Pharmacokinetic and Pharmacogenetic Factors Contributing to Platelet Function Recovery After Single Dose of Ticagrelor in Healthy Subjects

Qian Zhu, Wanping Zhong, Xipei Wang, Liping Mai, Guodong He, Jiyan Chen, Lan Tang, Shuwen Liu, Weihua Lai, Shilong Zhong, Qian Zhu, Wanping Zhong, Xipei Wang, Liping Mai, Guodong He, Jiyan Chen, Lan Tang, Shuwen Liu, Weihua Lai, Shilong Zhong

Abstract

Objectives: This study aimed to elucidate the contribution of candidate single nucleotide polymorphisms (SNPs) related to pharmacokinetics on the recovery of platelet function after single dose of ticagrelor was orally administered to healthy Chinese subjects. Methods: The pharmacokinetic profiles of ticagrelor and its metabolite AR-C124910XX (M8), and the platelet aggregation (PA), were assessed after 180 mg of single-dose ticagrelor was orally administered to 51 healthy Chinese subjects. Effects of CYP2C19 * 2, CYP2C19 * 3, CYP3A5 * 3, UGT1A1 * 6, UGT1A1 * 28, UGT2B7 * 2, UGT2B7 * 3, SLCO1B1 388A>G, and SLCO1B1 521T>C, on the pharmacokinetics of ticagrelor and M8, and platelet function recovery were investigated. Results: The time to recover 50% of the maximum drug effect (RT50) ranging from 36 to 126 h with 46.9% CV had a remarkable individual difference and was positively associated with the half-life (t1/2) of M8 (r = 0.3901, P = 0.0067). The time of peak concentration (Tmax) of ticagrelor for CYP2C19*3 GG homozygotes was significantly higher than that of GA heterozygotes (P = 0.0027, FDR = 0.0243). Decreased peak concentration (Cmax) of M8 was significantly associated with SLCO1B1 388A>G A allele (P = 0.0152, FDR = 0.1368). CYP2C19 * 2 A was significantly related to decreased Cmax of M8 (P = 0.0455, FDR = 0.2048). While, the influence of these nine SNPs on the recovery of platelet function was not significant. Conclusion: Our study suggests that the elimination of M8 is an important factor in determining the recovery of platelet function. Although CYP2C19 and SLCO1B1 genetic variants were related to the pharmacokinetics of ticagrelor or M8, they did not show a significant effect on the platelet function recovery in this study. Clinical Trial Registration: https://ichgcp.net/clinical-trials-registry/NCT03092076, identifier: NCT03092076.

Keywords: genetic variants; healthy subjects; pharmacokinetics; recovery of platelet function; ticagrelor.

Figures

Figure 1
Figure 1
Pharmacokinetic profiles of ticagrelor and M8 in 51 healthy subjects.
Figure 2
Figure 2
Average platelet aggregation after a single dose of ticagrelor in healthy subjects. (A) Average platelet aggregation during 0–48 h after a single 180 mg oral dose of ticagrelor (mean ± SD); (B) average platelet aggregation within all points of time after a single 180 mg oral dose of ticagrelor (mean ± SD).
Figure 3
Figure 3
Sigmoid maximal effect model of platelet aggregation. Goodness of fit plots: (A) Observed vs. individual population predicted values; (B) individual weighted residuals vs. time; (C) scatter plot of time vs. platelet aggregation, and the prediction curve.
Figure 4
Figure 4
Association of half-life of ticagrelor and M8 with recovery of platelet function. (A) Association of half-life (t1/2) of ticagrelor with the time to recover 50% of the maximum drug effect (RT50); (B) association of t1/2 of M8 with RT50; (C) association of t1/2 of ticagrelor with the recovery day to the baseline platelet aggregation (RECDAY); (D) association of t1/2 of M8 with the RECDAY.

References

    1. Agrawal V., Choi J. H., Giacomini K. M., Miller W. L. (2010). Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet. Genomics 20, 611–618. 10.1097/FPC.0b013e32833e0cb5
    1. Collet J. P., Hulot J. S., Pena A., Villard E., Esteve J. B., Silvain J., et al. . (2009). Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 373, 309–317. 10.1016/S0140-6736(08)61845-0
    1. De Waha A., Sandner S., Von Scheidt M., Boening A., Koch-Buettner K., Hammel D., et al. . (2016). A randomized, parallel group, double-blind study of ticagrelor compared with aspirin for prevention of vascular events in patients undergoing coronary artery bypass graft operation: rationale and design of the Ticagrelor in CABG (TiCAB) trial: an investigator-initiated trial. Am. Heart J. 179, 69–76. 10.1016/j.ahj.2016.05.017
    1. Franchi F., Rollini F., Park Y., Angiolillo D. J. (2015). Novel antiplatelet agents: the current state and what is coming down the pike. Prog. Cardiovasc. Dis. 58, 267–277. 10.1016/j.pcad.2015.08.009
    1. Fukushima-Uesaka H., Saito Y., Watanabe H., Shiseki K., Saeki M., Nakamura T., et al. . (2004). Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum. Mutat. 23:100. 10.1002/humu.9210
    1. Gurbel P. A., Bliden K. P., Butler K., Tantry U. S., Gesheff T., Wei C., et al. . (2009). Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study. Circulation 120, 2577–2585. 10.1161/CIRCULATIONAHA.109.912550
    1. Hansson E. C., Malm C. J., Hesse C., Hornestam B., Dellborg M., Rexius H., et al. . (2016). Platelet function recovery after ticagrelor withdrawal in patients awaiting urgent coronary surgery. Eur. J. Cardiothorac. Surg. 51, 633–637. 10.1093/ejcts/ezw373
    1. Held C., Asenblad N., Bassand J. P., Becker R. C., Cannon C. P., Claeys M. J., et al. . (2011). Ticagrelor versus clopidogrel in patients with acute coronary syndromes undergoing coronary artery bypass surgery: results from the PLATO (Platelet Inhibition and Patient Outcomes) trial. J. Am. Coll. Cardiol. 57, 672–684. 10.1016/j.jacc.2010.10.029
    1. Hiasa Y., Teng R., Emanuelsson H. (2014). Pharmacodynamics, pharmacokinetics and safety of ticagrelor in Asian patients with stable coronary artery disease. Cardiovasc. Interv. Ther. 29, 324–333. 10.1007/s12928-014-0277-1
    1. Hu Y. F., Qiu W., Liu Z. Q., Zhu L. J., Liu Z. Q., Tu J. H., et al. . (2006). Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on cyclosporine pharmacokinetics after renal transplantation. Clin. Exp. Pharmacol. Physiol. 33, 1093–1098. 10.1111/j.1440-1681.2006.04492.x
    1. Husted S., Emanuelsson H., Heptinstall S., Sandset P. M., Wickens M., Peters G. (2006). Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur. Heart J. 27, 1038–1047. 10.1093/eurheartj/ehi754
    1. Jada S. R., Lim R., Wong C. I., Shu X., Lee S. C., Zhou Q., et al. . (2007). Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients. Cancer Sci. 98, 1461–1467. 10.1111/j.1349-7006.2007.00541.x
    1. James S., Akerblom A., Cannon C. P., Emanuelsson H., Husted S., Katus H., et al. . (2009). Comparison of ticagrelor, the first reversible oral P2Y(12) receptor antagonist, with clopidogrel in patients with acute coronary syndromes: rationale, design, and baseline characteristics of the PLATelet inhibition and patient outcomes (PLATO) trial. Am. Heart J. 157, 599–605. 10.1016/j.ahj.2009.01.003
    1. Jeon H. S., Kim M. J., Choi H. Y., Kim Y. H., Kim E. H., Kim A. R., et al. . (2015). Pharmacokinetics and pharmacodynamics of ticagrelor and prasugrel in healthy male Korean volunteers. Clin. Ther. 37, 563–573. 10.1016/j.clinthera.2015.01.010
    1. Kalliokoski A., Niemi M. (2009). Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 158, 693–705. 10.1111/j.1476-5381.2009.00430.x
    1. Kim E. Y., Cho D. Y., Shin H. J., Lee S. S., Shon J. H., Shin J. G., et al. . (2008). Duplex pyrosequencing assay of the 388A>G and 521T>C SLCO1B1 polymorphisms in three Asian populations. Clin. Chim. Acta 388, 68–72. 10.1016/j.cca.2007.10.010
    1. Levine G. N., Bates E. R., Blankenship J. C., Bailey S. R., Bittl J. A., Cercek B., et al. . (2016). 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology/American heart association task force on clinical practice guidelines and the society for cardiovascular angiography and interventions. Circulation 133, 1135–1147. 10.1161/CIR.0000000000000336
    1. Li H., Butler K., Yang L., Yang Z., Teng R. (2012). Pharmacokinetics and tolerability of single and multiple doses of ticagrelor in healthy Chinese subjects: an open-label, sequential, two-cohort, single-centre study. Clin. Drug Investig. 32, 87–97. 10.2165/11595930-000000000-00000
    1. Link E., Parish S., Armitage J., Bowman L., Heath S., Matsuda F., et al. (2008). SLCO1B1 variants and statin-induced myopathy–a genomewide study. N. Engl. J. Med. 359, 789–799. 10.1056/NEJMoa0801936
    1. Liu S., Shi X., Tian X., Zhang X., Sun Z., Miao L. (2017). Effect of CYP3A4(*)1G and CYP3A5(*)3 polymorphisms on pharmacokinetics and pharmacodynamics of ticagrelor in healthy Chinese subjects. Front. Pharmacol. 8:176. 10.3389/fphar.2017.00176
    1. Lu L., Zhou J., Shi J., Peng X. J., Qi X. X., Wang Y., et al. . (2015). Drug-metabolizing activity, protein and gene expression of UDP-glucuronosyltransferases are significantly altered in hepatocellular carcinoma patients. PLoS ONE 10:e0127524. 10.1145/2818302
    1. Mega J. L., Close S. L., Wiviott S. D., Shen L., Hockett R. D., Brandt J. T., et al. . (2009). Cytochrome p-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360, 354–362. 10.1056/NEJMoa0809171
    1. Ramsey L. B., Bruun G. H., Yang W., Trevino L. R., Vattathil S., Scheet P., et al. . (2012). Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 22, 1–8. 10.1101/gr.129668.111
    1. Storey R. F., Husted S., Harrington R. A., Heptinstall S., Wilcox R. G., Peters G., et al. . (2007). Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes. J. Am. Coll. Cardiol. 50, 1852–1856. 10.1016/j.jacc.2007.07.058
    1. Storey R. F., Melissa Thornton S., Lawrance R., Husted S., Wickens M., Emanuelsson H., et al. . (2009). Ticagrelor yields consistent dose-dependent inhibition of ADP-induced platelet aggregation in patients with atherosclerotic disease regardless of genotypic variations in P2RY12, P2RY1, and ITGB3. Platelets 20, 341–348. 10.1080/09537100903075324
    1. Tantry U. S., Bliden K. P., Gurbel P. A. (2007). AZD6140. Expert Opin. Investig. Drugs 16, 225–229. 10.1517/13543784.16.2.225
    1. Tantry U. S., Bliden K. P., Wei C., Storey R. F., Armstrong M., Butler K., et al. . (2010). First analysis of the relation between CYP2C19 genotype and pharmacodynamics in patients treated with ticagrelor versus clopidogrel: the ONSET/OFFSET and RESPOND genotype studies. Circ. Cardiovasc. Genet. 3, 556–566. 10.1161/CIRCGENETICS.110.958561
    1. Teng R., Butler K. (2010). Pharmacokinetics, pharmacodynamics, tolerability and safety of single ascending doses of ticagrelor, a reversibly binding oral P2Y(12) receptor antagonist, in healthy subjects. Eur. J. Clin. Pharmacol. 66, 487–496. 10.1007/s00228-009-0778-5
    1. Teng R., Butler K. (2014). Pharmacokinetics, pharmacodynamics, and tolerability of single and multiple doses of ticagrelor in Japanese and Caucasian volunteers. Int. J. Clin. Pharmacol. Ther. 52, 478–491. 10.5414/CP202017
    1. Teng R., Mitchell P., Butler K. (2012). Effect of age and gender on pharmacokinetics and pharmacodynamics of a single ticagrelor dose in healthy individuals. Eur. J. Clin. Pharmacol. 68, 1175–1182. 10.1007/s00228-012-1227-4
    1. Teng R., Oliver S., Hayes M. A., Butler K. (2010). Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab. Dispos. 38, 1514–1521. 10.1124/dmd.110.032250
    1. Tomšič A., Schotborgh M. A., Manshanden J. S., Li W. W., de Mol B. A. (2016). Coronary artery bypass grafting-related bleeding complications in patients treated with dual antiplatelet treatment. Eur. J. Cardiothorac. Surg. 50, 849–856. 10.1093/ejcts/ezw149
    1. Varenhorst C., Alstrom U., Scirica B. M., Hogue C. W., Asenblad N., Storey R. F., et al. . (2012). Factors contributing to the lower mortality with ticagrelor compared with clopidogrel in patients undergoing coronary artery bypass surgery. J. Am. Coll. Cardiol. 60, 1623–1630. 10.1016/j.jacc.2012.07.021
    1. Varenhorst C., Eriksson N., Johansson A., Barratt B. J., Hagstrom E., Akerblom A., et al. . (2015). Effect of genetic variations on ticagrelor plasma levels and clinical outcomes. Eur. Heart J. 36, 1901–1912. 10.1093/eurheartj/ehv116
    1. Voora D., Shah S. H., Spasojevic I., Ali S., Reed C. R., Salisbury B. A., et al. . (2009). The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 54, 1609–1616. 10.1016/j.jacc.2009.04.053
    1. Wallentin L., Becker R. C., Budaj A., Cannon C. P., Emanuelsson H., Held C., et al. . (2009). Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057. 10.1056/NEJMoa0904327
    1. Wallentin L., James S., Storey R. F., Armstrong M., Barratt B. J., Horrow J., et al. . (2010). Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet 376, 1320–1328. 10.1016/S0140-6736(10)61274-3
    1. Wang Y., Shen L., Xu N., Wang J. W., Jiao S. C., Liu Z. Y., et al. . (2012). UGT1A1 predicts outcome in colorectal cancer treated with irinotecan and fluorouracil. World J. Gastroenterol. 18, 6635–6644. 10.3748/wjg.v18.i45.6635
    1. Wedlund P. J. (2000). The CYP2C19 enzyme polymorphism. Pharmacology 61, 174–183. 10.1159/000028398
    1. Wiviott S. D., Steg P. G. (2015). Clinical evidence for oral antiplatelet therapy in acute coronary syndromes. Lancet 386, 292–302. 10.1016/S0140-6736(15)60213-6
    1. Zeng Y., He Y. J., He F. Y., Fan L., Zhou H. H. (2009). Effect of bifendate on the pharmacokinetics of cyclosporine in relation to the CYP3A4*18B genotype in healthy subjects. Acta Pharmacol. Sin. 30, 478–484. 10.1038/aps.2009.27
    1. Zhong W., Wang X., Tang L., Mai L., Chen X. P., He G., et al. . (2016). Simultaneous determination of ticagrelor and its metabolites in human plasma and urine using liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 40, 445–453. 10.1093/jat/bkw039
    1. Zhou D., Andersson T. B., Grimm S. W. (2011). In vitro evaluation of potential drug-drug interactions with ticagrelor: cytochrome P450 reaction phenotyping, inhibition, induction, and differential kinetics. Drug Metab. Dispos. 39, 703–710. 10.1124/dmd.110.037143

Source: PubMed

3
Tilaa