Targeting Adenosine Receptor Signaling in Cancer Immunotherapy

Kevin Sek, Christina Mølck, Gregory D Stewart, Lev Kats, Phillip K Darcy, Paul A Beavis, Kevin Sek, Christina Mølck, Gregory D Stewart, Lev Kats, Phillip K Darcy, Paul A Beavis

Abstract

The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of 'checkpoint blockade' and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient's own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A₁R, A2AR, A2BR, A₃R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.

Keywords: Adenosine; Adenosine receptors; cancer immunotherapy; immune cells; tumor cells.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Generation of adenosine in the tumor microenvironment leads to the suppression of multiple immune subsets. Arrows indicate increased expression or activation. T bars indicate inhibition or reduced activity.
Figure 2
Figure 2
Expression of adenosine receptors and their downstream signalling pathways within various immune cell subsets and tumor cells in the context of the TME. Arrows indicate increased expression or activation. T bars indicate inhibition or reduced activity.

References

    1. Morciano G., Sarti A.C., Marchi S., Missiroli S., Falzoni S., Raffaghello L., Pistoia V., Giorgi C., Di Virgilio F., Pinton P. Use of luciferase probes to measure ATP in living cells and animals. Nat. Protoc. 2017;12:1542–1562. doi: 10.1038/nprot.2017.052.
    1. Ballarin M., Fredholm B.B., Ambrosio S., Mahy N. Extracellular levels of adenosine and its metabolites in the striatum of awake rats: Inhibition of uptake and metabolism. Acta Physiol. Scand. 1991;142:97–103. doi: 10.1111/j.1748-1716.1991.tb09133.x.
    1. Idzko M., Ferrari D., Eltzschig H.K. Nucleotide signalling during inflammation. Nature. 2014;509:310–317. doi: 10.1038/nature13085.
    1. Burnstock G., Knight G.E. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal. 2018;14:1–18. doi: 10.1007/s11302-017-9593-0.
    1. Galluzzi L., Buque A., Kepp O., Zitvogel L., Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017;17:97–111. doi: 10.1038/nri.2016.107.
    1. Ramkumar V., Hallam D.M., Nie Z. Adenosine, oxidative stress and cytoprotection. Jpn. J. Pharmacol. 2001;86:265–274. doi: 10.1254/jjp.86.265.
    1. Shaikh G., Cronstein B. Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal. 2016;12:191–197. doi: 10.1007/s11302-016-9498-3.
    1. Blay J., White T.D., Hoskin D.W. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 1997;57:2602–2605.
    1. Ohta A., Gorelik E., Prasad S.J., Ronchese F., Lukashev D., Wong M.K., Huang X., Caldwell S., Liu K., Smith P., et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl. Acad. Sci. USA. 2006;103:13132–13137. doi: 10.1073/pnas.0605251103.
    1. Kishore B.K., Robson S.C., Dwyer K.M. CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal. 2018;14:109–120. doi: 10.1007/s11302-017-9596-x.
    1. Ledderose C., Liu K., Kondo Y., Slubowski C.J., Dertnig T., Denicolo S., Arbab M., Hubner J., Konrad K., Fakhari M., et al. Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration. J. Clin. Investig. 2018;128:3583–3594. doi: 10.1172/JCI120972.
    1. Bradford K.L., Moretti F.A., Carbonaro-Sarracino D.A., Gaspar H.B., Kohn D.B. Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular Pathogenesis and Clinical Manifestations. J. Clin. Immunol. 2017;37:626–637. doi: 10.1007/s10875-017-0433-3.
    1. Hatfield S.M., Kjaergaard J., Lukashev D., Schreiber T.H., Belikoff B., Abbott R., Sethumadhavan S., Philbrook P., Ko K., Cannici R., et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 2015;7:277ra30. doi: 10.1126/scitranslmed.aaa1260.
    1. Wang Y.J., Fletcher R., Yu J., Zhang L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018;5:194–203. doi: 10.1016/j.gendis.2018.05.003.
    1. Di Virgilio F., Sarti A.C., Falzoni S., De Marchi E., Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer. 2018;18:601–618. doi: 10.1038/s41568-018-0037-0.
    1. Allard D., Chrobak P., Allard B., Messaoudi N., Stagg J. Targeting the CD73-adenosine axis in immuno-oncology. Immunol. Lett. 2018 doi: 10.1016/j.imlet.2018.05.001.
    1. Maj T., Wang W., Crespo J., Zhang H., Wang W., Wei S., Zhao L., Vatan L., Shao I., Szeliga W., et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 2017;18:1332–1341. doi: 10.1038/ni.3868.
    1. Antonioli L., Blandizzi C., Pacher P., Hasko G. Immunity, inflammation and cancer: A leading role for adenosine. Nat. Rev. Cancer. 2013;13:842–857. doi: 10.1038/nrc3613.
    1. Stagg J., Divisekera U., McLaughlin N., Sharkey J., Pommey S., Denoyer D., Dwyer K.M., Smyth M.J. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc. Natl. Acad. Sci. USA. 2010;107:1547–1552. doi: 10.1073/pnas.0908801107.
    1. Stagg J., Divisekera U., Duret H., Sparwasser T., Teng M.W., Darcy P.K., Smyth M.J. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. 2011;71:2892–2900. doi: 10.1158/0008-5472.CAN-10-4246.
    1. Tsukamoto H., Chernogorova P., Ayata K., Gerlach U.V., Rughani A., Ritchey J.W., Ganesan J., Follo M., Zeiser R., Thompson L.F., et al. Deficiency of CD73/ecto-5’-nucleotidase in mice enhances acute graft-versus-host disease. Blood. 2012;119:4554–4564. doi: 10.1182/blood-2011-09-375899.
    1. Leone R.D., Emens L.A. Targeting adenosine for cancer immunotherapy. J. Immunother. Cancer. 2018;6:57. doi: 10.1186/s40425-018-0360-8.
    1. Buisseret L., Pommey S., Allard B., Garaud S., Bergeron M., Cousineau I., Ameye L., Bareche Y., Paesmans M., Crown J.P.A., et al. Clinical significance of CD73 in triple-negative breast cancer: Multiplex analysis of a phase III clinical trial. Ann. Oncol. 2018;29:1056–1062. doi: 10.1093/annonc/mdx730.
    1. Loi S., Pommey S., Haibe-Kains B., Beavis P.A., Darcy P.K., Smyth M.J., Stagg J. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc. Natl. Acad. Sci. USA. 2013;110:11091–11096. doi: 10.1073/pnas.1222251110.
    1. Jiang T., Xu X., Qiao M., Li X., Zhao C., Zhou F., Gao G., Wu F., Chen X., Su C., et al. Comprehensive evaluation of NT5E/CD73 expression and its prognostic significance in distinct types of cancers. BMC Cancer. 2018;18:267. doi: 10.1186/s12885-018-4073-7.
    1. Inoue Y., Yoshimura K., Kurabe N., Kahyo T., Kawase A., Tanahashi M., Ogawa H., Inui N., Funai K., Shinmura K., et al. Prognostic impact of CD73 and A2A adenosine receptor expression in non-small-cell lung cancer. Oncotarget. 2017;8:8738–8751. doi: 10.18632/oncotarget.14434.
    1. Vijayan D., Young A., Teng M.W.L., Smyth M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer. 2017;17:709–724. doi: 10.1038/nrc.2017.86.
    1. Vogt T.J., Gevensleben H., Dietrich J., Kristiansen G., Bootz F., Landsberg J., Goltz D., Dietrich D. Detailed analysis of adenosine A2a receptor (ADORA2A) and CD73 (5′-nucleotidase, ecto, NT5E) methylation and gene expression in head and neck squamous cell carcinoma patients. Oncoimmunology. 2018;7:e1452579. doi: 10.1080/2162402X.2018.1452579.
    1. Horenstein A.L., Chillemi A., Zaccarello G., Bruzzone S., Quarona V., Zito A., Serra S., Malavasi F. A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology. 2013;2:e26246. doi: 10.4161/onci.26246.
    1. Horenstein A.L., Chillemi A., Quarona V., Zito A., Roato I., Morandi F., Marimpietri D., Bolzoni M., Toscani D., Oldham R.J., et al. NAD(+)-Metabolizing Ectoenzymes in Remodeling Tumor-Host Interactions: The Human Myeloma Model. Cells. 2015;4:520–537. doi: 10.3390/cells4030520.
    1. Chen L., Diao L., Yang Y., Yi X., Rodriguez B.L., Li Y., Villalobos P.A., Cascone T., Liu X., Tan L., et al. CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discov. 2018;8:1156–1175. doi: 10.1158/-17-1033.
    1. Vaisitti T., Audrito V., Serra S., Bologna C., Brusa D., Malavasi F., Deaglio S. NAD+-metabolizing ecto-enzymes shape tumor-host interactions: The chronic lymphocytic leukemia model. FEBS Lett. 2011;585:1514–1520. doi: 10.1016/j.febslet.2011.04.036.
    1. Rao S.R., Snaith A.E., Marino D., Cheng X., Lwin S.T., Orriss I.R., Hamdy F.C., Edwards C.M. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. Br. J. Cancer. 2017;116:227–236. doi: 10.1038/bjc.2016.402.
    1. Bilski J., Mazur-Bialy A., Wojcik D., Zahradnik-Bilska J., Brzozowski B., Magierowski M., Mach T., Magierowska K., Brzozowski T. The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediat. Inflamm. 2017;2017:9074601. doi: 10.1155/2017/9074601.
    1. Morandi F., Morandi B., Horenstein A.L., Chillemi A., Quarona V., Zaccarello G., Carrega P., Ferlazzo G., Mingari M.C., Moretta L., et al. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation. Oncotarget. 2015;6:25602–25618. doi: 10.18632/oncotarget.4693.
    1. Morandi F., Horenstein A.L., Chillemi A., Quarona V., Chiesa S., Imperatori A., Zanellato S., Mortara L., Gattorno M., Pistoia V., et al. CD56brightCD16- NK Cells Produce Adenosine through a CD38-Mediated Pathway and Act as Regulatory Cells Inhibiting Autologous CD4+ T Cell Proliferation. J. Immunol. 2015;195:965–972. doi: 10.4049/jimmunol.1500591.
    1. Stockwell J., Jakova E., Cayabyab F.S. Adenosine A1 and A2A Receptors in the Brain: Current Research and Their Role in Neurodegeneration. Molecules. 2017;22:676. doi: 10.3390/molecules22040676.
    1. Ben-Ari Fuchs S., Horenstein A.L., Chillemi A., Quarona V., Chiesa S., Imperatori A., Zanellato S., Mortara L., Gattorno M., Pistoia V., et al. GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data. Omics. 2016;20:139–151. doi: 10.1089/omi.2015.0168.
    1. Fredholm B.B., Ap I.J., Jacobson K.A., Linden J., Muller C.E. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—An update. Pharmacol. Rev. 2011;63:1–34. doi: 10.1124/pr.110.003285.
    1. Fredholm B.B., Ap I.J., Jacobson K.A., Klotz K.N., Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 2001;53:527–552.
    1. Gomez G., Sitkovsky M.V. Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood. 2003;102:4472–4478. doi: 10.1182/blood-2002-11-3624.
    1. Hasko G., Kuhel D.G., Nemeth Z.H., Mabley J.G., Stachlewitz R.F., Virag L., Lohinai Z., Southan G.J., Salzman A.L., Szabo C. Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J. Immunol. 2000;164:1013–1019. doi: 10.4049/jimmunol.164.2.1013.
    1. Tilley S.L., Wagoner V.A., Salvatore C.A., Jacobson M.A., Koller B.H. Adenosine and inosine increase cutaneous vasopermeability by activating A3 receptors on mast cells. J. Clin. Investig. 2000;105:361–367. doi: 10.1172/JCI8253.
    1. da Rocha Lapa F., de Oliveira A.P., Accetturi B.G., de Oliveira Martins I., Domingos H.V., de Almeida Cabrini D., de Lima W.T., Santos A.R. Anti-inflammatory effects of inosine in allergic lung inflammation in mice: Evidence for the participation of adenosine A2A and A 3 receptors. Purinergic Signal. 2013;9:325–336. doi: 10.1007/s11302-013-9351-x.
    1. Sengmany K., Singh J., Stewart G.D., Conn P.J., Christopoulos A., Gregory K.J. Biased allosteric agonism and modulation of metabotropic glutamate receptor 5: Implications for optimizing preclinical neuroscience drug discovery. Neuropharmacology. 2017;115:60–72. doi: 10.1016/j.neuropharm.2016.07.001.
    1. Welihinda A.A., Kaur M., Greene K., Zhai Y., Amento E.P. The adenosine metabolite inosine is a functional agonist of the adenosine A(2A) receptor with a unique signaling bias. Cell. Signal. 2016;28:552–560. doi: 10.1016/j.cellsig.2016.02.010.
    1. Klaasse E.C., Ijzerman A.P., de Grip W.J., Beukers M.W. Internalization and desensitization of adenosine receptors. Purinergic Signal. 2008;4:21–37. doi: 10.1007/s11302-007-9086-7.
    1. Mundell S., Kelly E. Adenosine receptor desensitization and trafficking. Biochim. Biophys. Acta. 2011;1808:1319–1328. doi: 10.1016/j.bbamem.2010.06.007.
    1. Wootten D., Christopoulos A., Marti-Solano M., Babu M.M., Sexton P.M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 2018;19:638–653. doi: 10.1038/s41580-018-0049-3.
    1. Ellisdon A.M., Halls M.L. Compartmentalization of GPCR signalling controls unique cellular responses. Biochem. Soc. Trans. 2016;44:562–567. doi: 10.1042/BST20150236.
    1. Lasley R.D. Adenosine receptors and membrane microdomains. Biochim. Biophys. Acta. 2011;1808:1284–1289. doi: 10.1016/j.bbamem.2010.09.019.
    1. Sun Y., Huang P. Adenosine A2B Receptor: From Cell Biology to Human Diseases. Front. Chem. 2016;4:37. doi: 10.3389/fchem.2016.00037.
    1. Borea P.A., Varani K., Vincenzi F., Baraldi P.G., Tabrizi M.A., Merighi S., Gessi S. The A3 adenosine receptor: History and perspectives. Pharmacol. Rev. 2015;67:74–102. doi: 10.1124/pr.113.008540.
    1. Panjehpour M., Castro M., Klotz K.N. Human breast cancer cell line MDA-MB-231 expresses endogenous A2B adenosine receptors mediating a Ca2+ signal. Br. J. Pharmacol. 2005;145:211–218. doi: 10.1038/sj.bjp.0706180.
    1. Arumugham V.B., Baldari C.T. cAMP: A multifaceted modulator of immune synapse assembly and T cell activation. J. Leukoc. Biol. 2017;101:1301–1316. doi: 10.1189/jlb.2RU1116-474R.
    1. Brudvik K.W., Tasken K. Modulation of T cell immune functions by the prostaglandin E2—cAMP pathway in chronic inflammatory states. Br. J. Pharmacol. 2012;166:411–419. doi: 10.1111/j.1476-5381.2011.01800.x.
    1. Ruppelt A., Mosenden R., Gronholm M., Aandahl E.M., Tobin D., Carlson C.R., Abrahamsen H., Herberg F.W., Carpen O., Tasken K. Inhibition of T cell activation by cyclic adenosine 5′-monophosphate requires lipid raft targeting of protein kinase A type I by the A-kinase anchoring protein ezrin. J. Immunol. 2007;179:5159–5168. doi: 10.4049/jimmunol.179.8.5159.
    1. Raskovalova T., Lokshin A., Huang X., Jackson E.K., Gorelik E. Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-activated NK cells: Involvement of protein kinase A isozyme I (PKA I) Immunol. Res. 2006;36:91–99. doi: 10.1385/IR:36:1:91.
    1. Raskovalova T., Lokshin A., Huang X., Su Y., Mandic M., Zarour H.M., Jackson E.K., Gorelik E. Inhibition of cytokine production and cytotoxic activity of human antimelanoma specific CD8+ and CD4+ T lymphocytes by adenosine-protein kinase A type I signaling. Cancer Res. 2007;67:5949–5956. doi: 10.1158/0008-5472.CAN-06-4249.
    1. Vang A.G., Housley W., Dong H., Basole C., Ben-Sasson S.Z., Kream B.E., Epstein P.M., Clark R.B., Brocke S. Regulatory T-cells and cAMP suppress effector T-cells independently of PKA-CREM/ICER: A potential role for Epac. Biochem. J. 2013;456:463–473. doi: 10.1042/BJ20130064.
    1. Almahariq M., Mei F.C., Wang H., Cao A.T., Yao S., Soong L., Sun J., Cong Y., Chen J., Cheng X. Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression. Biochem. J. 2015;465:295–303. doi: 10.1042/BJ20140952.
    1. Stork P.J., Dillon T.J. Multiple roles of Rap1 in hematopoietic cells: Complementary versus antagonistic functions. Blood. 2005;106:2952–2961. doi: 10.1182/blood-2005-03-1062.
    1. Hara S., Nakaseko C., Yamasaki S., Hattori M., Bos J.L., Saito Y., Minato N., Saito T. Involvement of Rap-1 activation and early termination of immune synapse in CTLA-4-mediated negative signal. Hematology. 2009;14:150–158. doi: 10.1179/102453309X402241.
    1. Cadieux J.S., Leclerc P., St-Onge M., Dussault A.A., Laflamme C., Picard S., Ledent C., Borgeat P., Pouliot M. Potentiation of neutrophil cyclooxygenase-2 by adenosine: An early anti-inflammatory signal. Pt 7J. Cell Sci. 2005;118:1437–1447. doi: 10.1242/jcs.01737.
    1. Ernens I., Rouy D., Velot E., Devaux Y., Wagner D.R. Adenosine inhibits matrix metalloproteinase-9 secretion by neutrophils: Implication of A2a receptor and cAMP/PKA/Ca2+ pathway. Circ. Res. 2006;99:590–597. doi: 10.1161/01.RES.0000241428.82502.d4.
    1. Hwang T.L., Yeh S.H., Leu Y.L., Chern C.Y., Hsu H.C. Inhibition of superoxide anion and elastase release in human neutrophils by 3′-isopropoxychalcone via a cAMP-dependent pathway. Br. J. Pharmacol. 2006;148:78–87. doi: 10.1038/sj.bjp.0706712.
    1. Link A.A., Kino T., Worth J.A., McGuire J.L., Crane M.L., Chrousos G.P., Wilder R.L., Elenkov I.J. Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. J. Immunol. 2000;164:436–442. doi: 10.4049/jimmunol.164.1.436.
    1. Aronoff D.M., Canetti C., Serezani C.H., Luo M., Peters-Golden M. Cutting edge: Macrophage inhibition by cyclic AMP (cAMP): Differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J. Immunol. 2005;174:595–599. doi: 10.4049/jimmunol.174.2.595.
    1. Minguet S., Huber M., Rosenkranz L., Schamel W.W., Reth M., Brummer T. Adenosine and cAMP are potent inhibitors of the NF-κB pathway downstream of immunoreceptors. Eur. J. Immunol. 2005;35:31–41. doi: 10.1002/eji.200425524.
    1. Takahashi H.K., Iwagaki H., Hamano R., Kanke T., Liu K., Sadamori H., Yagi T., Yoshino T., Sendo T., Tanaka N., et al. Effect of adenosine receptor subtypes stimulation on mixed lymphocyte reaction. Eur. J. Pharmacol. 2007;564:204–210. doi: 10.1016/j.ejphar.2007.02.005.
    1. Gessi S., Varani K., Merighi S., Morelli A., Ferrari D., Leung E., Baraldi P.G., Spalluto G., Borea P.A. Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. Br. J. Pharmacol. 2001;134:116–126. doi: 10.1038/sj.bjp.0704254.
    1. Gessi S., Varani K., Merighi S., Cattabriga E., Avitabile A., Gavioli R., Fortini C., Leung E., Lennan S.M., Borea P.A. Expression of A3 Adenosine Receptors in Human Lymphocytes: Up-Regulation in T Cell Activation. Mol. Pharmacol. 2004;65:711–719. doi: 10.1124/mol.65.3.711.
    1. Gessi S., Sacchetto V., Fogli E., Merighi S., Varani K., Baraldi P.G., Tabrizi M.A., Leung E., Maclennan S., Borea P.A. Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors. Biochem. Pharmacol. 2010;79:1483–1495. doi: 10.1016/j.bcp.2010.01.009.
    1. Zhao R., Wang S., Huang Z., Zhang L., Yang X., Bai X., Zhou D., Qin Z., Du G. Lipopolysaccharide-induced serotonin transporter up-regulation involves PKG-I and p38MAPK activation partially through A3 adenosine receptor. Biosci. Trends. 2015;9:367–376. doi: 10.5582/bst.2015.01168.
    1. Zheng L., Chen J., Huang Y., Wang Y., Yang H., Zhang Y., Xie S. Evidence for A1 and A3 receptors mediating adenosine-induced intracellular calcium release in the dorsal root ganglion neurons by using confocal microscopy imaging. Lasers Med. Sci. 2014;29:1209–1215. doi: 10.1007/s10103-013-1511-2.
    1. Koszalka P., Golunska M., Urban A., Stasilojc G., Stanislawowski M., Majewski M., Skladanowski A.C., Bigda J. Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration. PLoS ONE. 2016;11:e0151420. doi: 10.1371/journal.pone.0151420.
    1. Ethier M.F., Madison J.M. Adenosine A1 receptors mediate mobilization of calcium in human bronchial smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 2006;35:496–502. doi: 10.1165/rcmb.2005-0290OC.
    1. Forte G., Sorrentino R., Montinaro A., Pinto A., Morello S. Cl-IB-MECA enhances TNF-α release in peritoneal macrophages stimulated with LPS. Cytokine. 2011;54:161–166. doi: 10.1016/j.cyto.2011.02.002.
    1. Mozzicato S., Joshi B.V., Jacobson K.A., Liang B.T. Role of direct RhoA-phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. FASEB J. 2004;18:406–408. doi: 10.1096/fj.03-0592fje.
    1. Kim T.H., Kim Y.K., Woo J.S. The adenosine A3 receptor agonist Cl-IB-MECA induces cell death through Ca2+/ROS-dependent down regulation of ERK and Akt in A172 human glioma cells. Neurochem. Res. 2012;37:2667–2677. doi: 10.1007/s11064-012-0855-5.
    1. Merighi S., Varani K., Gessi S., Cattabriga E., Iannotta V., Ulouglu C., Leung E., Borea P.A. Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. Br. J. Pharmacol. 2001;134:1215–1226. doi: 10.1038/sj.bjp.0704352.
    1. Etique N., Grillier-Vuissoz I., Lecomte J., Flament S. Crosstalk between adenosine receptor (A2A isoform) and ERα mediates ethanol action in MCF-7 breast cancer cells. Oncol. Rep. 2009;21:977–981.
    1. Mediavilla-Varela M., Luddy K., Noyes D., Khalil F.K., Neuger A.M., Soliman H., Antonia S.J. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol. Ther. 2013;14:860–868. doi: 10.4161/cbt.25643.
    1. Kasama H., Sakamoto Y., Kasamatsu A., Okamoto A., Koyama T., Minakawa Y., Ogawara K., Yokoe H., Shiiba M., Tanzawa H., et al. Adenosine A2b receptor promotes progression of human oral cancer. BMC Cancer. 2015;15:563. doi: 10.1186/s12885-015-1577-2.
    1. Vecchio E.A., Tan C.Y., Gregory K.J., Christopoulos A., White P.J., May L.T. Ligand-Independent Adenosine A2B Receptor Constitutive Activity as a Promoter of Prostate Cancer Cell Proliferation. J. Pharmacol. Exp. Ther. 2016;357:36–44. doi: 10.1124/jpet.115.230003.
    1. Merighi S., Benini A., Mirandola P., Gessi S., Varani K., Leung E., MacLennan S., Baraldi P.G., Borea P.A. A3 adenosine receptors modulate hypoxia-inducible factor-1α expression in human A375 melanoma cells. Neoplasia. 2005;7:894–903. doi: 10.1593/neo.05334.
    1. Suh B.C., Kim T.D., Lee J.U., Seong J.K., Kim K.T. Pharmacological characterization of adenosine receptors in PGT-β mouse pineal gland tumour cells. Br. J. Pharmacol. 2001;134:132–142. doi: 10.1038/sj.bjp.0704218.
    1. Kazemi M.H., Raoofi Mohseni S., Hojjat-Farsangi M., Anvari E., Ghalamfarsa G., Mohammadi H., Jadidi-Niaragh F. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J. Cell. Physiol. 2018;233:2032–2057. doi: 10.1002/jcp.25873.
    1. Madi L., Ochaion A., Rath-Wolfson L., Bar-Yehuda S., Erlanger A., Ohana G., Harish A., Merimski O., Barer F., Fishman P. The A3 adenosine receptor is highly expressed in tumor versus normal cells: Potential target for tumor growth inhibition. Clin. Cancer Res. 2004;10:4472–4479. doi: 10.1158/1078-0432.CCR-03-0651.
    1. Gessi S., Cattabriga E., Avitabile A., Gafa R., Lanza G., Cavazzini L., Bianchi N., Gambari R., Feo C., Liboni A., et al. Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin. Cancer Res. 2004;10:5895–5901. doi: 10.1158/1078-0432.CCR-1134-03.
    1. Polycarpou E., Meira L.B., Carrington S., Tyrrell E., Modjtahedi H., Carew M.A. Resveratrol 3-O-D-glucuronide and resveratrol 4′-O-D-glucuronide inhibit colon cancer cell growth: Evidence for a role of A3 adenosine receptors, cyclin D1 depletion, and G1 cell cycle arrest. Mol. Nutr. Food Res. 2013;57:1708–1717. doi: 10.1002/mnfr.201200742.
    1. Bar-Yehuda S., Barer F., Volfsson L., Fishman P. Resistance of muscle to tumor metastases: A role for a3 adenosine receptor agonists. Neoplasia. 2001;3:125–131. doi: 10.1038/sj.neo.7900138.
    1. Fishman P., Bar-Yehuda S., Ohana G., Pathak S., Wasserman L., Barer F., Multani A.S. Adenosine acts as an inhibitor of lymphoma cell growth: A major role for the A3 adenosine receptor. Eur. J. Cancer. 2000;36:1452–1458. doi: 10.1016/S0959-8049(00)00130-1.
    1. Fishman P., Bar-Yehuda S., Madi L., Cohn I. A3 adenosine receptor as a target for cancer therapy. Anticancer Drugs. 2002;13:437–443. doi: 10.1097/00001813-200206000-00001.
    1. Aghaei M., Panjehpour M., Karami-Tehrani F., Salami S. Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: Involvement of intrinsic pathway. J. Cancer Res. Clin. Oncol. 2011;137:1511–1523. doi: 10.1007/s00432-011-1031-z.
    1. Fishman P., Panjehpour M., Karami-Tehrani F., Salami S. Targeting the A3 adenosine receptor for cancer therapy: Inhibition of prostate carcinoma cell growth by A3AR agonist. Anti Cancer Res. 2003;23:2077–2083.
    1. Gessi S., Merighi S., Varani K., Cattabriga E., Benini A., Mirandola P., Leung E., Mac Lennan S., Feo C., Baraldi S., et al. Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: Focus on the A3 adenosine subtype. J. Cell. Physiol. 2007;211:826–836. doi: 10.1002/jcp.20994.
    1. Merighi S., Merighi S., Varani K., Cattabriga E., Benini A., Mirandola P., Leung E., Mac Lennan S., Feo C., Baraldi S., et al. Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1α, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol. Pharmacol. 2007;72:395–406. doi: 10.1124/mol.106.032920.
    1. Bar-Yehuda S., Stemmer S.M., Madi L., Castel D., Ochaion A., Cohen S., Barer F., Zabutti A., Perez-Liz G., Del Valle L., et al. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-κB signal transduction pathways. Int. J. Oncol. 2008;33:287–295.
    1. Soares A.S., Costa V.M., Diniz C., Fresco P. Inosine strongly enhances proliferation of human C32 melanoma cells through PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways. Basic Clin. Pharmacol. Toxicol. 2015;116:25–36. doi: 10.1111/bcpt.12280.
    1. Modis K., Gero D., Nagy N., Szoleczky P., Toth Z.D., Szabo C. Cytoprotective effects of adenosine and inosine in an in vitro model of acute tubular necrosis. Br. J. Pharmacol. 2009;158:1565–1578. doi: 10.1111/j.1476-5381.2009.00432.x.
    1. Ren Z.-H., Lin C.-Z., Cao W., Yang R., Lu W., Liu Z.-Q., Chen Y.-M., Yang X., Tian Z., Wang L.-Z., et al. CD73 is associated with poor prognosis in HNSCC. Oncotarget. 2016;7:61690–61702. doi: 10.18632/oncotarget.11435.
    1. Soares A.S., Costa V.M., Diniz C., Fresco P. The combination of Cl-IB-MECA with paclitaxel: A new anti-metastatic therapeutic strategy for melanoma. Cancer Chemother. Pharmacol. 2014;74:847–860. doi: 10.1007/s00280-014-2557-y.
    1. Sakowicz-Burkiewicz M., Kocbuch K., Grden M., Maciejewska I., Szutowicz A., Pawelczyk T. Impact of adenosine receptors on immunoglobulin production by human peripheral blood B lymphocytes. J. Physiol. Pharmacol. 2012;63:661–668.
    1. Sepulveda C., Palomo I., Fuentes E. Role of adenosine A2b receptor overexpression in tumor progression. Life Sci. 2016;166:92–99. doi: 10.1016/j.lfs.2016.10.008.
    1. Wei Q., Costanzi S., Balasubramanian R., Gao Z.G., Jacobson K.A. A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic Signal. 2013;9:271–280. doi: 10.1007/s11302-012-9350-3.
    1. Kalhan A., Gharibi B., Vazquez M., Jasani B., Neal J., Kidd M., Modlin I.M., Pfragner R., Rees D.A., Ham J. Adenosine A2A and A2B receptor expression in neuroendocrine tumours: Potential targets for therapy. Purinergic Signal. 2012;8:265–274. doi: 10.1007/s11302-011-9280-5.
    1. Zhou Y., Chu X., Deng F., Tong L., Tong G., Yi Y., Liu J., Tang J., Tang Y., Xia Y., et al. The adenosine A2b receptor promotes tumor progression of bladder urothelial carcinoma by enhancing MAPK signaling pathway. Oncotarget. 2017;8:48755–48768. doi: 10.18632/oncotarget.17835.
    1. Mittal D., Sinha D., Barkauskas D., Young A., Kalimutho M., Stannard K., Caramia F., Haibe-Kains B., Stagg J., Khanna K.K., et al. Adenosine 2B Receptor Expression on Cancer Cells Promotes Metastasis. Cancer Res. 2016;76:4372–4382. doi: 10.1158/0008-5472.CAN-16-0544.
    1. Beavis P.A., Divisekera U., Paget C., Chow M.T., John L.B., Devaud C., Dwyer K., Stagg J., Smyth M.J., Darcy P.K. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc. Natl. Acad. Sci. USA. 2013;110:14711–14716. doi: 10.1073/pnas.1308209110.
    1. Fernandez-Gallardo M., Gonzalez-Ramirez R., Sandoval A., Felix R., Monjaraz E. Adenosine Stimulate Proliferation and Migration in Triple Negative Breast Cancer Cells. PLoS ONE. 2016;11:e0167445. doi: 10.1371/journal.pone.0167445.
    1. Desmet C.J., Gallenne T., Prieur A., Reyal F., Visser N.L., Wittner B.S., Smit M.A., Geiger T.R., Laoukili J., Iskit S., et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc. Natl. Acad. Sci. USA. 2013;110:5139–5144. doi: 10.1073/pnas.1222085110.
    1. Giacomelli C., Daniele S., Romei C., Tavanti L., Neri T., Piano I., Celi A., Martini C., Trincavelli M.L. The A2B Adenosine Receptor Modulates the Epithelial- Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front. Pharmacol. 2018;9:54. doi: 10.3389/fphar.2018.00054.
    1. Feoktistov I., Goldstein A.E., Ryzhov S., Zeng D., Belardinelli L., Voyno-Yasenetskaya T., Biaggioni I. Differential expression of adenosine receptors in human endothelial cells: Role of A2B receptors in angiogenic factor regulation. Circ. Res. 2002;90:531–538. doi: 10.1161/01.RES.0000012203.21416.14.
    1. Sorrentino C., Miele L., Porta A., Pinto A., Morello S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget. 2015;6:27478–27489. doi: 10.18632/oncotarget.4393.
    1. Ma S.R., Deng W.W., Liu J.F., Mao L., Yu G.T., Bu L.L., Kulkarni A.B., Zhang W.F., Sun Z.J. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol. Cancer. 2017;16:99. doi: 10.1186/s12943-017-0665-0.
    1. Merighi S., Mirandola P., Milani D., Varani K., Gessi S., Klotz K.N., Leung E., Baraldi P.G., Borea P.A. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J. Investig. Dermatol. 2002;119:923–933. doi: 10.1046/j.1523-1747.2002.00111.x.
    1. Gessi S., Bencivenni S., Battistello E., Vincenzi F., Colotta V., Catarzi D., Varano F., Merighi S., Borea P.A., Varani K. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455. Front. Pharmacol. 2017;8:888. doi: 10.3389/fphar.2017.00888.
    1. Zhou Y., Tong L., Chu X., Deng F., Tang J., Tang Y., Dai Y. The Adenosine A1 Receptor Antagonist DPCPX Inhibits Tumor Progression via the ERK/JNK Pathway in Renal Cell Carcinoma. Cell. Physiol. Biochem. 2017;43:733–742. doi: 10.1159/000481557.
    1. Lukashev D.E., Smith P.T., Caldwell C.C., Ohta A., Apasov S.G., Sitkovsky M.V. Analysis of A2a receptor-deficient mice reveals no significant compensatory increases in the expression of A2b, A1, and A3 adenosine receptors in lymphoid organs. Biochem. Pharmacol. 2003;65:2081–2090. doi: 10.1016/S0006-2952(03)00158-8.
    1. Mirabet M., Herrera C., Cordero O.J., Mallol J., Lluis C., Franco R. Expression of A2B adenosine receptors in human lymphocytes: Their role in T cell activation. Pt 4J. Cell Sci. 1999;112:491–502.
    1. Zarek P.E., Huang C.T., Lutz E.R., Kowalski J., Horton M.R., Linden J., Drake C.G., Powell J.D. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood. 2008;111:251–259. doi: 10.1182/blood-2007-03-081646.
    1. Erdmann A.A., Gao Z.G., Jung U., Foley J., Borenstein T., Jacobson K.A., Fowler D.H. Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood. 2005;105:4707–4714. doi: 10.1182/blood-2004-04-1407.
    1. Csoka B., Himer L., Selmeczy Z., Vizi E.S., Pacher P., Ledent C., Deitch E.A., Spolarics Z., Nemeth Z.H., Hasko G. Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J. 2008;22:3491–3499. doi: 10.1096/fj.08-107458.
    1. Jin D., Fan J., Wang L., Thompson L.F., Liu A., Daniel B.J., Shin T., Curiel T.J., Zhang B. CD73 on tumor cells impairs antitumor T-cell responses: A novel mechanism of tumor-induced immune suppression. Cancer Res. 2010;70:2245–2255. doi: 10.1158/0008-5472.CAN-09-3109.
    1. Deaglio S., Dwyer K.M., Gao W., Friedman D., Usheva A., Erat A., Chen J.F., Enjyoji K., Linden J., Oukka M., et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007;204:1257–1265. doi: 10.1084/jem.20062512.
    1. Ohta A., Ohta A., Madasu M., Kini R., Subramanian M., Goel N., Sitkovsky M. A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J. Immunol. 2009;183:5487–5493. doi: 10.4049/jimmunol.0901247.
    1. Beavis P.A., Henderson M.A., Giuffrida L., Mills J.K., Sek K., Cross R.S., Davenport A.J., John L.B., Mardiana S., Slaney C.Y., et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Investig. 2017;127:929–941. doi: 10.1172/JCI89455.
    1. Ohta A., Madasu M., Subramanian M., Kini R., Jones G., Chouker A., Ohta A., Sitkovsky M. Hypoxia-induced and A2A adenosine receptor-independent T-cell suppression is short lived and easily reversible. Int. Immunol. 2014;26:83–91. doi: 10.1093/intimm/dxt045.
    1. Lappas C.M., Rieger J.M., Linden J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J. Immunol. 2005;174:1073–1080. doi: 10.4049/jimmunol.174.2.1073.
    1. Beavis P.A., Milenkovski N., Henderson M.A., John L.B., Allard B., Loi S., Kershaw M.H., Stagg J., Darcy P.K. Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses. Cancer Immunol. Res. 2015;3:506–517. doi: 10.1158/2326-6066.CIR-14-0211.
    1. Romio M., Reinbeck B., Bongardt S., Huls S., Burghoff S., Schrader J. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am. J. Physiol. Cell Physiol. 2011;301:C530–C539. doi: 10.1152/ajpcell.00385.2010.
    1. Naganuma M., Wiznerowicz E.B., Lappas C.M., Linden J., Worthington M.T., Ernst P.B. Cutting edge: Critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J. Immunol. 2006;177:2765–2769. doi: 10.4049/jimmunol.177.5.2765.
    1. Bruzzese L., Fromonot J., By Y., Durand-Gorde J.M., Condo J., Kipson N., Guieu R., Fenouillet E., Ruf J. NF-κB enhances hypoxia-driven T-cell immunosuppression via upregulation of adenosine A(2A) receptors. Cell Signal. 2014;26:1060–1067. doi: 10.1016/j.cellsig.2014.01.024.
    1. By Y., Jacquin L., Franceschi F., Durand-Gorde J.-M., Condo J., Michelet P., Guieu R., Ruf J. Fall in oxygen tension of culture medium stimulates the adenosinergic signalling of a human T cell line. Purinergic Signal. 2012;8:661–667. doi: 10.1007/s11302-012-9295-6.
    1. Mills J.H., Kim D.G., Krenz A., Chen J.F., Bynoe M.S. A2A adenosine receptor signaling in lymphocytes and the central nervous system regulates inflammation during experimental autoimmune encephalomyelitis. J. Immunol. 2012;188:5713–5722. doi: 10.4049/jimmunol.1200545.
    1. Thiel M., Chouker A., Ohta A., Jackson E., Caldwell C., Smith P., Lukashev D., Bittmann I., Sitkovsky M.V. Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol. 2005;3:e174. doi: 10.1371/journal.pbio.0030174.
    1. Huang S., Apasov S., Koshiba M., Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997;90:1600–1610.
    1. Mosenden R., Tasken K. Cyclic AMP-mediated immune regulation--overview of mechanisms of action in T cells. Cell Signal. 2011;23:1009–1016. doi: 10.1016/j.cellsig.2010.11.018.
    1. Armstrong J.M., Chen J.F., Schwarzschild M.A., Apasov S., Smith P.T., Caldwell C., Chen P., Figler H., Sullivan G., Fink S., et al. Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: Studies of cells from A2A-receptor-gene-deficient mice. Pt 1Biochem. J. 2001;354:123–130. doi: 10.1042/bj3540123.
    1. Linnemann C., Schildberg F.A., Schurich A., Diehl L., Hegenbarth S.I., Endl E., Lacher S., Muller C.E., Frey J., Simeoni L., et al. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling. Immunology. 2009;128(Suppl. 1):e728–e737. doi: 10.1111/j.1365-2567.2009.03075.x.
    1. Cekic C., Sag D., Day Y.J., Linden J. Extracellular adenosine regulates naive T cell development and peripheral maintenance. J. Exp. Med. 2013;210:2693–2706. doi: 10.1084/jem.20130249.
    1. Zhang H., Conrad D.M., Butler J.J., Zhao C., Blay J., Hoskin D.W. Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: Role of cyclic adenosine 3′,5′-monophosphate and phosphatases. J. Immunol. 2004;173:932–944. doi: 10.4049/jimmunol.173.2.932.
    1. Jenabian M.A., Seddiki N., Yatim A., Carriere M., Hulin A., Younas M., Ghadimi E., Kok A., Routy J.P., Tremblay A., et al. Regulatory T cells negatively affect IL-2 production of effector T cells through CD39/adenosine pathway in HIV infection. PLoS Pathog. 2013;9:e1003319. doi: 10.1371/journal.ppat.1003319.
    1. Hoskin D.W., Butler J.J., Drapeau D., Haeryfar S.M., Blay J. Adenosine acts through an A3 receptor to prevent the induction of murine anti-CD3-activated killer T cells. Int. J. Cancer. 2002;99:386–395. doi: 10.1002/ijc.10325.
    1. Montinaro A., Forte G., Sorrentino R., Luciano A., Palma G., Arra C., Adcock I.M., Pinto A., Morello S. Adoptive immunotherapy with Cl-IB-MECA-treated CD8+ T cells reduces melanoma growth in mice. PLoS ONE. 2012;7:e45401. doi: 10.1371/journal.pone.0045401.
    1. Morello S., Sorrentino R., Montinaro A., Luciano A., Maiolino P., Ngkelo A., Arra C., Adcock I.M., Pinto A. NK1.1 cells and CD8 T cells mediate the antitumor activity of Cl-IB-MECA in a mouse melanoma model. Neoplasia. 2011;13:365–373. doi: 10.1593/neo.101628.
    1. Yaar R., Cataldo L.M., Tzatsos A., Francis C.E., Zhao Z., Ravid K. Regulation of the A3 adenosine receptor gene in vascular smooth muscle cells: Role of a cAMP and GATA element. Mol. Pharmacol. 2002;62:1167–1176. doi: 10.1124/mol.62.5.1167.
    1. Ohta A., Kini R., Ohta A., Subramanian M., Madasu M., Sitkovsky M. The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front. Immunol. 2012;3:190. doi: 10.3389/fimmu.2012.00190.
    1. Sitkovsky M., Lukashev D., Deaglio S., Dwyer K., Robson S.C., Ohta A. Adenosine A2A receptor antagonists: Blockade of adenosinergic effects and T regulatory cells. Br. J. Pharmacol. 2008;153(Suppl. 1):S457–S464. doi: 10.1038/bjp.2008.23.
    1. Kinsey G.R., Huang L., Jaworska K., Khutsishvili K., Becker D.A., Ye H., Lobo P.I., Okusa M.D. Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection. J. Am. Soc. Nephrol. 2012;23:1528–1537. doi: 10.1681/ASN.2012010070.
    1. Chimote A.A., Balajthy A., Arnold M.J., Newton H.S., Hajdu P., Qualtieri J., Wise-Draper T., Conforti L. A defect in KCa3.1 channel activity limits the ability of CD8+ T cells from cancer patients to infiltrate an adenosine-rich microenvironment. Sci. Signal. 2018;11:1616. doi: 10.1126/scisignal.aaq1616.
    1. Cekic C., Linden J. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Res. 2014;74:7239–7249. doi: 10.1158/0008-5472.CAN-13-3581.
    1. Abbott R.K., Silva M., Labuda J., Thayer M., Cain D.W., Philbrook P., Sethumadhavan S., Hatfield S., Ohta A., Sitkovsky M. The GS Protein-coupled A2a Adenosine Receptor Controls T Cell Help in the Germinal Center. J. Biol. Chem. 2017;292:1211–1217. doi: 10.1074/jbc.C116.764043.
    1. Serra S., Vaisitti T., Audrito V., Bologna C., Buonincontri R., Chen S.S., Arruga F., Brusa D., Coscia M., Jaksic O., et al. Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. Blood Adv. 2016;1:47–61. doi: 10.1182/bloodadvances.2016000984.
    1. Sun J., Zhang Y., Yang M., Zhang Y., Xie Q., Li Z., Dong Z., Yang Y., Deng B., Feng A., et al. Hypoxia induces T-cell apoptosis by inhibiting chemokine C receptor 7 expression: The role of adenosine receptor A2. Cell. Mol. Immunol. 2010;7:77–82. doi: 10.1038/cmi.2009.105.
    1. Himer L., Csoka B., Selmeczy Z., Koscso B., Pocza T., Pacher P., Nemeth Z.H., Deitch E.A., Vizi E.S., Cronstein B.N., et al. Adenosine A2A receptor activation protects CD4+ T lymphocytes against activation-induced cell death. FASEB J. 2010;24:2631–2640. doi: 10.1096/fj.10-155192.
    1. Duhen T., Duhen R., Montler R., Moses J., Moudgil T., de Miranda N.F., Goodall C.P., Blair T.C., Fox B.A., McDermott J.E., et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 2018;9:2724. doi: 10.1038/s41467-018-05072-0.
    1. Philip M., Fairchild L., Sun L., Horste E.L., Camara S., Shakiba M., Scott A.C., Viale A., Lauer P., Merghoub T., et al. Chromatin states define tumor-specific T cell dysfunction and reprogramming. Nature. 2017;545:452–456. doi: 10.1038/nature22367.
    1. Lappas C.M., Day Y.J., Marshall M.A., Engelhard V.H., Linden J. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J. Exp. Med. 2006;203:2639–2648. doi: 10.1084/jem.20061097.
    1. Mittal D., Young A., Stannard K., Yong M., Teng M.W., Allard B., Stagg J., Smyth M.J. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res. 2014;74:3652–3658. doi: 10.1158/0008-5472.CAN-14-0957.
    1. Young A., Ngiow S.F., Gao Y., Patch A.M., Barkauskas D.S., Messaoudene M., Lin G., Coudert J.D., Stannard K.A., Zitvogel L., et al. A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment. Cancer Res. 2018;78:1003–1016. doi: 10.1158/0008-5472.CAN-17-2826.
    1. Raskovalova T., Huang X., Sitkovsky M., Zacharia L.C., Jackson E.K., Gorelik E. Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J. Immunol. 2005;175:4383–4391. doi: 10.4049/jimmunol.175.7.4383.
    1. Wallace K.L., Linden J. Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease. Blood. 2010;116:5010–5020. doi: 10.1182/blood-2010-06-290643.
    1. Lokshin A., Raskovalova T., Huang X., Zacharia L.C., Jackson E.K., Gorelik E. Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells. Cancer Res. 2006;66:7758–7765. doi: 10.1158/0008-5472.CAN-06-0478.
    1. Deng Y., Yu J. The negative NK cell maturation checkpoint Foxo1. Oncotarget. 2015;6:32301–32302. doi: 10.18632/oncotarget.6109.
    1. Harish A., Hohana G., Fishman P., Arnon O., Bar-Yehuda S. A3 adenosine receptor agonist potentiates natural killer cell activity. Int. J. Oncol. 2003;23:1245–1249. doi: 10.3892/ijo.23.4.1245.
    1. Jeffe F., Stegmann K.A., Broelsch F., Manns M.P., Cornberg M., Wedemeyer H. Adenosine and IFN-{α} synergistically increase IFN-gamma production of human NK cells. J. Leukoc. Biol. 2009;85:452–461. doi: 10.1189/jlb.0108046.
    1. Ohana G., Bar-Yehuda S., Arich A., Madi L., Dreznick Z., Rath-Wolfson L., Silberman D., Slosman G., Fishman P. Inhibition of primary colon carcinoma growth and liver metastasis by the A3 adenosine receptor agonist CF101. Br. J. Cancer. 2003;89:1552–1558. doi: 10.1038/sj.bjc.6601315.
    1. Antonioli L., Pacher P., Vizi E.S., Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 2013;19:355–367. doi: 10.1016/j.molmed.2013.03.005.
    1. Beavis P.A., Stagg J., Darcy P.K., Smyth M.J. CD73: A potent suppressor of antitumor immune responses. Trends Immunol. 2012;33:231–237. doi: 10.1016/j.it.2012.02.009.
    1. Novitskiy S.V., Ryzhov S., Zaynagetdinov R., Goldstein A.E., Huang Y., Tikhomirov O.Y., Blackburn M.R., Biaggioni I., Carbone D.P., Feoktistov I., et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112:1822–1831. doi: 10.1182/blood-2008-02-136325.
    1. Ryzhov S., Novitskiy S.V., Goldstein A.E., Biktasova A., Blackburn M.R., Biaggioni I., Dikov M.M., Feoktistov I. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. J. Immunol. 2011;187:6120–6129. doi: 10.4049/jimmunol.1101225.
    1. Xaus J., Mirabet M., Lloberas J., Soler C., Lluis C., Franco R., Celada A. IFN-gamma up-regulates the A2B adenosine receptor expression in macrophages: A mechanism of macrophage deactivation. J. Immunol. 1999;162:3607–3614.
    1. Philip K., Mills T.W., Davies J., Chen N.Y., Karmouty-Quintana H., Luo F., Molina J.G., Amione-Guerra J., Sinha N., Guha A., et al. HIF1A up-regulates the ADORA2B receptor on alternatively activated macrophages and contributes to pulmonary fibrosis. FASEB J. 2017;31:4745–4758. doi: 10.1096/fj.201700219R.
    1. Ryzhov S.V., Pickup M.W., Chytil A., Gorska A.E., Zhang Q., Owens P., Feoktistov I., Moses H.L., Novitskiy S.V. Role of TGF-β signaling in generation of CD39+CD73+ myeloid cells in tumors. J. Immunol. 2014;193:3155–3164. doi: 10.4049/jimmunol.1400578.
    1. Csoka B., Selmeczy Z., Koscso B., Nemeth Z.H., Pacher P., Murray P.J., Kepka-Lenhart D., Morris S.M., Jr., Gause W.C., Leibovich S.J., et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 2012;26:376–386. doi: 10.1096/fj.11-190934.
    1. Wilson J.M., Ross W.G., Agbai O.N., Frazier R., Figler R.A., Rieger J., Linden J., Ernst P.B. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells. J. Immunol. 2009;182:4616–4623. doi: 10.4049/jimmunol.0801279.
    1. Challier J., Bruniquel D., Sewell A.K., Laugel B. Adenosine and cAMP signalling skew human dendritic cell differentiation towards a tolerogenic phenotype with defective CD8+ T-cell priming capacity. Immunology. 2013;138:402–410. doi: 10.1111/imm.12053.
    1. Ring S., Pushkarevskaya A., Schild H., Probst H.C., Jendrossek V., Wirsdorfer F., Ledent C., Robson S.C., Enk A.H., Mahnke K. Regulatory T cell-derived adenosine induces dendritic cell migration through the Epac-Rap1 pathway. J. Immunol. 2015;194:3735–3744. doi: 10.4049/jimmunol.1401434.
    1. Wilson J.M., Kurtz C.C., Black S.G., Ross W.G., Alam M.S., Linden J., Ernst P.B. The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6. J. Immunol. 2011;186:6746–6752. doi: 10.4049/jimmunol.1100117.
    1. Asadzadeh Z., Mohammadi H., Safarzadeh E., Hemmatzadeh M., Mahdian-Shakib A., Jadidi-Niaragh F., Azizi G., Baradaran B. The paradox of Th17 cell functions in tumor immunity. Cell. Immunol. 2017;322:15–25. doi: 10.1016/j.cellimm.2017.10.015.
    1. Kreckler L.M., Wan T.C., Ge Z.D., Auchampach J.A. Adenosine inhibits tumor necrosis factor-α release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. J. Pharmacol. Exp. Ther. 2006;317:172–180. doi: 10.1124/jpet.105.096016.
    1. Panther E., Idzko M., Herouy Y., Rheinen H., Gebicke-Haerter P.J., Mrowietz U., Dichmann S., Norgauer J. Expression and function of adenosine receptors in human dendritic cells. FASEB J. 2001;15:1963–1970. doi: 10.1096/fj.01-0169com.
    1. Panther E., Corinti S., Idzko M., Herouy Y., Napp M., la Sala A., Girolomoni G., Norgauer J. Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood. 2003;101:3985–3990. doi: 10.1182/blood-2002-07-2113.
    1. Ben Addi A., Lefort A., Hua X., Libert F., Communi D., Ledent C., Macours P., Tilley S.L., Boeynaems J.M., Robaye B. Modulation of murine dendritic cell function by adenine nucleotides and adenosine: Involvement of the A(2B) receptor. Eur. J. Immunol. 2008;38:1610–1620. doi: 10.1002/eji.200737781.
    1. Hasko G., Kuhel D.G., Salzman A.L., Szabo C. ATP suppression of interleukin-12 and tumour necrosis factor-α release from macrophages. Br. J. Pharmacol. 2000;129:909–914. doi: 10.1038/sj.bjp.0703134.
    1. Ryzhov S., Zaynagetdinov R., Goldstein A.E., Novitskiy S.V., Blackburn M.R., Biaggioni I., Feoktistov I. Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J. Pharmacol. Exp. Ther. 2008;324:694–700. doi: 10.1124/jpet.107.131540.
    1. Csoka B., Nemeth Z.H., Virag L., Gergely P., Leibovich S.J., Pacher P., Sun C.X., Blackburn M.R., Vizi E.S., Deitch E.A., et al. A2A adenosine receptors and C/EBPβ are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood. 2007;110:2685–2695. doi: 10.1182/blood-2007-01-065870.
    1. Cekic C., Day Y.J., Sag D., Linden J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 2014;74:7250–7259. doi: 10.1158/0008-5472.CAN-13-3583.
    1. Cekic C., Sag D., Li Y., Theodorescu D., Strieter R.M., Linden J. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J. Immunol. 2012;188:198–205. doi: 10.4049/jimmunol.1101845.
    1. Bouma M.G., Jeunhomme T.M., Boyle D.L., Dentener M.A., Voitenok N.N., van den Wildenberg F.A., Buurman W.A. Adenosine inhibits neutrophil degranulation in activated human whole blood: Involvement of adenosine A2 and A3 receptors. J. Immunol. 1997;158:5400–5408.
    1. Gessi S., Varani K., Merighi S., Cattabriga E., Iannotta V., Leung E., Baraldi P.G., Borea P.A. A3 adenosine receptors in human neutrophils and promyelocytic HL60 cells: A pharmacological and biochemical study. Mol. Pharmacol. 2002;61:415–424. doi: 10.1124/mol.61.2.415.
    1. van der Hoeven D., Wan T.C., Auchampach J.A. Activation of the A3 adenosine receptor suppresses superoxide production and chemotaxis of mouse bone marrow neutrophils. Mol. Pharmacol. 2008;74:685–696. doi: 10.1124/mol.108.048066.
    1. Chen Y., Corriden R., Inoue Y., Yip L., Hashiguchi N., Zinkernagel A., Nizet V., Insel P.A., Junger W.G. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science. 2006;314:1792–1795. doi: 10.1126/science.1132559.
    1. Thiele A., Kronstein R., Wetzel A., Gerth A., Nieber K., Hauschildt S. Regulation of adenosine receptor subtypes during cultivation of human monocytes: Role of receptors in preventing lipopolysaccharide-triggered respiratory burst. Infect. Immun. 2004;72:1349–1357. doi: 10.1128/IAI.72.3.1349-1357.2004.
    1. Joos G., Jakim J., Kiss B., Szamosi R., Papp T., Felszeghy S., Saghy T., Nagy G., Szondy Z. Involvement of adenosine A3 receptors in the chemotactic navigation of macrophages towards apoptotic cells. Immunol. Lett. 2017;183:62–72. doi: 10.1016/j.imlet.2017.02.002.
    1. Schnurr M., Toy T., Shin A., Hartmann G., Rothenfusser S., Soellner J., Davis I.D., Cebon J., Maraskovsky E. Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood. 2004;103:1391–1397. doi: 10.1182/blood-2003-06-1959.
    1. Gorzalczany Y., Akiva E., Klein O., Merimsky O., Sagi-Eisenberg R. Mast cells are directly activated by contact with cancer cells by a mechanism involving autocrine formation of adenosine and autocrine/paracrine signaling of the adenosine A3 receptor. Cancer Lett. 2017;397:23–32. doi: 10.1016/j.canlet.2017.03.026.
    1. Gao Z., Li B.S., Day Y.J., Linden J. A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol. Pharmacol. 2001;59:76–82. doi: 10.1124/mol.59.1.76.
    1. Waickman A.T., Alme A., Senaldi L., Zarek P.E., Horton M., Powell J.D. Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol. Immunother. 2012;61:917–926. doi: 10.1007/s00262-011-1155-7.
    1. Young A., Ngiow S.F., Barkauskas D.S., Sult E., Hay C., Blake S.J., Huang Q., Liu J., Takeda K., Teng M.W.L., et al. Co-inhibition of CD73 and A2AR Adenosine Signaling Improves Anti-tumor Immune Responses. Cancer Cell. 2016;30:391–403. doi: 10.1016/j.ccell.2016.06.025.
    1. Morello S., Capone M., Sorrentino C., Giannarelli D., Madonna G., Mallardo D., Grimaldi A.M., Pinto A., Ascierto P.A. Soluble CD73 as biomarker in patients with metastatic melanoma patients treated with nivolumab. J. Transl. Med. 2017;15:244. doi: 10.1186/s12967-017-1348-8.
    1. Allard B., Pommey S., Smyth M.J., Stagg J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res. 2013;19:5626–5635. doi: 10.1158/1078-0432.CCR-13-0545.
    1. Iannone R., Miele L., Maiolino P., Pinto A., Morello S. Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. . Am J. Cancer Res. 2014;4:172–181.
    1. Leone R.D., Sun I.M., Oh M.H., Sun I.H., Wen J., Englert J., Powell J.D. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol. Immunother. 2018 doi: 10.1007/s00262-018-2186-0.
    1. Kjaergaard J., Hatfield S., Jones G., Ohta A., Sitkovsky M. A2A Adenosine Receptor Gene Deletion or Synthetic A2A Antagonist Liberate Tumor-Reactive CD8+ T Cells from Tumor-Induced Immunosuppression. J. Immunol. 2018;201:782–791. doi: 10.4049/jimmunol.1700850.
    1. Samanta D., Park Y., Ni X., Li H., Zahnow C.A., Gabrielson E., Pan F., Semenza G.L. Chemotherapy induces enrichment of CD47(+)/CD73(+)/PDL1(+) immune evasive triple-negative breast cancer cells. Proc. Natl. Acad. Sci. USA. 2018;115:E1239–E1248. doi: 10.1073/pnas.1718197115.
    1. Hauser R.A., Olanow C.W., Kieburtz K.D., Pourcher E., Docu-Axelerad A., Lew M., Kozyolkin O., Neale A., Resburg C., Meya U., et al. Tozadenant (SYN115) in patients with Parkinson’s disease who have motor fluctuations on levodopa: A phase 2b, double-blind, randomised trial. Lancet Neurol. 2014;13:767–776. doi: 10.1016/S1474-4422(14)70148-6.
    1. Sako W., Murakami N., Motohama K., Izumi Y., Kaji R. The effect of istradefylline for Parkinson’s disease: A. meta-analysis. Sci. Rep. 2017;7:18018. doi: 10.1038/s41598-017-18339-1.
    1. Willingham S.B., Ho P.Y., Hotson A., Hill C., Piccione E.C., Hsieh J., Liu L., Buggy J.J., McCaffery I., Miller R.A. A2AR Antagonism with CPI-444 Induces Antitumor Responses and Augments Efficacy to Anti-PD-(L)1 and Anti-CTLA-4 in Preclinical Models. Cancer Immunol. Res. 2018;6:1136–1149. doi: 10.1158/2326-6066.CIR-18-0056.
    1. Mediavilla-Varela M., Castro J., Chiappori A., Noyes D., Hernandez D.C., Stagg J., Antonia S.J. A Novel Antagonist of the Immune Checkpoint Protein Adenosine A2a Receptor Restores Tumor-Infiltrating Lymphocyte Activity in the Context of the Tumor Microenvironment. Neoplasia. 2017;19:530–536. doi: 10.1016/j.neo.2017.02.004.
    1. Iannone R., Miele L., Maiolino P., Pinto A., Morello S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia. 2013;15:1400–1409. doi: 10.1593/neo.131748.
    1. Molck C., Ryall J., Failla L.M., Coates J.L., Pascussi J.M., Heath J.K., Stewart G., Hollande F. The A2b adenosine receptor antagonist PSB-603 promotes oxidative phosphorylation and ROS production in colorectal cancer cells via adenosine receptor-independent mechanism. Cancer Lett. 2016;383:135–143. doi: 10.1016/j.canlet.2016.09.018.

Source: PubMed

3
Tilaa