Obesity and Body Mass Components Influence Exercise Tolerance and the Course of Hypertension in Perimenopausal Women

Agata Bielecka-Dabrowa, Katarzyna Gryglewska, Agata Sakowicz, Marek Rybak, Kamil Janikowski, Maciej Banach, Agata Bielecka-Dabrowa, Katarzyna Gryglewska, Agata Sakowicz, Marek Rybak, Kamil Janikowski, Maciej Banach

Abstract

The aim of this study was to identify the potential influence of obesity and body mass components on exercise tolerance assessed in cardiopulmonary exercise testing (CPET), biochemical and echocardiographic parameters and factors correlated with oxygen absorption at the anaerobic threshold in hypertensive women with low levels of physical activity in the perimenopausal period. The study comprised 188 hypertensive women divided, based on body mass index (BMI), into an obesity group and a non-obesity group. Women with BMI ≥ 30 kg/m2 had significantly higher parameters of left ventricular diastolic dysfunction in echocardiography, lower total body water (TBC) in percentage assessed by bioimpedance and significantly worse exercise capacity assessed by CPET. In the study group, VO2 AT (mL/kg/min) correlated positively with TBW (r = 0.4, p < 0.0001) and with the ratio of extracellular water to total body water (ECW/TBW) (r = 0.4, p < 0.00001) and negatively with fat (% and kg) (r = −0.4, p < 0.0001 for both). Obesity negatively affects parameters of diastolic left ventricular function, as well as exercise tolerance in CPET in hypertensive females during the perimenopausal period. The oxygen uptake at anaerobic threshold correlates positively with total body water and ECW/TBW and negatively with body fat; this connection is more pronounced in women without obesity. ClinicalTrials.gov Identifier: NCT04802369.

Keywords: body mass index; hypertension; obesity; troponin.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart of patient enrolment.
Figure 2
Figure 2
Correlation between VO2 AT (mL/min/kg) and TBW (%).
Figure 3
Figure 3
Correlation between VO2 AT (mL/min/kg) and ECW/TBW*100%.
Figure 4
Figure 4
Correlation between VO2 AT (mL/min/kg) and fat (%).
Figure 5
Figure 5
Correlation between VO2 AT (mL/min/kg) and fat (kg).

References

    1. NCD Risk Factor Collaboration Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387:1377–1396. doi: 10.1016/S0140-6736(16)30054-X.
    1. An R. Health care expenses in relation to obesity and smoking among U.S. adults by gender, race/ethnicity, and age group: 1998–2011. Public Health. 2015;129:29–36. doi: 10.1016/j.puhe.2014.11.003.
    1. Chuda A., Banach M., Maciejewski M., Bielecka-Dabrowa A. Role of confirmed and potential predictors of an unfavorable outcome in heart failure in everyday clinical practice. Ir. J. Med. Sci. 2022;191:213–227. doi: 10.1007/s11845-020-02477-z.
    1. Paduszyńska A., Banach M., Maciejewski M., Dąbrowa M., Bielecka-Dąbrowa A. The outcomes of hypertension treatment depending on gender in patients over 40 years of age. Prz. Menopauzalny. 2020;19:174–178. doi: 10.5114/pm.2020.101947.
    1. Milner T.A., Contoreggi N.H., Yu F., Johnson M.A., Wang G., Woods C., Mazid S., Van Kempen T.A., Waters E.M., McEwen B.S., et al. Estrogen Receptor β Contributes to Both Hypertension and Hypothalamic Plasticity in a Mouse Model of Peri-Menopause. J. Neurosci. 2021;41:5190–5205. doi: 10.1523/JNEUROSCI.0164-21.2021.
    1. Marcus Y., Shefer G., Stern N. Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol. Cell. Endocrinol. 2013;378:1–14. doi: 10.1016/j.mce.2012.06.021.
    1. Bielecka-Dabrowa A., Bartlomiejczyk M.A., Sakowicz A., Maciejewski M., Banach M. The Role of Adipokines in the Development of Arterial Stiffness and Hypertension. Angiology. 2020;71:754–761. doi: 10.1177/0003319720927203.
    1. Paduszyńska A., Sakowicz A., Banach M., Maciejewski M., Dąbrowa M., Bielecka-Dąbrowa A. Cardioprotective properties of leptin in patients with excessive body mass. Ir. J. Med. Sci. 2020;189:1259–1265. doi: 10.1007/s11845-020-02211-9.
    1. Rodriguez A., Becerril S., Ezquerro S., Mendez-Gimenez L., Fruhbeck G. Cross-Talk between Adipokines and Myokines in Fat Browning. Acta Physiol. 2017;219:362–381. doi: 10.1111/apha.12686.
    1. Manna P., Jain S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015;13:423–444. doi: 10.1089/met.2015.0095.
    1. Caprio S., Pierpont B., Kursawe R. The “adipose tissue expandability” hypothesis: A potential mechanism for insulin resistance in obese youth. Horm. Mol. Biol. Clin. Investig. 2018;33 doi: 10.1515/hmbci-2018-0005.
    1. Tomlinson D.J., Erskine R.M., Morse C.I., Winwood K., Onambélé-Pearson G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology. 2016;17:467–483. doi: 10.1007/s10522-015-9626-4.
    1. Smith H.L., Willius F.A. Adiposity of the heart. Arch. Intern. Med. 1933;52:929–931. doi: 10.1001/archinte.1933.00160060085007.
    1. Alpert M.A. Obesity cardiomyopathy: Pathophysiology and evolution of the clinical syndrome. Am. J. Med. Sci. 2001;321:225. doi: 10.1097/00000441-200104000-00003.
    1. Norton G.R., Majane O.H., Libhaber E., Maseko M.J., Makaula S., Libhaber C., Woodiwiss A.J. The relationship between blood pressure and left ventricular mass index depends on an excess adiposity. J. Hypertens. 2009;27:1873. doi: 10.1097/HJH.0b013e32832dca53.
    1. Kim C.H., Wheatley C.M., Behnia M., Johnson B.D. The Effect of Aging on Relationships between Lean Body Mass and VO2max in Rowers. PLoS ONE. 2016;11:e0160275. doi: 10.1371/journal.pone.0160275.
    1. Blümel J.E., Fica J., Chedraui P., Mezones-Holguin E., Zuñiga M.C., Witis S., Vallejo M.S., Tserotas K., Sánchez H., Onatra W., et al. Sedentary lifestyle in middle-aged women is associated with severe menopausal symptoms and obesity. Menopause. 2016;23:488–493. doi: 10.1097/GME.0000000000000575.
    1. Tojal L., Alonso-Gómez A., Alberich S., Wärnberg J., Sorto C., Portillo M.P., Schröder H., Salas-Salvadó J., Arós F. Association between maximal oxygen consumption and physical activity and sedentary lifestyle in metabolic syndrome. Usefulness of questionnaires. Rev. Esp. Cardiol. 2020;73:145–152. doi: 10.1016/j.recesp.2018.08.014.
    1. WHO . Consultation on Obesity: Preventing and Managing the Global Epidemic. World Health organization; Geneva, Switzerland: 2000. (WHO Technical Report Series 894).
    1. Saric M., Armour A.C., Arnaout M.S., Chaudhry F.A., Grimm R.A., Kronzon I., Landeck B.F., Maganti K., Michelena H.I., Tolstrup K. Guidelines for the use of echocardiography in the evaluation of a cardiac source of embolism. J. Am. Soc. Echocardiogr. 2016;29:1–42. doi: 10.1016/j.echo.2015.09.011.
    1. Iwataki M., Takeuchi M., Otani K., Kuwaki H., Haruki N., Yoshitani H., Tamura M., Abe H., Otsuji Y. Measurement of left atrial volume from transthoracic three-dimensional echocardiographic datasets using the biplane Simpson’s technique. J. Am. Soc. Echocardiogr. 2012;25:1319–1326. doi: 10.1016/j.echo.2012.08.017.
    1. Dhawan I., Makhija N., Choudhury M., Choudhury A. Modified Tricuspid Annular Plane Systolic Excursion for Assessment of Right Ventricular Systolic Function. J. Cardiovasc. Imaging. 2019;27:24–33. doi: 10.4250/jcvi.2019.27.e8.
    1. Graham B.L., Steenbruggen I., Miller M.R., Barjaktarevic I.Z., Cooper B.G., Hall G.L., Hallstrand T.S., Kaminsky D.A., McCarthy K., McCormack M.C., et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019;200:70–88. doi: 10.1164/rccm.201908-1590ST.
    1. Malhotra R., Bakken K., D’Elia E., Lewis G.D. Cardiopulmonary Exercise Testing in Heart Failure. JACC Heart Fail. 2016;4:607–616. doi: 10.1016/j.jchf.2016.03.022.
    1. Martin J.S., Borges A.R., Christy J.B. Considerations for SphygmoCor radial artery pulse wave analysis: Side selection and peripheral arterial blood pressure calibration. Hypertens. Res. 2015;38:75–83. doi: 10.1038/hr.2015.36.
    1. Pichler G., Martinez F., Vicente A., Solaz E., Calaforra O., Redon J. Pulse pressure amplification and its determinants. Blood Press. 2016;25:21–27. doi: 10.3109/08037051.2015.1090713.
    1. Rajzer M.W., Wojciechowska W., Klocek M., Palka I., Brzozowska-Kiszka M., Kawecka-Jaszcz K. Comparison of aortic pulse wave velocity measured by three techniques: Complior, SphygmoCor and Arteriograph. J. Hypertens. 2008;26:2001–2007. doi: 10.1097/HJH.0b013e32830a4a25.
    1. Marra M., Sammarco R., De Lorenzo A., Iellamo F., Siervo M., Pietrobelli A., Donini L.M., Santarpia L., Cataldi M., Pasanisi F., et al. Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-ray Absorptiometry (DXA): A Critical Overview. Contrast Media Mol. Imaging. 2019;2019:3548284. doi: 10.1155/2019/3548284.
    1. Park I., Lee J.H., Jang D.H., Kim J., Hwang B.R., Kim S., Lee J.E., Jo Y.H. Assessment of body water distribution in patients with sepsis during fluid resuscitation using multi-frequency direct segmental bioelectrical impedance analysis. Clin. Nutr. 2020;39:1826–1831. doi: 10.1016/j.clnu.2019.07.022.
    1. Gruchała-Niedoszytko M., Niedoszytko P., Kaczkan M., Pieszko M., Gierat-Haponiuk K., Śliwińska A., Skotnicka M., Szalewska D., Małgorzewicz S. Cardiopulmonary exercise test and bioimpedance as prediction tools to predict the outcomes of obesity treatment. Pol. Arch. Intern. Med. 2019;129:225–233. doi: 10.20452/pamw.4480.
    1. Pérez-Morales R., Donate-Correa J., Martín-Núñez E., Pérez-Delgado N., Ferri C., López-Montes A., Jiménez-Sosa A., Navarro-González J.F. Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients. Ren. Fail. 2021;43:821–829. doi: 10.1080/0886022X.2021.1922442.
    1. Zuo M.L., Yue W.S., Yip T., Ng F., Lam K.F., Yiu K.H., Lui S.L., Tse H.F., Siu C.W., Lo W.K. Prevalence of and associations with reduced exercise capacity in peritoneal dialysis patients. Am. J. Kidney Dis. 2013;62:939–946. doi: 10.1053/j.ajkd.2013.05.016.
    1. Waki M., Kral J.G., Mazariegos M., Wang J., Pierson R.N., Jr., Heymsfield S.B. Relative expansion of extracellular fluid in obese vs. nonobese women. Pt 1Am. J. Physiol. 1991;261:199–203. doi: 10.1152/ajpendo.1991.261.2.E199.
    1. Ndumele C.E., Coresh J., Lazo M., Hoogeveen R., Blumenthal R.S., Folsom A.R., Selvin E., Ballantyne C.M., Nambi V. Obesity, subclinical myocardial injury, and incident heart failure. JACC Heart Fail. 2014;2:600–607. doi: 10.1016/j.jchf.2014.05.017.
    1. Deng H., Shantsila A., Guo P., Potpara T.S., Zhan X., Fang X., Liao H., Liu Y., Wei W., Fu L., et al. A U-shaped relationship of body mass index on atrial fibrillation recurrence post ablation: A report from the Guangzhou atrial fibrillation ablation registry. eBioMedicine. 2018;35:40–45. doi: 10.1016/j.ebiom.2018.08.034.
    1. Russo C., Jin Z., Homma S., Rundek T., Elkind M.S., Sacco R.L., Di Tullio M.R. Effect of obesity and overweight on left ventricular diastolic function: A community-based study in an elderly cohort. J. Am. Coll. Cardiol. 2011;57:1368–1374. doi: 10.1016/j.jacc.2010.10.042.
    1. Pascual M., Pascual D.A., Soria F., Vicente T., Hernández A.M., Tébar F.J., Valdés M. Effects of isolated obesity on systolic and diastolic left ventricular function. Heart. 2003;89:1152–1156. doi: 10.1136/heart.89.10.1152.
    1. Hulens M., Vansant G., Lysens R., Claessens A.L., Muls E. Exercise capacity in lean versus obese women. Scand. J. Med. Sci. Sports. 2001;11:305–309. doi: 10.1034/j.1600-0838.2001.110509.x.
    1. Gonze B.B., Ostolin T.L.V.D.P., Barbosa A.C.B., Matheus A.C., Sperandio E.F., Gagliardi A.R.T., Arantes R.L., Romiti M., Dourado V.Z. Dynamic physiological responses in obese and non-obese adults submitted to cardiopulmonary exercise test. PLoS ONE. 2021;16:e0255724. doi: 10.1371/journal.pone.0255724.

Source: PubMed

3
Tilaa