Targeting Hypoxia-A2A Adenosinergic Immunosuppression of Antitumor T Cells During Cancer Immunotherapy

Joseph M Steingold, Stephen M Hatfield, Joseph M Steingold, Stephen M Hatfield

Abstract

The blockade of immunological negative regulators offered a novel therapeutic approach that revolutionized the immunotherapy of cancer. Still, a significant portion of patients fail to respond to anti-PD-1/PD-L1 and/or anti-CTLA-4 therapy or experience significant adverse effects. We propose that one of the major reasons that many patients do not respond to this form of therapy is due to the powerful physiological suppression mediated by hypoxia-adenosinergic signaling. Indeed, both inflamed and cancerous tissues are hypoxic and rich in extracellular adenosine, in part due to stabilization of the transcription factor hypoxia-inducible factor 1 alpha (HIF-1α). Adenosine signals through adenosine A2A receptors (A2AR) to suppress anti-tumor and anti-pathogen immune responses. Several classes of anti-hypoxia-A2AR therapeutics have been offered to refractory cancer patients, with A2AR blockers, inhibitors of adenosine-generating enzymes such as CD39 and CD73, and hypoxia-targeting drugs now reaching the clinical stage. Clinical results have confirmed preclinical observations that blockade of the hypoxia-adenosine-A2AR axis synergizes with inhibitors of immune checkpoints to induce tumor rejection. Thus, A2AR blockers provide a new hope for the majority of patients who are nonresponsive to current immunotherapeutic approaches including checkpoint blockade. Here, we discuss the discoveries that firmly implicate the A2AR as a critical and non-redundant biochemical negative regulator of the immune response and highlight the importance of targeting the hypoxia-adenosine-A2AR axis to manipulate anti-pathogen and anti-tumor immune responses.

Keywords: HIF−1α; T cell; adenosine; cancer immunotherapies; hypoxia; immune checkpoint; immunology.

Copyright © 2020 Steingold and Hatfield.

References

    1. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, et al. . Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol. (2004) 22:657–82. 10.1146/annurev.immunol.22.012703.104731
    1. Sitkovsky M, Lukashev D. Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol. (2005) 5:712–21. 10.1038/nri1685
    1. Sitkovsky MV, Ohta A. The 'danger' sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol. (2005) 26:299–304. 10.1016/j.it.2005.04.004
    1. Hellström I, Hellström KE, Pierce GE, Yang JP. Cellular and humoral immunity to different types of human neoplasms. Nature. (1968) 220:1352–4. 10.1038/2201352a0
    1. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. . A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA. (2006) 103:13132–7. 10.1073/pnas.0605251103
    1. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. (2001) 414:916–20. 10.1038/414916a
    1. Haskó G, Szabó C, Németh ZH, Kvetan V, Pastores SM, Vizi ES. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol. (1996) 157:4634–40.
    1. Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, et al. . A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood. (2008) 111:251–9. 10.1182/blood-2007-03-081646
    1. Ohta A, Ohta A, Madasu M, Kini R, Subramanian M, Goel N, et al. . A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J Immunol. (2009) 183:5487–93. 10.4049/jimmunol.0901247
    1. Sitkovsky MV, Hatfield S, Abbott R, Belikoff B, Lukashev D, Ohta A. Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol Res. (2014) 2:598–605. 10.1158/2326-6066.CIR-14-0075
    1. Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. (1997) 90:1600–10. 10.1182/blood.V90.4.1600.1600_1600_1610
    1. Apasov SG, Koshiba M, Chused TM, Sitkovsky MV. Effects of extracellular ATP and adenosine on different thymocyte subsets: possible role of ATP-gated channels and G protein-coupled purinergic receptor. J Immunol. (1997) 158:5095–105.
    1. Koshiba M, Rosin DL, Hayashi N, Linden J, Sitkovsky MV. Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. Mol Pharmacol. (1999) 55:614–24.
    1. Armstrong JM, Chen JF, Schwarzschild MA, Apasov S, Smith PT, Caldwell C, et al. . Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: studies of cells from A2A-receptor-gene-deficient mice. Biochem J. (2001) 354(Pt 1):123–30. 10.1042/bj3540123
    1. Koshiba M, Kojima H, Huang S, Apasov S, Sitkovsky MV. Memory of extracellular adenosine A2A purinergic receptor-mediated signaling in murine T cells. J Biol Chem. (1997) 272:25881–9. 10.1074/jbc.272.41.25881
    1. Haskó G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mabley JG, et al. . Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J. (2000) 14:2065–74. 10.1096/fj.99-0508com
    1. Németh ZH, Lutz CS, Csóka B, Deitch EA, Leibovich SJ, Gause WC, et al. . Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. J Immunol. (2005) 175:8260–70. 10.4049/jimmunol.175.12.8260
    1. Csóka B, Selmeczy Z, Koscsó B, Németh ZH, Pacher P, Murray PJ, et al. . Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. (2012) 26:376–86. 10.1096/fj.11-190934
    1. Csoka B, Nemeth ZH, Duerr CU, Fritz JH, Pacher P, Hasko G. Adenosine receptors differentially regulate type 2 cytokine production by IL-33-activated bone marrow cells, ILC2s, and macrophages. FASEB J. (2018) 32:829–37. 10.1096/fj.201700770R
    1. Lan J, Lu H, Samanta D, Salman S, Lu Y, Semenza GL. Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc Natl Acad Sci USA. (2018) 115:E9640–8. 10.1073/pnas.1809695115
    1. Eckle T, Kewley EM, Brodsky KS, Tak E, Bonney S, Gobel M, et al. . Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. J Immunol. (2014) 192:1249–56. 10.4049/jimmunol.1100593
    1. Galezowski M, Wȩgrzyn P, Bobowska A, Dziedzic K, Szeremeta-Spisak J, Nowogrodzki M, et al. Abstract 4135: Novel dual A2A/A2B adenosine receptor antagonists for cancer immunotherapy: in vitro and in vivo characterization. Cancer Res. (2019) 79:4135 10.1158/1538-7445.SABCS18-4135
    1. Milo R, Jorgensen P, Moran U, Weber G, Springer M. BioNumbers–the database of key numbers in molecular and cell biology. Nucleic Acids Res. (2010) 38(Database issue):D750–3. 10.1093/nar/gkp889
    1. Falzoni S, Donvito G, Di Virgilio F. Detecting adenosine triphosphate in the pericellular space. Interface Focus. (2013) 3:20120101. 10.1098/rsfs.2012.0101
    1. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer. (2018) 18:601–18. 10.1038/s41568-018-0037-0
    1. Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol. (2000) 362:299–309. 10.1007/s002100000309
    1. Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta. (2008) 1783:673–94. 10.1016/j.bbamcr.2008.01.024
    1. Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. (2012) 8:437–502. 10.1007/s11302-012-9309-4
    1. Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. (2017) 276:121–44. 10.1111/imr.12528
    1. Adriouch S, Haag F, Boyer O, Seman M, Koch-Nolte F. Extracellular NAD(+): a danger signal hindering regulatory T cells. Microbes Infect. (2012) 14:1284–92. 10.1016/j.micinf.2012.05.011
    1. Haag F, Adriouch S, Brass A, Jung C, Moller S, Scheuplein F, et al. . Extracellular NAD and ATP: Partners in immune cell modulation. Purinergic Signal. (2007) 3:71–81. 10.1007/s11302-006-9038-7
    1. Chini EN, Chini CCS, Espindola Netto JM, de Oliveira GC, van Schooten W. The pharmacology of CD38/NADase: an emerging target in cancer and diseases of aging. Trends Pharmacol Sci. (2018) 39:424–36. 10.1016/j.tips.2018.02.001
    1. Horenstein AL, Chillemi A, Zaccarello G, Bruzzone S, Quarona V, Zito A, et al. . A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology. (2013) 2:e26246. 10.4161/onci.26246
    1. Vigano S, Alatzoglou D, Irving M, Menetrier-Caux C, Caux C, Romero P, et al. . Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front Immunol. (2019) 10:925. 10.3389/fimmu.2019.00925
    1. Chen L, Diao L, Yang Y, Yi X, Rodriguez BL, Li Y, et al. . CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. (2018) 8:1156–75. 10.1158/-17-1033
    1. Kaczmarek E, Koziak K, Sévigny J, Siegel JB, Anrather J, Beaudoin AR, et al. . Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem. (1996) 271:33116–22. 10.1074/jbc.271.51.33116
    1. Grenz A, Zhang H, Hermes M, Eckle T, Klingel K, Huang DY, et al. . Contribution of E-NTPDase1 (CD39) to renal protection from ischemia-reperfusion injury. FASEB J. (2007) 21:2863–73. 10.1096/fj.06-7947com
    1. Eckle T, Füllbier L, Wehrmann M, Khoury J, Mittelbronn M, Ibla J, et al. . Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J Immunol. (2007) 178:8127–37. 10.4049/jimmunol.178.12.8127
    1. Airas L, Hellman J, Salmi M, Bono P, Puurunen T, Smith DJ, et al. . CD73 is involved in lymphocyte binding to the endothelium: characterization of lymphocyte-vascular adhesion protein 2 identifies it as CD73. J Exp Med. (1995) 182:1603–8. 10.1084/jem.182.5.1603
    1. Allard B, Turcotte M, Spring K, Pommey S, Royal I, Stagg J. Anti-CD73 therapy impairs tumor angiogenesis. Int J Cancer. (2014) 134:1466–73. 10.1002/ijc.28456
    1. Allard B, Cousineau I, Allard D, Buisseret L, Pommey S, Chrobak P, et al. . Adenosine A2a receptor promotes lymphangiogenesis and lymph node metastasis. Oncoimmunology. (2019) 8:1601481. 10.1080/2162402X.2019.1601481
    1. Kojima H, Gu H, Nomura S, Caldwell CC, Kobata T, Carmeliet P, et al. . Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1alpha -deficient chimeric mice. Proc Natl Acad Sci USA. (2002) 99:2170–4. 10.1073/pnas.052706699
    1. Thiel M, Caldwell CC, Kreth S, Kuboki S, Chen P, Smith P, et al. . Targeted deletion of HIF-1alpha gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS ONE. (2007) 2:e853. 10.1371/journal.pone.0000853
    1. Hatfield SM, Kjaergaard J, Lukashev D, Belikoff B, Schreiber TH, Sethumadhavan S, et al. . Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1alpha-dependent and extracellular adenosine-mediated tumor protection. J Mol Med. (2014) 92:1283–92. 10.1007/s00109-014-1189-3
    1. Kim H.P., Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med. (2007) 204:1543–51. 10.1084/jem.20070109
    1. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature. (2007) 445:936–40. 10.1038/nature05563
    1. Ramanathan M, Pinhal-Enfield G, Hao I, Leibovich SJ. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Mol Biol Cell. (2007) 18:14–23. 10.1091/mbc.e06-07-0596
    1. De Ponti C, Carini R, Alchera E, Nitti MP, Locati M, Albano E, et al. . Adenosine A2a receptor-mediated, normoxic induction of HIF-1 through PKC and PI-3K-dependent pathways in macrophages. J Leukoc Biol. (2007) 82:392–402. 10.1189/jlb.0107060
    1. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. . Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. (2007) 204:1257–65. 10.1084/jem.20062512
    1. Sitkovsky MV. T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol. (2009). 30:102–8. 10.1016/j.it.2008.12.002
    1. Ohta A, Kini R, Ohta A, Subramanian M, Madasu M, Sitkovsky M. The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol. (2012) 3:190. 10.3389/fimmu.2012.00190
    1. Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest. (1986) 78:760–70. 10.1172/JCI112638
    1. Takayama H, Sitkovsky MV. Antigen receptor-regulated exocytosis in cytotoxic T lymphocytes. J Exp Med. (1987) 166:725–43. 10.1084/jem.166.3.725
    1. Sitkovsky MV. Mechanistic, functional and immunopharmacological implications of biochemical studies of antigen receptor-triggered cytolytic T-lymphocyte activation. Immunol Rev. (1988) 103:127–60. 10.1111/j.1600-065X.1988.tb00754.x
    1. Sitkovsky MV, Trenn G, Takayama H. Cyclic AMP-dependent protein kinase as a part of the possible down-regulating pathway in the antigen receptor-regulated cytotoxic T lymphocyte conjugate formation and granule exocytosis. Ann N Y Acad Sci. (1988) 532:350–8. 10.1111/j.1749-6632.1988.tb36352.x
    1. Takayama H, Sitkovsky MV. Potential use of an antagonist of cAMP-dependent protein kinase to block inhibition and modulate T-cell receptor-triggered activation of cytotoxic T-lymphocytes. J Pharm Sci. (1989) 78:8–10. 10.1002/jps.2600780104
    1. Bjørgo E, Moltu K, Tasken K. Phosphodiesterases as targets for modulating T-cell responses. Handb Exp Pharmacol. (2011) 2011:345-63. 10.1007/978-3-642-17969-3_15
    1. Trenn G, Takayama H, Sitkovsky MV. Antigen-receptor regulated exocytosis of cytolytic granules may not be required for target cell lysis by cytotoxic T lymphocytes. Nature. (1987) 330:72–4. 10.1038/330072a0
    1. Takayama H, Trenn G, Sitkovsky MV. Locus of inhibitory action of cAMP-dependent protein kinase in the antigen receptor-triggered cytotoxic t lymphocyte activation pathway. J Biol Chem. (1988) 263:2330–6.
    1. Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. (2008) 8:425–37. 10.1038/nrc2397
    1. Sitkovsky MV. Damage control by hypoxia-inhibited. A Blood K. (2008) 111:5424–5. 10.1182/blood-2008-03-143990
    1. Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. (2017) 17:709–24. 10.1038/nrc.2017.86
    1. Kjaergaard J, Hatfield S, Jones G, Ohta A, Sitkovsky M. A2A adenosine receptor gene deletion or synthetic A2A antagonist liberate tumor-reactive CD8(+) T cells from tumor-induced immunosuppression. J Immunol. (2018) 201:782–91. 10.4049/jimmunol.1700850
    1. Newick K, O'Brien S, Sun J, Kapoor V, Maceyko S, Lo A, et al. . Augmentation of CAR t-cell trafficking and antitumor efficacy by blocking protein kinase a localization. Cancer Immunol Res. (2016) 4:541–51. 10.1158/2326-6066.CIR-15-0263
    1. Beavis PA, Henderson MA, Giuffrida L, Mills JK, Sek K, Cross RS, et al. . Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J Clin Invest. (2017) 127:929–41. 10.1172/JCI89455
    1. Leone RD, Sun IM, Oh MH, Sun IH, Wen J, Englert J, et al. . Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother. (2018) 67:1271–84. 10.1007/s00262-018-2186-0
    1. Young A, Ngiow SF, Gao Y, Patch AM, Barkauskas DS, Messaoudene M, et al. . A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. (2018) 78:1003–16. 10.1158/0008-5472.CAN-17-2826
    1. Willingham SB, Ho PY, Hotson A, Hill C, Piccione EC, Hsieh J, et al. . A2AR Antagonism with CPI-444 induces antitumor responses and augments efficacy to anti-PD-(L)1 and Anti-CTLA-4 in preclinical models. Cancer Immunol Res. (2018) 6:1136–49. 10.1158/2326-6066.CIR-18-0056
    1. Fong L, Hotson A, Powderly JD, Sznol M, Heist RS, Choueiri TK, et al. . Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. (2020) 10:40–53. 10.1158/-19-0980
    1. Chiappori A, Williams CC, Creelan BC, Tanvetyanon T, Gray JE, Haura EB, et al. Phase I/II study of the A2AR antagonist NIR178 (PBF-509), an oral immunotherapy, in patients (pts) with NSCLC. J Clin Oncol. (2018) 36:9089 10.1200/JCO.2018.36.15_suppl.9089
    1. Bendell J, Bauer T, Patel M, Falchook G, Karlix JL, Lim E, et al. Abstract CT026: Evidence of immune activation in the first-in-human Phase Ia dose escalation study of the adenosine 2a receptor antagonist, AZD4635, in patients with advanced solid tumors. Cancer Res. (2019) 79(13 Supplement):CT026. 10.1158/1538-7445.SABCS18-CT026
    1. Sun X, Wu Y, Gao W, Enjyoji K, Csizmadia E, Muller CE, et al. . CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology. (2010) 139:1030–40. 10.1053/j.gastro.2010.05.007
    1. Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, et al. . Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci US A. (2010) 107:1547–52. 10.1073/pnas.0908801107
    1. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, et al. . CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci USA. (2013) 110:11091–6. 10.1073/pnas.1222251110
    1. Young A, Ngiow SF, Barkauskas DS, Sult E, Hay C, Blake SJ, et al. . Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell. (2016) 30:391–403. 10.1016/j.ccell.2016.06.025
    1. Feng L, Sun X, Csizmadia E, Han L, Bian S, Murakami T, et al. . Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia. (2011) 13:206–16. 10.1593/neo.101332
    1. Künzli BM, Bernlochner MI, Rath S, Käser S, Csizmadia E, Enjyoji K, et al. . Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer. Purinergic Signal. (2011) 7:231–41. 10.1007/s11302-011-9228-9
    1. Stagg J, Divisekera U, Duret H, Sparwasser T, Teng MW, Darcy PK, et al. . CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. (2011) 71:2892–900. 10.1158/0008-5472.CAN-10-4246
    1. Stagg J, Beavis PA, Divisekera U, Liu MC, Moller A, Darcy PK, et al. . CD73-deficient mice are resistant to carcinogenesis. Cancer Res. (2012) 72:2190–6. 10.1158/0008-5472.CAN-12-0420
    1. Allard B, Pommey S, Smyth MJ, Stagg J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res. (2013) 19:5626–35. 10.1158/1078-0432.CCR-13-0545
    1. Zhang B. CD73: a novel target for cancer immunotherapy. Cancer Res. (2010). 70:6407-11. 10.1158/0008-5472.CAN-10-1544
    1. Jin D, Fan J, Wang L, Thompson LF, Liu A, Daniel BJ, et al. . CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. (2010) 70:2245–55. 10.1158/0008-5472.CAN-09-3109
    1. Overman MJ, LoRusso P, Strickler JH, Patel SP, Clarke SJ, Noonan AM, et al. Safety, efficacy, and pharmacodynamics (PD) of MEDI9447 (oleclumab) alone or in combination with durvalumab in advanced colorectal cancer (CRC) or pancreatic cancer (panc). J Clin Oncol. (2018) 36:4123–23. 10.1200/JCO.2018.36.15_suppl.4123
    1. Siu LL, Burris H, Le DT, Hollebecque A, Steeghs N, Delord J-P, et al. Abstract CT180: Preliminary phase 1 profile of BMS-986179, an anti-CD73 antibody, in combination with nivolumab in patients with advanced solid tumors. Cancer Res. (2018) 78:CT180 10.1158/1538-7445.AM2018-CT180
    1. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, et al. . Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med. (2015) 7:277ra30. 10.1126/scitranslmed.aaa1260
    1. Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, et al. . Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci USA. (2008) 105:19579–86. 10.1073/pnas.0809763105
    1. Wong CC, Zhang H, Gilkes DM, Chen J, Wei H, Chaturvedi P, et al. . Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J Mol Med (Berl). (2012) 90:803–15. 10.1007/s00109-011-0855-y
    1. Xiang L, Gilkes DM, Chaturvedi P, Luo W, Hu H, Takano N, et al. . Ganetespib blocks HIF-1 activity and inhibits tumor growth, vascularization, stem cell maintenance, invasion, and metastasis in orthotopic mouse models of triple-negative breast cancer. J Mol Med (Berl). (2014) 92:151–64. 10.1007/s00109-013-1102-5
    1. Madasu MM, Subramanian M, Kini R, Ohta A, Sitkovsky M, Ohta A. Hypoxia can suppress T cell activation in a mechanism independent of A2A adenosine receptor (46.27). J Immunol. (2012) 188(Supplement 1):46.27.
    1. Sitkovsky MV. Lessons from the A2A adenosine receptor antagonist-enabled tumor regression and survival in patients with treatment-refractory renal cell cancer. Cancer Discov. (2020). 10:16–9. 10.1158/-19-1280

Source: PubMed

3
Tilaa