H Paravlic, Nicola Maffulli, Simon Kovač, Rado Pisot

Abstract

Background: Motor imagery (MI) is effective in improving motor performance in the healthy asymptomatic adult population. However, its possible effects among older orthopaedic patients are still poorly investigated. Therefore, this study explored whether the addition of motor imagery to routine physical therapy reduces the deterioration of quadriceps muscle strength and voluntary activation (VA) as well as other variables related to motor performance in patients after total knee arthroplasty (TKA).

Methods: Twenty-six patients scheduled for TKA were randomized to either MI practice combined with routine physical therapy group (MIp) or to a control group receiving physical therapy alone (CON). MIp consisted of maximal voluntary isometric contraction (MViC) task: 15 min/day in the hospital, then 5 times/week in their homes for 4 weeks. MViC and VA of quadriceps muscle, knee flexion and extension range of motion, pain level, along with a Timed Up-and-Go Test (TUG) and self-reported measure of physical function (assessed using the Oxford Knee Score questionnaire [OKS]) were evaluated before (PRE) and 1 month after surgery (POST).

Results: Significantly better rehabilitation outcomes were evident on the operated leg for the MIp group compared to CON: at POST, the MIp showed lower strength decrease (p = 0.012, η2 = 0.237) and unaltered VA, significantly greater than CON (p = 0.014, η2 = 0.227). There were no significant differences in knee flexion and extension range of motion and pain level (p > 0.05). Further, MIp patients performed better in TUG (p < 0.001, η2 = 0.471) and reported better OKS scores (p = 0.005, η2 = 0.280). The non-operated leg showed no significant differences in any outcomes at POST (all p > 0.05). In addition, multiple linear regression analysis showed that failure of voluntary activation explained 47% of the quadriceps muscle strength loss, with no significant difference in perceived level of pain.

Conclusion: MI practice, when added to physical therapy, improves both objective and subjective measures of patients' physical function after TKA, and facilitates transfer of MI strength task on functional mobility.

Trial registration: Retrospectively registered on ClinicalTrials.gov NCT03684148.

Keywords: Cognitive training; Knee osteoarthritis; Mental simulation; Muscle activation; Physical function; Rehabilitation; Total knee replacement.

Conflict of interest statement

The authors declare that they have no conflict of interest relevant to the content of this article.

Funding

The present study was a part of a PhD project, thus it was partly supported by the Slovenian Research Agency (ARRS).

Figures

Fig. 1
Fig. 1
Flow chart of participant enrolment, randomised group allocation, and final analysis
Fig. 2
Fig. 2
Motor imagery training setup
Fig. 3
Fig. 3
Experimental setup for the measurement of isometric strength and voluntary activation of the quadriceps femoris muscle
Fig. 4
Fig. 4
Mean percent changes (and standard deviations) from baseline in knee extensor muscles strength (a, b) and voluntary activation (c, d) in motor imagery practice (MIp) and control (CON) groups following total knee arthroplasty surgery
Fig. 5
Fig. 5
Mean percent changes (and standard deviations) from baseline in Timed Up-and-Go test (a), and Oxford Knee Score questionnaire (b) in motor imagery practice (MIp) and control (CON) groups following total knee arthroplasty surgery
Fig. 6
Fig. 6
Linear regression analysis of the contribution of the change in voluntary activation to the change in the strength of the quadriceps muscle of the operated leg

References

    1. Brooks PM. The burden of musculoskeletal disease - a global perspective. Clin Rheumatol. 2006;25(6):778–781. doi: 10.1007/s10067-006-0240-3.
    1. Salaffi DA. R, Grassi W. Prevalence of musculoskeletal conditions in an Italian population sample: results of a regional community-based study. I. The MAPPING study. Scand J Rheumatol. 2007;36(1):14–21. doi: 10.1080/03009740600904243.
    1. Bourne R. Remains of the day: Outcome measurements in total knee arthroplasty. Orthopedics. 2000;23:995–998.
    1. Khanna A, Gougoulias N, Longo UG, Maffulli N. Minimally invasive total knee arthroplasty: a systematic review. Orthop Clin North Am. 2009;40(4):479–489. doi: 10.1016/j.ocl.2009.05.003.
    1. Schache MB, McClelland JA, Webster KE. Lower limb strength following total knee arthroplasty: A systematic review. Knee. 2014;21(1):12–20. doi: 10.1016/j.knee.2013.08.002.
    1. Mizner PSC, Stevens JE, Axe MJ, Snyder-Mackler L. Preoperative quadriceps strength predicts functional ability one year after total knee arthroplasty. J Rheumatol. 2005;32(8):1533–1539.
    1. Mizner P. S, Stevens E, Vandenborne K, Snyder-Mackler L. Early quadriceps strength loss after total knee arthroplasty. J Bone Jt Surg. 2005;87-A(5):1047–1054. doi: 10.2106/JBJS.D.01992.
    1. Holm B, Kristensen MT, Bencke J, Husted H, Kehlet H, Bandholm T. Loss of knee-extension strength is related to knee swelling after total knee arthroplasty. Arch Phys Med Rehabil. 2010;91(11):1770–1776. doi: 10.1016/j.apmr.2010.07.229.
    1. Morita S, Kusaka T, Tanaka S, Yamada E, Arima N, Itoh S, et al. The relationship between muscle weakness and activation of the cerebral cortex early after unicompartmental knee arthroplasty. J Phys Ther Sci. 2013;25(3):301–307. doi: 10.1589/jpts.25.301.
    1. Paravlic AH, Kovač S, Pisot R, Marusic U. Neurostructural correlates of strength decrease following total knee arthroplasty: A systematic review of the literature with meta-analysis. Bosn J basic Med Sci. 2019;20(1):1–12.
    1. Jeannerod. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 1994;17(2):187–245.
    1. Slimani M, Tod D, Chaabene H, Miarka B, Chamari K. Effects of mental imagery on muscular strength in healthy and patient parti...: Search USA (multiple databases and sources) J Sport Sci Med. 2016;15(3):434–450.
    1. Paravlic AH, Slimani M, Tod D, Marusic U, Milanovic Z, Pisot R. Effects and dose–response relationships of motor imagery practice on strength development in healthy adult populations: a systematic review and meta-analysis. Sport Med. 2018;48(5):1165–87.
    1. Kanthack TFD, Guillot A, Papaxanthis C, Guizard T, Collet C, Di Rienzo F. Neurophysiological insights on flexibility improvements through motor imagery. Behav Brain Res. 2017;331(September):159–168. doi: 10.1016/j.bbr.2017.05.004.
    1. Forward JB, Greuter NE, Crisall JS, Lester HH. Effect of structured touch and guided imagery for pain and anxiety in elective joint replacement patients—a randomized controlled trial: M-TIJRP. Perm J. 2015;19(4):18–28.
    1. Hoyek N, Di Rienzo F, Collet C, Hoyek F, Guillot A. The therapeutic role of motor imagery on the functional rehabilitation of a stage II shoulder impingement syndrome. Disabil Rehabil. 2014;36(13):1113–1119. doi: 10.3109/09638288.2013.833309.
    1. Tamir R, Dickstein R, Huberman M. Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinson’s disease. Neurorehabil Neural Repair. 2007;21(1):68–75. doi: 10.1177/1545968306292608.
    1. Li ZM, Tan JY, Chen GL, Lin WY. Effects of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials. Complement Ther Clin Pract. 2017;28(1):75–84. doi: 10.1016/j.ctcp.2017.05.009.
    1. Zach S, Dobersek U, Filho E, Inglis V, Tenenbaum G. A meta-analysis of mental imagery effects on post-injury functional mobility, perceived pain, and self-efficacy. Psychol Sport Exerc. 2018;34:79–87. doi: 10.1016/j.psychsport.2017.09.011.
    1. Marusic U, Grosprêtre S, Paravlic A, Kovač S, Pišot R, Taube W. Motor imagery during action observation of locomotor tasks improves rehabilitation outcome in older adults after total hip arthroplasty. Neural Plast. 2018;2018(March):1–9. doi: 10.1155/2018/5651391.
    1. Moukarzel M, Di Rienzo F, Lahoud J-C, Hoyek F, Collet C, Guillot A, et al. The therapeutic role of motor imagery during the acute phase after total knee arthroplasty: a pilot study. Disabil Rehabil. 2017;41(8):926–33.
    1. Jacobson AF, Umberger WA, Palmieri PA, Alexander TS, Myerscough RP, Draucker CB, et al. Guided imagery for total knee replacement: a randomized, placebo-controlled pilot study. J Altern Complement Med. 2016;22(7):563–575. doi: 10.1089/acm.2016.0038.
    1. Grezes J, Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp. 2001;12(September 2000):1–19. doi: 10.1002/1097-0193(200101)12:1<1::AID-HBM10>;2-V.
    1. Knight CA, Kamen G. Relationships between voluntary activation and motor unit W ring rate during maximal voluntary contractions in young and older adults. Eur J Appl Physiol. 2008;103(6):625-30.
    1. Hopkins WG. Estimating sample size for magnitude-based inferences. Sportscience. 2006;10:63–70.
    1. Norman GR. Point/counterpoint interpretation of changes in health-related quality of life the remarkable universality of half a standard deviation. Med Care. 2003;41(5):582–592.
    1. Sakpal T. Sample size estimation in clinical trial. Perspect Clin Res. 2010;1(2):67–69.
    1. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348(March):1–12. doi: 10.1136/bmj.g1687.
    1. Lindheimer JB, O’Connor PJ, Dishman RK. Quantifying the placebo effect in psychological outcomes of exercise training: a meta-analysis of randomized trials. Sport Med. 2015;45(5):693–711. doi: 10.1007/s40279-015-0303-1.
    1. Merton P. Voluntary strength and fatigue. J Physiol. 1954;123:553–564. doi: 10.1113/jphysiol.1954.sp005070.
    1. Strojnik V, Komi PV. Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol. 1998;84(1):344–350. doi: 10.1152/jappl.1998.84.1.344.
    1. Jaric S. Role of body size in the relation between muscle strength and movement performance. Exerc Sport Sci Rev. 2003;31(1):8–12. doi: 10.1097/00003677-200301000-00003.
    1. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Steffen TM, Hacker T a, Mollinger L. Age- and gender-related test performance in community-dwelling elderly people: six-minute walk test, Berg Balance Scale, Timed Up & Go Test, and Gait Speeds. Phys Ther. 2002;82(2):128–137. doi: 10.1093/ptj/82.2.128.
    1. Mizner PS, Snyder-Mackler L. Quadriceps Strength and the time course of functional recovery after total knee arthroplasty. J Orthop Sport Phys Ther. 2005;35:424–436. doi: 10.2519/jospt.2005.35.7.424.
    1. Cibere J, Thorne A, Bellamy N, Greidanus N, Chalmers A, Mahomed N, et al. Reliability of the knee examination in osteoarthritis: effect of standardization. Arthritis Rheum. 2004;50(2):458–468. doi: 10.1002/art.20025.
    1. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: visual analog scale for pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF) Arthritis Care Res. 2011;63(SUPPL. 11):240–252. doi: 10.1002/acr.20543.
    1. Jenny JY, Diesinger Y. The Oxford Knee Score: Compared performance before and after knee replacement. Orthop Traumatol Surg Res. 2012;98(4):409–412. doi: 10.1016/j.otsr.2012.03.004.
    1. Hopkins MSW, Batterham AM, Hanin J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med Sci Sport Exerc. 2009;41(1):3–13. doi: 10.1249/MSS.0b013e31818cb278.
    1. Hsiao Y-H, Chien S-H, Tu H-P, Fu JC-M, Tsai S-T, Chen Y-S, et al. Early Post-Operative Intervention of Whole-Body Vibration in Patients After Total Knee Arthroplasty: A Pilot Study. J Clin Med. 2019;8(11):1902. doi: 10.3390/jcm8111902.
    1. Hurley MV. The effects of joint damage on muscle function, proprioception and rehabilitation. Man Ther. 1997;2(1):11–17. doi: 10.1054/math.1997.0281.
    1. Maffulli N, Spiezia F, La Verde L, Rosa MA, Franceschi F. The management of extensor mechanism disruption after total knee arthroplasty. Sports Med Arthrosc. 2017;25(1):41–50. doi: 10.1097/JSA.0000000000000139.
    1. Gerbershagen HJ, Aduckathil S, van Wijck AJM, Peelen LM, Kalkman CJ, Meissner W. Pain intensity on the first day after surgery. Anesthesiology. 2013;118(4):934–944. doi: 10.1097/ALN.0b013e31828866b3.
    1. Wang C, Zhou C, Qu H, Yan S, Pan Z. Comparison of tourniquet application only during cementation and long-duration tourniquet application in total knee arthroplasty : a meta-analysis. J Orthop Surg Res. 2018;13(216):1–10.
    1. Geborek P, Månsson B, Wollheim FA, Moritz U. Intraarticular corticosteroid injection into rheumatoid arthritis knees improves extensor muscles strength. Rheumatol Int. 1990;9(6):265–270. doi: 10.1007/BF00541322.
    1. Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135–159. doi: 10.1123/jsr.9.2.135.
    1. Mizner SJE, Snyder-Mackler L. Voluntary activation and decreased force production of the quadriceps femoris muscle after total knee arthroplasty. Phys Ther. 2003;83(4):359–365. doi: 10.1093/ptj/83.4.359.
    1. Stevens JE, Mizner RL, Snyder-Mackler L. Quadriceps strength and volitional activation before and after total knee arthroplasty for osteoarthritis. J Orthop Res. 2003;21(5):775–779. doi: 10.1016/S0736-0266(03)00052-4.
    1. Bade S-LJE. Early high-intensity rehabilitation following total knee arthroplasty improves outcomes. J Orthop Sport Phys Ther. 2011;41(12):932–941. doi: 10.2519/jospt.2011.3734.
    1. Stevens-Lapsley JE, Balter JE, Wolfe P, Eckhoff DG, Kohrt WM. Early neuromuscular electrical stimulation to improve quadriceps muscle strength after total knee arthroplasty: a randomized controlled trial. Phys Ther. 2012;92(2):210–226. doi: 10.2522/ptj.20110124.
    1. Park JS, Choi J-B, Kim W-J, Jung N-H, Chang M. Effects of combining mental practice with electromyogram-triggered electrical stimulation for stroke patients with unilateral neglect. J Phys Ther Sci. 2015;27(11):3499–3501. doi: 10.1589/jpts.27.3499.
    1. Hong IK, Choi JB, Lee JH. Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke. Stroke. 2012;43(9):2506–2509. doi: 10.1161/STROKEAHA.112.663641.
    1. Bonassi G, Biggio M, Bisio A, Ruggeri P, Bove M, Avanzino L. Provision of somatosensory inputs during motor imagery enhances learning-induced plasticity in human motor cortex. Sci Rep. 2017;7(1):1–10.Available from: .
    1. Cupal DD, Brewer BW. Effects of relaxation and guided imagery on knee strength , reinjury anxiety , and pain following anterior cruciate ligament reconstruction. Rehabil Psychol. 2001;46(1):28–43. doi: 10.1037/0090-5550.46.1.28.
    1. Hanakawa T, Dimyan MA, Hallett M. Motor planning, imagery, and execution in the distributed motor network: A time-course study with functional MRI. Cereb Cortex. 2008;18(12):2775–2788. doi: 10.1093/cercor/bhn036.
    1. Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience. 2017;341:61–78. doi: 10.1016/j.neuroscience.2016.11.023.
    1. Tong Y, Pendy JT, Li WA, Du H, Zhang T, Geng X, et al. Motor Imagery-Based Rehabilitation: Potential Neural Correlates and Clinical Application for Functional Recovery of Motor Deficits after Stroke. Aging Dis. 2017;8(3):364. doi: 10.14336/AD.2016.1012.
    1. Kosslyn SM, Ganis G, Thompson WL, Hall WJ. Neural foundations of imagery. Nature. 2001;2(September):635–642.
    1. Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev. 2009;60(2):306–326. doi: 10.1016/j.brainresrev.2008.12.024.
    1. Ranganathan S. V, Liu JZ, Sahgal V, Yue GH. From mental power to muscle power - Gaining strength by using the mind. Neuropsychologia. 2004;42(7):944–956. doi: 10.1016/j.neuropsychologia.2003.11.018.
    1. Yao WX, Ranganathan VK, Allexandre D, Siemionow V, Yue GH. Kinesthetic imagery training of forceful muscle contractions increases brain signal and muscle strength. Front Hum Neurosci. 2013;7(9):561.
    1. Lebon F, Guillot A, Collet C. Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament. Appl Psychophysiol Biofeedback. 2012;37(1):45–51. doi: 10.1007/s10484-011-9175-9.
    1. Mizner S-ML. Altered loading during walking and sit-to-stand is affected by quadriceps weakness after total knee arthroplasty. J Orthop Res. 2005;23(5):1083–1090. doi: 10.1016/j.orthres.2005.01.021.
    1. Murray DW, Fitzpatrick R, Rogers K, Pandit H, Beard DJ, Carr AJ, et al. The use of the Oxford hip and knee scores. J Bone Jt Surg - Br Vol. 2007;89-B(8):1010–1014. doi: 10.1302/0301-620X.89B8.19424.
    1. Hamilton DF, Gaston P, Simpson AHRW. Is patient reporting of physical function accurate following total knee replacement? Bone Joint J. 2012;94-B(11):1506–1510.
    1. Husted H. Fast-track hip and knee arthroplasty: Clinical and organizational aspects. Acta Orthop. 2012;83(SUPPL.346):1–39. doi: 10.3109/17453674.2012.700593.
    1. Gómez-Barrena E, García-Rey E. Complications in total joint arthroplasties. J Clin Med. 2019;8(11):1891. doi: 10.3390/jcm8111891.

Source: PubMed

3
Tilaa