Walking and balance outcomes for stroke survivors: a randomized clinical trial comparing body-weight-supported treadmill training with versus without challenging mobility skills

Sarah A Graham, Elliot J Roth, David A Brown, Sarah A Graham, Elliot J Roth, David A Brown

Abstract

Background: Treadmill training, with or without body-weight support (BWSTT), typically involves high step count, faster walking speed, and higher heart-rate intensity than overground walking training. The addition of challenging mobility skill practice may offer increased opportunities to improve walking and balance skills. Here we compare walking and balance outcomes of chronic stroke survivors performing BWSTT with BWSTT including challenging mobility skills.

Methods: Single-blind randomized clinical trial comparing two BWSTT interventions performed in a rehabilitation research laboratory facility over 6 weeks. Participants were 18+ years of age with chronic (≥5 months) poststroke hemiparesis due to a cortical or subcortical ischemic or hemorrhagic stroke and walking speeds < 1.1 m/s at baseline. A hands-free group (HF; n = 15) performed BWSTT without assistance from handrails or assistive devices, and a hands-free plus challenge group (HF + C; n = 14) performed the same protocol while additionally practicing challenging mobility skills. The primary outcome was change in comfortable walking speed (CWS), with secondary outcomes of fast walk speed (FWS), six-minute walk distance, Berg Balance Scale (BBS) scores, and Activities Specific Balance Confidence (ABC) scores.

Results: Significant pre-post improvement of CWS (Z = - 4.2, p ≤ 0.0001) from a median of 0.35 m/s (range 0.10 to 1.09) to a median of 0.54 m/s (range 0.1 to 1.17), but no difference observed between groups (U = 96.0, p = 0.69). Pre-post improvements across all participants resulted in reclassified baseline ambulation status from sixteen to ten household ambulators, three to seven limited community ambulators, and ten to twelve community ambulators. Secondary outcomes showed similar pre-post improvements with no between-group differences.

Conclusions: The addition of challenging mobility skills to a hands-free BWSTT protocol did not lead to greater improvements in CWS following 6 weeks of training. One reason for lack of group differences may be that both groups were adequately challenged by walking in an active, self-driven treadmill environment without use of handrails or assistive devices.

Trial registration: NCT02787759 Falls-based Training for Walking Post-Stroke (FBT); retrospectively registered June 1st, 2016.

Keywords: Balance; Body-weight-support treadmill training; Hemiparesis; Mobility skills; Poststroke rehabilitation; Robotics; Walking.

Conflict of interest statement

Ethics approval and consent to participate

All participants gave informed consent as approved by the Institutional Review Board of the University of Alabama at Birmingham prior to initial assessment (protocol #: F120425008).

Consent for publication

All participants gave informed consent to the following statement, “Your information from this research may be published for scientific purposes; however, your identity will not be given out.”

Competing interests

David A. Brown receives royalties on sales of the KineAssist device. Sarah A. Graham and Elliot J. Roth declare no conflicts of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Consort diagram for participant flow through study
Fig. 2
Fig. 2
Baseline, mid, and post CWS measurements for n = 15 participants in the HF group (left) and n = 14 HF + C group (right). Participants with the midpoint measurement carried forward are marked with a † at post

References

    1. MacKay-Lyons M, McDonald A, Matheson J, Eskes G, Klus M-A. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke. Neurorehabil Neural Repair. 2013;27(7):644–653. doi: 10.1177/1545968313484809.
    1. Combs-Miller SA, Kalpathi Parameswaran A, Colburn D, Ertel T, Harmeyer A, Tucker L, Schmid A. Body weight-supported treadmill training vs. overground walking training for persons with chronic stroke: a pilot randomized controlled trial. Clin Rehabil. 2014;28(9):873–884. doi: 10.1177/0269215514520773.
    1. Høyer E, Jahnsen R, Stanghelle JK, Strand LI. Body weight supported treadmill training versus traditional training in patients dependent on walking assistance after stroke: a randomized controlled trial. Disabil Rehabil. 2012;34(3):210–219. doi: 10.3109/09638288.2011.593681.
    1. Charalambous CC, Bonilha HS, Kautz SA, Gregory CM, Bowden MG. Rehabilitating walking speed Poststroke with treadmill-based interventions. Neurorehabil Neural Repair. 2013;27(8):709–721. doi: 10.1177/1545968313491005.
    1. Moore JL, Roth EJ, Killian C, Hornby TG. Locomotor training improves daily stepping activity and gait efficiency in individuals poststroke who have reached a “plateau” in recovery. Stroke. 2010;41(1):129–135. doi: 10.1161/STROKEAHA.109.563247.
    1. Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017;8:Cd002840.
    1. Patla AE, Shumway-Cook A. Dimensions of mobility: defining the complexity and DIfficulty associated with community mobility. J Aging Phys Act. 1999;7(1):7–19. doi: 10.1123/japa.7.1.7.
    1. Shumway-cook A, Patla AE, Stewart A, Ferrucci L, Ciol MA, Guralnik JM. Environmental demands associated with community mobility in older adults with and without mobility disabilities. Phys Ther. 2002;82(7):670–681.
    1. Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, et al. Body-weight–supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364(21):2026–2036. doi: 10.1056/NEJMoa1010790.
    1. Bowden MG, Behrman AL, Neptune RR, Gregory CM, Kautz SA. Locomotor rehabilitation of individuals with chronic stroke : difference between responders and nonresponders. Arch Phys Med Rehabil. 2013;94(5):856–862. doi: 10.1016/j.apmr.2012.11.032.
    1. Dean CM, Ada L, Lindley RI. Treadmill training provides greater benefit to the subgroup of community-dwelling people after stroke who walk faster than 0.4m/s: a randomised trial. J Phys. 2014;60(2):97–101.
    1. Chen G, Patten C, Kothari DH, Zajac FE. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold. Gait Posture. 2005;22(1):57–62. doi: 10.1016/j.gaitpost.2004.06.008.
    1. Dean CM, Ada L, Bampton J, Morris ME, Katrak PH, Potts S. Treadmill walking with body weight support in subacute non-ambulatory stroke improves walking capacity more than overground walking: a randomised trial. J Phys. 2010;56(2):97–103.
    1. Hesse S, Bertelt C, Jahnke MT, Schaffrin A, Baake P, Malezic M. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory Hemiparetic patients. Stroke. 1995;26(6):976–981. doi: 10.1161/01.STR.26.6.976.
    1. Barbeau H, Visintin M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil. 2003;84(10):1458–1465. doi: 10.1016/S0003-9993(03)00361-7.
    1. Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23(2):314–322. doi: 10.1123/japa.2013-0236.
    1. Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995;26(6):982–989. doi: 10.1161/01.STR.26.6.982.
    1. Michael KM, Allen JK, MacKo RF. Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Arch Phys Med Rehabil. 2005;86(8):1552–1556. doi: 10.1016/j.apmr.2004.12.026.
    1. Danks KA, Pohlig RT, Roos M, Wright TR, Reisman DS. Relationship between walking capacity, biopsychosocial factors, self-efficacy, and walking activity in persons Poststroke. J Neurol Phys Ther. 2016;40(4):232. doi: 10.1097/NPT.0000000000000143.
    1. Bushnell C, Bettger JP, Cockroft KM, Cramer SC, Edelen MO, Hanley D, et al. Chronic stroke outcome measures for motor function intervention trials: expert panel recommendations. Circ Cardiovasc Qual Outcomes. 2015;8(6 suppl 3):S163–S169. doi: 10.1161/CIRCOUTCOMES.115.002098.
    1. Tilson JK, Sullivan KJ, Cen SY, Rose DK, Koradia CH, Azen SP, Duncan PW. Locomotor experience applied post stroke (LEAPS) investigative team. Meaningful gait speed improvement during the first 60 days poststroke: minimal clinically important difference. Phys Ther. 2010;90(2):196–208. doi: 10.2522/ptj.20090079.
    1. Tang A, Eng JJ, Rand D. Relationship between perceived and measured changes in walking after stroke. J Neurol Phys Ther. 2012;36(3):115. doi: 10.1097/NPT.0b013e318262dbd0.
    1. Flansbjer UB, Blom J, Brogårdh C. The reproducibility of berg balance scale and the single-leg stance in chronic stroke and the relationship between the two tests. PM R. 2012;4(3):165–170. doi: 10.1016/j.pmrj.2011.11.004.
    1. Lajoie Y, Gallagher SP. Predicting falls within the elderly community: comparison of postural sway, reaction time, the berg balance scale and the activities-specific balance confidence (ABC) scale for comparing fallers and non-fallers. Arch Gerontol Geriatr. 2004;38(1):11–26. doi: 10.1016/S0167-4943(03)00082-7.
    1. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, et al. KineAssist: design and development of a robotic Overground gait and balance therapy device. Top Stroke Rehabil. 2008;15(2):131–139. doi: 10.1310/tsr1502-131.
    1. Dionisio VC, Brown DA. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals. J Neuroeng Rehabil. 2016;13(1):57. doi: 10.1186/s12984-016-0166-1.
    1. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(8):2532–2553. doi: 10.1161/STR.0000000000000022.
    1. Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate: a longitudinal study. Ann Med Exp Biol Fenn. 1957;35:307–315.
    1. Nielsen JB, Willerslev-Olsen M, Christiansen L, Lundbye-Jensen J, Lorentzen J. Science-based neurorehabilitation: recommendations for neurorehabilitation from basic science. J Mot Behav. 2015;47(1):7–17. doi: 10.1080/00222895.2014.931273.
    1. Veerbeek JM, Van Wegen E, Van Peppen R, Van Der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987. doi: 10.1371/journal.pone.0087987.
    1. Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol. 2013;26(6):609. doi: 10.1097/WCO.0000000000000025.
    1. Cha J, Heng C, Reinkensmeyer DJ, Roy RR, Edgerton VR, De Leon RD. Locomotor ability in spinal rats is dependent on the amount of activity imposed on the Hindlimbs during treadmill training. J Neurotrauma. 2007;24(6):1000–1012. doi: 10.1089/neu.2006.0233.
    1. Ding YH, Luan XD, Li J, Rafols JA, Guthinkonda M, Diaz FG, Ding Y. Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr Neurovasc Res. 2004;1(5):411–420. doi: 10.2174/1567202043361875.
    1. Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 1998;80(6):3321–3325. doi: 10.1152/jn.1998.80.6.3321.
    1. Klintsova AY, Dickson E, Yoshida R, Greenough WT. Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res. 2004;1028(1):92–104. doi: 10.1016/j.brainres.2004.09.003.
    1. Jones TA, Chu CJ, Grande LA, Gregory AD. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci. 1999;19(22):10153–10163. doi: 10.1523/JNEUROSCI.19-22-10153.1999.
    1. Winstein CJ, Kay DB. Translating the science into practice: shaping rehabilitation practice to enhance recovery after brain damage. Prog Brain Res. 2015;218:331–360. doi: 10.1016/bs.pbr.2015.01.004.

Source: PubMed

3
Tilaa