Urinary Proteomics in Predicting Heart Transplantation Outcomes (uPROPHET)-Rationale and database description

Qi-Fang Huang, Sander Trenson, Zhen-Yu Zhang, Wen-Yi Yang, Lucas Van Aelst, Esther Nkuipou-Kenfack, Fang-Fei Wei, Blerim Mujaj, Lutgarde Thijs, Agnieszka Ciarka, Jerome Zoidakis, Walter Droogné, Antonia Vlahou, Stefan Janssens, Johan Vanhaecke, Johan Van Cleemput, Jan A Staessen, Qi-Fang Huang, Sander Trenson, Zhen-Yu Zhang, Wen-Yi Yang, Lucas Van Aelst, Esther Nkuipou-Kenfack, Fang-Fei Wei, Blerim Mujaj, Lutgarde Thijs, Agnieszka Ciarka, Jerome Zoidakis, Walter Droogné, Antonia Vlahou, Stefan Janssens, Johan Vanhaecke, Johan Van Cleemput, Jan A Staessen

Abstract

Objectives: Urinary Proteomics in Predicting Heart Transplantation Outcomes (uPROPHET; NCT03152422) aims: (i) to construct new multidimensional urinary proteomic (UP) classifiers that after heart transplantation (HTx) help in detecting graft vasculopathy, monitoring immune system activity and graft performance, and in adjusting immunosuppression; (ii) to sequence UP peptide fragments and to identify key proteins mediating HTx-related complications; (iii) to validate UP classifiers by demonstrating analogy between UP profiles and tissue proteomic signatures (TP) in diseased explanted hearts, to be compared with normal donor hearts; (iv) and to identify new drug targets. This article describes the uPROPHET database construction, follow-up strategies and baseline characteristics of the HTx patients.

Methods: HTx patients enrolled at the University Hospital Gasthuisberg (Leuven) collected mid-morning urine samples. Cardiac biopsies were obtained at HTx. UP and TP methods and the statistical work flow in pursuit of the research objectives are described in detail in the Data supplement.

Results: Of 352 participants in the UP study (24.4% women), 38.9%, 40.3%, 5.7% and 15.1% had ischemic, dilated, hypertrophic or other cardiomyopathy. The median interval between HTx and first UP assessment (baseline) was 7.8 years. At baseline, mean values were 56.5 years for age, 25.2 kg/m2 for body mass index, 142.3/84.8 mm Hg and 124.2/79.8 mm Hg for office and 24-h ambulatory systolic/diastolic pressure, and 58.6 mL/min/1.73 m2 for the estimated glomerular filtration rate. Of all patients, 37.2% and 6.5% had a history of mild (grade = 1B) or severe (grade ≥ 2) cellular rejection. Anti-body mediated rejection had occurred in 6.2% patients. The number of follow-up urine samples available for future analyses totals over 950. The TP study currently includes biopsies from 7 healthy donors and 15, 14, and 3 patients with ischemic, dilated, and hypertrophic cardiomyopathy.

Conclusions: uPROPHET constitutes a solid resources for UP and TP research in the field of HTx and has the ambition to lay the foundation for the clinical application of UP in risk stratification in HTx patients.

Conflict of interest statement

Competing Interests: Esther Nkuipou-Kenfack is an employee of Mosaiques-Diagnostics AG (Hannover, Germany) and advised on the interpretation of the urinary proteomic data and participated in the critical review of the final draft of the manuscript. Her commercial affiliation did not play any role in study design, data collection and analysis, or decision to publish the manuscript and did not influence the statement on data sharing. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Number of heart transplantations performed…
Fig 1. Number of heart transplantations performed at the University Hospitals Leuven from 1989 until 2015.
Fig 2. Distributions of the multidimensional urinary…
Fig 2. Distributions of the multidimensional urinary proteomic classifiers HF1, HF2, HfrEF103 and HFP, consisting of 85, 671, 103 and 96 urinary peptide fragments and designed for diagnosis and prognostication in the framework of subclinical diastolic left ventricular dysfunction (HF1) or symptomatic heart failure (HF2, HFrEF103 and HFP).
The P value is for departure of the actually observed distribution (kernel distribution; dotted line) from normality (full line).
Fig 3. Distributions of the multidimensional urinary…
Fig 3. Distributions of the multidimensional urinary proteomic classifiers CAD238, ACSP75 and CKD273, consisting of 238, 75 and 273 urinary peptide fragments and designed for diagnosis and prognostication in the framework coronary heart disease (CAD238 and ACSP75) or chronic kidney disease (CKD273).
The P value is for departure of the actually observed distribution (kernel distribution; dotted line) from normality (full line).

References

    1. Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE et al. How to diagnose heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007; 28: 2539–50. doi:
    1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013; 121: e6–e245.
    1. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011; 32: 670–9. doi:
    1. Haddad H, Isaac D, Legare JF, Pflugfelder P, Hendry P, Chan M et al. Canadian Cardiovascular Society Consensus Conference update on cardiac transplantation 2008: Executive Summary. Can J Cardiol. 2009; 25: 197–205.
    1. Kuznetsova T, Mischak H, Mullen W, Staessen JA. Urinary proteome analysis in hypertensive patients with left ventricular diastolic dysfunction. Eur Heart J. 2012; 33: 2342–50. doi:
    1. Zhang ZY, Staessen JA, Thijs L, Gu Y, Liu Y, Jacobs L et al. Left ventricular diastolic function in relation to the urinary proteome: a proof-of-concept study in a general population. Int J Cardiol. 2014; 176: 158–65. doi:
    1. Zhang ZY, Ravassa S, Yang WY, Petit T, Pejchinovski M, Zürbig P et al. Diastolic left ventricular function in relation to urinary and serum collagen biomarkers in a general population. PLOS ONE. 2016; 11: e0167582 doi:
    1. Gu YM, Thijs L, Liu YP, Zhang ZY, Jacobs J, Koeck T et al. The urinary proteome as correlate and predictor of renal function in a population study. Nephrol Dial Transplant. 2014; 29: 2260–8. doi:
    1. Pontillo C, Jacobs L, Staessen JA, Schanstra JP, Rossing P, Heerspink HJ et al. A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrol Dial Transplant. 2016; pii: gfw239.
    1. Zhang ZY, Ravassa S, Pejchinovski M, Yang WY, Petra Z, Lopez B et al. A urinary fragment of mucin-1 subunit α is a novel biomarker associated with renal dysfunction in the general population. KI Reports. 2017; 4: doi:
    1. Htun NM, Magliano DJ, Zhang ZY, Lyons J, Petit T, Nkuipou-Kenfack E et al. Prediction of acute coronary syndromes by urinary proteome analysis. PLOS ONE. 2017; 12: e0172036 doi:
    1. Zhang ZY, Thijs L, Petit T, Gu YM, Jacobs L, Yang WY et al. The urinary proteome and systolic blood pressure as predictors of 5-year cardiovascular and cardiac outcomes in a general population. Hypertension. 2015; 66: 52–60. doi:
    1. World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. J Am Med Assoc. 2013; 310: 2191–4.
    1. Mehra MR, Kobashigawa JA, Starling R, Russell S, Uber PA, Parameshwar J et al. Listing criteria for heart transplantation: International Sociaty for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates—2006. J Heart Lung Transplant. 2006; 25: 1024–42. doi:
    1. Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J Heart Lung Transplant. 2016; 35: 1–23. doi:
    1. Kilic A, Emani S, Sai-Sudhakar CB, Higgins RSD, Whitson BA. Donor selection in heart transplantation. J Thorac Dis. 2014; 6: 1097–104. doi:
    1. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008; 29: 270–6. doi:
    1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH et al. 2013 ACCF/AHA guideline for the management of heart failure. Circulation. 2013; 128: e240–e327. doi:
    1. Jefferies JL, Towbin JA. Dilated cardiomyopathy. Lancet. 2010; 375: 752–62. doi:
    1. The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC), Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur Heart J. 2014; 35: 2733–79. doi:
    1. Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant. 2010; 29: 717–27. doi:
    1. Billingham ME, Cary NR, Hammond ME, Kemnitz J, Marboe C, McCallister HA et al. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Lung Transplant. 1990; 9: 587–93.
    1. Stewart S, Winters GL, Fishbein MC, Tazelaar HD, Kobashigawa J, Abrams J et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant. 2005; 24: 1710–20. doi:
    1. Schlant RC. Normal physiology of the cardiovascular system In: Hurst JW, Logue RB, Schlant RC, Kass Wenger N, eds. The Heart Arteries and Veins. Third Edition McGraw-Hill Book Company. A Blakiston Publication, New York: 1974; 79–109.
    1. Ehrsam RE, Perruchoud A, Oberholzer M, Burkart F, Herzog H. Influence of age on pulmonary haemodynamics at rest and during supine exercise. Clin Sci (Lond). 1983; 65: 653–60.
    1. Wolsk E, Bakkestrøm R, Thomsen JH, Balling L, Andersen MJ, Dahl JS et al. The influence of age on hemodynamic parameters during rest and exercise in healthy individuals. J Am Coll Cardiol Heart Fail. 2017; 5: 337–46.
    1. Pieper R, Gatlin CL, McGrath AM, Makusky AJ, Mondal M, Seonarain M et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics. 2004; 4: 1159–74. doi:
    1. Coon JJ, Zürbig P, Dakna M, Dominiczak AF, Decramer S, Fliser D et al. CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics Clin Appl. 2008; 2: 964–73. doi:
    1. Fliser D, Novak J, Thongboonkerd V, Argilés A, Jankowski V, Girolami MA et al. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol. 2007; 18: 1057–71. doi:
    1. Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, Nickerson P. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Intern. 2004; 2004: 323–32.
    1. Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol. 2006; 7: 230–40. doi:
    1. Mischak H, Kolch W, Aivalotis M, Bouyssie D, Court M, Dihazi H et al. Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin Appl. 2010; 4: 464–78. doi:
    1. Jantos-Siwy J, Schiffer E, Brand K, Schumann G, Rossing K, Delles C et al. Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Proteome Res. 2009; 8: 268–81. doi:
    1. Hughes S, Yang H, Chan-Ling T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci. 2000; 41: 1217–28.
    1. Latosinska A, Vougas K, Makridakis M, Klein J, Mullen W, Abbas M et al. Comparative analysis of label-free and 8-Plex iTRAQ approach for quantitative tissue proteomic analysis. PLOS ONE. 2015; 10: e0137048 doi:
    1. Latosinska A, Makridakis M, Frantzi M, Borràs DM, Janssen B, Mullen W et al. Integrative analysis of extracellular and intracellular bladder cancer cell line proteome with transcriptome: improving coverage and validity of –omics findings. Sci Rep. 2016; 6: 25619 doi:
    1. Latosinska A, Mokou M, Makridakis M, Mullen W, Zoidakis J, Lygirou V et al. Proteomics analysis of bladder cancer invasion: Targeting EIF3D for therapeutic intervention. Oncotarget. 2017; doi:
    1. Snedecor GW, Cochran WG. Statistical Methods. The Iowa State University Press, Ames, Iowa, USA: 1980; 78–79.
    1. Rossing K, Bosselmann HS, Gustafsson F, Zhang ZY, Gu YM, Kuznetsova T et al. Urinary proteomics pilot study for biomarker discovery and diagnosis in heart failure with reduced ejection fraction. PLOS ONE. 2016; 11: e0157167 doi:
    1. Zhang ZY, Ravassa S, Nkuipou-Kenfack E, Yang WY, Kerr SM, Koeck T et al. Novel urinary peptidomic classifier predicts incident heart failure. J Am Heart Assoc. 2017; 6: e005432 doi:
    1. Angelini A, Andersen CB, Bartoloni G, Black F, Bishop P, Doran H et al. A web-based pilot study of inter-pathologist reproducibility using the ISHLT 2004 working formulation for biopsy diagnosis of cardiac allograft rejection: the European experience. J Heart Lung Transplant. 2011; 30: 1214–20. doi:
    1. Berry GJ, Burke MM, Andersen C, Bruneval P, Fedrigo M, Fishbein MC et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J Heart Lung Transplant. 2013; 32: 1147–62. doi:
    1. Kim SC, Page EK, Knechtle SJ. Urine proteomics in kidney transplantation. Transplant Rev. 2014; 28: 15–20.
    1. Kaiser T, Kamal H, Rank A, Kolb HJ, Holler E, Ganser A et al. Proteomics applied to the clinical follow-up of patients after allogeneic hematopoietic stem cell transplantation. Blood. 2004; 104: 340–9. doi:
    1. Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, Deng MC, Cappola TP et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med. 2010; 362: 1890–900. doi:
    1. Kuznetsova T, Herbots L, López B, Jin Y, Richart T, Thijs L et al. Prevalence of left ventricular diastolic dysfunction in a general population. Circ Heart Fail. 2009; 2: 105–12. doi:
    1. Kloch-Badelek M, Kuznetsova T, Sakiewicz W, Tikhonoff V, Ryabikov A, González A et al. Prevalence of diastolic left ventricular dysfunction in European populations based on cross-validated diagnostic thresholds. Cardiovasc Ultrasound. 2012; 10: 10 doi:
    1. Mischak H, Delles C, Vlahou A, Vanholder R. Proteomic biomarkers in kidney disease: issues in development and implementation. Nature Rev Nephrol. 2015; 11: 221–32.
    1. Nkuipou-Kenfack E, Zürbig P, Mischak H. The long path towards implementation of clinical proteomics: exemplified based on CKD273. Proteomics Clin Appl. 2017; 11: doi:
    1. Argilés A, Siwy J, Duranton F, Gayrard N, Dakna M, Lundin U et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLOS ONE. 2013; 8: e62837 doi:
    1. Schanstra JP, Zürbig P, Alkhalaf A, Argiles A, Bakler SJ, Beige J et al. Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc Nephrol. 2015; 26: 1999–2010. doi:
    1. Pontillo C, Zhang ZY, Schanstra JP, Jacobs L, Zürbig P, Thijs L et al. Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. KI Reports. 2017; 4: doi:
    1. Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF III, Feldman HI et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150: 604–12.

Source: PubMed

3
Tilaa