BMI and BMD: The Potential Interplay between Obesity and Bone Fragility

Andrea Palermo, Dario Tuccinardi, Giuseppe Defeudis, Mikiko Watanabe, Luca D'Onofrio, Angelo Lauria Pantano, Nicola Napoli, Paolo Pozzilli, Silvia Manfrini, Andrea Palermo, Dario Tuccinardi, Giuseppe Defeudis, Mikiko Watanabe, Luca D'Onofrio, Angelo Lauria Pantano, Nicola Napoli, Paolo Pozzilli, Silvia Manfrini

Abstract

Recent evidence demonstrating an increased fracture risk among obese individuals suggests that adipose tissue may negatively impact bone health, challenging the traditional paradigm of fat mass playing a protective role towards bone health. White adipose tissue, far from being a mere energy depot, is a dynamic tissue actively implicated in metabolic reactions, and in fact secretes several hormones called adipokines and inflammatory factors that may in turn promote bone resorption. More specifically, Visceral Adipose Tissue (VAT) may potentially prove detrimental. It is widely acknowledged that obesity is positively associated to many chronic disorders such as metabolic syndrome, dyslipidemia and type 2 diabetes, conditions that could themselves affect bone health. Although aging is largely known to decrease bone strength, little is yet known on the mechanisms via which obesity and its comorbidities may contribute to such damage. Given the exponentially growing obesity rate in recent years and the increased life expectancy of western countries it appears of utmost importance to timely focus on this topic.

Keywords: body composition; fracture; inflammation; obesity; osteoporosis.

Figures

Figure 1
Figure 1
The process of study selection.

References

    1. Greco E.A., Lenzi A., Migliaccio S. The obesity of bone. Ther. Adv. Endocrinol. Metab. 2015;6:273–286. doi: 10.1177/2042018815611004.
    1. Kado D.M., Huang M.-H., Karlamangla A.S., Barrett-Connor E., Greendale G.A. Hyperkyphotic posture predicts mortality in older community-dwelling men and women: A prospective study. J. Am. Geriatr. Soc. 2004;52:1662–1667. doi: 10.1111/j.1532-5415.2004.52458.x.
    1. Rössner S. Obesity: The disease of the twenty-first century. Int. J. Obes. Relat. Metab. Disord. 2002;26 doi: 10.1038/sj.ijo.0802209.
    1. Hu F.B. Overweight and obesity in women: Health risks and consequences. J. Womens Health (Larchmt) 2003;12:163–172. doi: 10.1089/154099903321576565.
    1. WHO Study Group Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 2000;894:i–xii, 1–253.
    1. Greco E.A., Fornari R., Rossi F., Santiemma V., Prossomariti G., Annoscia C., Aversa A., Brama M., Marini M., Donini L.M., et al. Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int. J. Clin. Pract. 2010;64:817–820. doi: 10.1111/j.1742-1241.2009.02301.x.
    1. Kim K.-C., Shin D.-H., Lee S.-Y., Im J.-A., Duk-Chul L. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women. Yonsei Med. J. 2010;51:857–863. doi: 10.3349/ymj.2010.51.6.857.
    1. Compston J.E., Flahive J., Hosmer D.W., Watts N.B., Siris E.S., Silverman S., Saaq K.G., Roux C., Rossini M., Pfeilschifter J., et al. Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: The Global Longitudinal Study of Osteoporosis in Women (GLOW) J. Bone Miner. Res. 2014;29:487–493. doi: 10.1002/jbmr.2051.
    1. Fact sheet N°311. [(accessed on 12 January 2016)]. Available online:
    1. Cawley J., Meyerhoefer C. The medical care costs of obesity: An instrumental variables approach. J. Health Econ. 2012;31:219–230. doi: 10.1016/j.jhealeco.2011.10.003.
    1. Finkelstein E.A., Trogdon J.G., Cohen J.W., Dietz W. Annual medical spending attributable to obesity: Payer-and service-specific estimates. Health Aff. (Millwood) 2009;28 doi: 10.1377/hlthaff.28.5.w822.
    1. Cawley J., Rizzo J.A., Haas K. Occupation-specific absenteeism costs associated with obesity and morbid obesity. J. Occup. Environ. Med. 2007;49:1317–1324. doi: 10.1097/JOM.0b013e31815b56a0.
    1. Gates D.M., Succop P., Brehm B.J., Gillespie G.L., Sommers B.D. Obesity and presenteeism: The impact of body mass index on workplace productivity. J. Occup. Environ. Med. 2008;50:39–45. doi: 10.1097/JOM.0b013e31815d8db2.
    1. Müller-Riemenschneider F., Reinhold T., Berghöfer A., Willich S.N. Health-economic burden of obesity in Europe. Eur. J. Epidemiol. 2008;23:499–509. doi: 10.1007/s10654-008-9239-1.
    1. WHO Study Group Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ. Tech. Rep. Ser. 1994;843:1–129.
    1. Cooper C., Campion G., Melton L.J. Hip fractures in the elderly: A world-wide projection. Osteoporos. Int. 1992;2:285–289. doi: 10.1007/BF01623184.
    1. Shuler F.D., Conjeski J., Kendall D., Salava J. Understanding the burden of osteoporosis and use of the World Health Organization FRAX. Orthopedics. 2012;35:798–805. doi: 10.3928/01477447-20120822-12.
    1. Elffors I., Allander E., Kanis J.A., Gullberg B., Johnell O., Dequeker J., Dilsen G., Gennari C., Lopes Vaz A.A., Lyritis G., et al. The variable incidence of hip fracture in southern Europe: The MEDOS Study. Osteoporos. Int. 1994;4:253–263. doi: 10.1007/BF01623349.
    1. Kanis J.A., Johnell O., de Laet C., Jonsson B., Oden A., Ogelsby A.K. International variations in hip fracture probabilities: Implications for risk assessment. J. Bone Miner. Res. 2002;17:1237–1244. doi: 10.1359/jbmr.2002.17.7.1237.
    1. Thomas P.A. Racial and ethnic differences in osteoporosis. J. Am. Acad. Orthop. Surg. 2007;15:S26–S30. doi: 10.5435/00124635-200700001-00008.
    1. Bone Health and Osteoporosis: A Report of the Surgeon General. [(accessed on 15 March 2016)]; Available online: .
    1. Reid I.R. Fat and bone. Arch. Biochem. Biophys. 2010;503:20–27. doi: 10.1016/j.abb.2010.06.027.
    1. Guh D.P., Zhang W., Bansback N., Amarsi Z., Birmingham C.L., Anis A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health. 2009;9 doi: 10.1186/1471-2458-9-88.
    1. Zhao L.-J., Jiang H., Papasian C.J., Maulik D., Drees B., Hamilton J., Deng H.-W. Correlation of obesity and osteoporosis: Effect of fat mass on the determination of osteoporosis. J. Bone Miner. Res. 2008;23:17–29. doi: 10.1359/jbmr.070813.
    1. Compston J. Obesity and bone. Curr. Osteoporos. Rep. 2013;11:30–35. doi: 10.1007/s11914-012-0127-y.
    1. Nielson C.M., Srikanth P., Orwoll E.S. Obesity and fracture in men and women: An epidemiologic perspective. J. Bone Miner. Res. 2012;27:1–10. doi: 10.1002/jbmr.1486.
    1. Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gøtzsche P.C., Ioannidis J.P.A., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009;62 doi: 10.1016/j.jclinepi.2009.06.006.
    1. Michel B.A., Bloch D.A., Fries J.F. Weight-bearing exercise, overexercise, and lumbar bone density over age 50 years. Arch. Intern. Med. 1989;149:2325–2329. doi: 10.1001/archinte.1989.00390100127027.
    1. Albala C., Yáñez M., Devoto E., Sostin C., Zeballos L., Santos J.L. Obesity as a protective factor for postmenopausal osteoporosis. Int. J. Obes. Relat. Metab. Disord. 1996;20:1027–1032.
    1. Goulding A., Taylor R.W. Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. Calcif. Tissue Int. 1998;63:456–458. doi: 10.1007/s002239900557.
    1. Haffner S.M., Bauer R.L. The association of obesity and glucose and insulin concentrations with bone density in premenopausal and postmenopausal women. Metabolism. 1993;42:735–738. doi: 10.1016/0026-0495(93)90241-F.
    1. Holmberg A.H., Johnell O., Nilsson P.M., Nilsson J., Berglund G., Akesson K. Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos. Int. 2006;17:1065–1077. doi: 10.1007/s00198-006-0137-7.
    1. Sharma S., Fraser M., Lovell F., Reece A., McLellan A.R. Characteristics of males over 50 years who present with a fracture: Epidemiology and underlying risk factors. J. Bone Jt. Surg. Br. 2008;90:72–77. doi: 10.1302/0301-620X.90B1.18773.
    1. Kanis J., Johnell O., Gullberg B., Allander E., Elffors L., Ranstam J., Dequeker J., Dilsen G., Gennari C., Vaz A.L., et al. Risk factors for hip fracture in men from southern Europe: The MEDOS study. Mediterranean Osteoporosis Study. Osteoporos. Int. 1999;9:45–54. doi: 10.1007/s001980050115.
    1. Lee S.H., Khang Y.-H., Lim K.-H., Kim B.-J., Koh J.-M., Kim G.S., Kim H., Cho N.H. Clinical risk factors for osteoporotic fracture: A population-based prospective cohort study in Korea. J. Bone Miner. Res. 2010;25:369–378. doi: 10.1359/jbmr.090722.
    1. Gnudi S., Sitta E., Lisi L. Relationship of body mass index with main limb fragility fractures in postmenopausal women. J. Bone Miner. Metab. 2009;27:479–484. doi: 10.1007/s00774-009-0056-8.
    1. De Laet C., Kanis J.A., Odén A., Johanson H., Johnell O., Delmas P., Eisman J.A., Kroger H., Fujiwara S., Garnero P. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos. Int. 2005;16:1330–1338. doi: 10.1007/s00198-005-1863-y.
    1. Manzoni P., Brambilla P., Pietrobelli A., Beccaria L., Bianchessi A., Mora S., Chiumello G. Influence of body composition on bone mineral content in children and adolescents. Am. J. Clin. Nutr. 1996;64:603–607.
    1. Fischer S., Milinarsky A., Giadrosich V., Dib G., Arriagada M., Arinoviche R. X-ray absorptiometry of bone in obese and eutrophic children from Valparaiso, Chile. J. Rheumatol. 2000;27:1294–1296.
    1. Correa Rodríguez M., Rueda Medina B., González Jiménez E., Navarro Pérez C.F., Schmidt-RioValle J. The levels of bone mineralization are influenced by body composition in children and adolescents. Nutr. Hosp. 2014;30:763–768.
    1. Jeddi M., Dabbaghmanesh M.H., Ranjbar Omrani G., Ayatollahi S.M.T., Bagheri Z., Bakhshayeshkaram M. Relative importance of lean and fat mass on bone mineral density in Iranian children and adolescents. Int. J. Endocrinol. Metab. 2015;13 doi: 10.5812/ijem.25542v2.
    1. Goulding A., Taylor R.W., Jones I.E., McAuley K.A., Manning P.J., Williams S.M. Overweight and obese children have low bone mass and area for their weight. Int. J. Obes. Relat. Metab. Disord. 2000;24:627–632. doi: 10.1038/sj.ijo.0801207.
    1. Goulding A., Taylor R.W., Jones I.E., Manning P.J., Williams S.M. Spinal overload: A concern for obese children and adolescents? Osteoporos. Int. 2002;13:835–840. doi: 10.1007/s001980200116.
    1. Wetzsteon R.J., Petit M.A., Macdonald H.M., Hughes J.M., Beck T.J., McKay H.A. Bone structure and volumetric BMD in overweight children: A longitudinal study. J. Bone Miner. Res. 2008;23:1946–1953. doi: 10.1359/jbmr.080810.
    1. Kessler J., Koebnick C., Smith N., Adams A. Childhood obesity is associated with increased risk of most lower extremity fractures. Clin. Orthop. Relat. Res. 2013;471:1199–1207. doi: 10.1007/s11999-012-2621-z.
    1. Paulis W.D., Silva S., Koes B.W., van Middelkoop M. Overweight and obesity are associated with musculoskeletal complaints as early as childhood: A systematic review. Obes. Rev. 2014;15:52–67. doi: 10.1111/obr.12067.
    1. Taylor E.D., Theim K.R., Mirch M.C., Ghorbani S., Tanofsky-Kraff M., Adler-Wailes D.C., Brady S., Reynolds J.C., Calis K.A., Yanovski J.A. Orthopedic complications of overweight in children and adolescents. Pediatrics. 2006;117:2167–2174. doi: 10.1542/peds.2005-1832.
    1. Davidson P.L., Goulding A., Chalmers D.J. Biomechanical analysis of arm fracture in obese boys. J. Paediatr. Child Health. 2003;39:657–664. doi: 10.1046/j.1440-1754.2003.00243.x.
    1. Cohen A., Dempster D.W., Recker R.R., Lappe J.M., Zhou H., Zwahlen A., Müller R., Zhao B., Guo X., Lang T., et al. Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: A transiliac bone biopsy study. J. Clin. Endocrinol. Metab. 2013;98:2562–2572. doi: 10.1210/jc.2013-1047.
    1. Bredella M.A., Torriani M., Ghomi R.H., Thomas B.J., Brick D.J., Gerweck A.V., Harrington L.M., Breggia A., Rosen C.J., Miller K.K. Determinants of bone mineral density in obese premenopausal women. Bone. 2011;48:748–754. doi: 10.1016/j.bone.2010.12.011.
    1. Ishii S., Cauley J.A., Greendale G.A., Nielsen C., Karvonen-Gutierrez C., Ruppert K., Karlamangla A.S. Pleiotropic effects of obesity on fracture risk: The Study of Women’s Health Across the Nation. J. Bone Miner. Res. 2014;29:2561–2570. doi: 10.1002/jbmr.2303.
    1. Premaor M.O., Compston J.E., Fina Avilés F., Pagès-Castellà A., Nogués X., Díez-Pérez A., Prieto-Alhambra D. The association between fracture site and obesity in men: A population-based cohort study. J. Bone Miner. Res. 2013;28:1771–1777. doi: 10.1002/jbmr.1878.
    1. Shen J., Nielson C.M., Marshall L.M., Lee D.C., Keaveny T.M., Orwoll E.S. The association between BMI and QCT-derived proximal hip structure and strength in older men: A Cross-Sectional Study. J. Bone Miner. Res. 2015;30:1301–1308. doi: 10.1002/jbmr.2450.
    1. Søgaard A.J., Holvik K., Omsland T.K., Tell G.S., Dahl C., Schei B., Falch J.A., Eisman J.A., Meyer H.E. Abdominal obesity increases the risk of hip fracture. A population-based study of 43,000 women and men aged 60–79 years followed for 8 years. Cohort of Norway. J. Intern. Med. 2015;277:306–317. doi: 10.1111/joim.12230.
    1. Paganini-Hill A., Chao A., Ross R.K., Henderson B.E. Exercise and other factors in the prevention of hip fracture: The Leisure World study. Epidemiology. 1991;2:16–25. doi: 10.1097/00001648-199101000-00004.
    1. Cummings S.R., Nevitt M.C., Browner W.S., Stone K., Fox K.M., Ensrud K.E., Cauley J., Black D., Vogt T.M. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N. Engl. J. Med. 1995;332:767–773. doi: 10.1056/NEJM199503233321202.
    1. DiPietro L., Welch G.A., Davis D.R., Drane J.W., Macera C.A. Body mass and risk of hip fracture among a national cohort of postmenopausal white women: A reanalysis. Obes. Res. 1993;1:357–363. doi: 10.1002/j.1550-8528.1993.tb00013.x.
    1. Joakimsen R.M., Fønnebø V., Magnus J.H., Tollan A., Søgaard A.J. The Tromsø Study: Body height, body mass index and fractures. Osteoporos. Int. 1998;8:436–442. doi: 10.1007/s001980050088.
    1. Van der Voort D.J., Geusens P.P., Dinant G.J. Risk factors for osteoporosis related to their outcome: Fractures. Osteoporos. Int. 2001;12:630–638. doi: 10.1007/s001980170062.
    1. Honkanen R.J., Honkanen K., Kröger H., Alhava E., Tuppurainen M., Saarikoski S. Risk factors for perimenopausal distal forearm fracture. Osteoporos. Int. 2000;11:265–270. doi: 10.1007/s001980050291.
    1. Watts N.B. Insights from the Global Longitudinal Study of Osteoporosis in Women (GLOW) Nat. Rev. Endocrinol. 2014;10:412–422. doi: 10.1038/nrendo.2014.55.
    1. Prieto-Alhambra D., Premaor M.O., Fina Avilés F., Hermosilla E., Martinez-Laguna D., Carbonell-Abella C., Nogués X., Compston J.E., Díez-Pérez A. The association between fracture and obesity is site-dependent: A population-based study in postmenopausal women. J. Bone Miner. Res. 2012;27:294–300. doi: 10.1002/jbmr.1466.
    1. Johansson H., Kanis J.A., Odén A., McCloskey E., Chapurlat R.D., Christiansen C., Cummings S.R., Diez-Perez A., Eisman J.A., Fujiwara S., et al. A meta-analysis of the association of fracture risk and body mass index in women. J. Bone Miner. Res. 2014;29:223–233. doi: 10.1002/jbmr.2017.
    1. Takada I., Suzawa M., Kato S. Nuclear receptors as targets for drug development: Crosstalk between peroxisome proliferator-activated receptor gamma and cytokines in bone marrow-derived mesenchymal stem cells. J. Pharmacol. Sci. 2005;97:184–189. doi: 10.1254/jphs.FMJ04008X5.
    1. Moerman E.J., Teng K., Lipschitz D.A., Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell. 2004;3:379–389. doi: 10.1111/j.1474-9728.2004.00127.x.
    1. Pei L., Tontonoz P. Fat’s loss is bone’s gain. J. Clin. Investig. 2004;113:805–806. doi: 10.1172/JCI21311.
    1. Vidal-Puig A.J., Considine R V., Jimenez-Liñan M., Werman A., Pories W.J., Caro J.F., Flier J.S. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J. Clin. Investig. 1997;99:2416–2422. doi: 10.1172/JCI119424.
    1. Kirkland J.L., Tchkonia T., Pirtskhalava T., Han J., Karagiannides I. Adipogenesis and aging: Does aging make fat go MAD? Exp. Gerontol. 2002;37:757–767. doi: 10.1016/S0531-5565(02)00014-1.
    1. Sepe A., Tchkonia T., Thomou T., Zamboni M., Kirkland J.L. Aging and regional differences in fat cell progenitors—A mini-review. Gerontology. 2011;57:66–75. doi: 10.1159/000279755.
    1. Goodpaster B.H., Thaete F.L., Kelley D.E. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am. J. Clin. Nutr. 2000;71:885–892.
    1. Yim J.-E., Heshka S., Albu J., Heymsfield S., Kuznia P., Harris T., Gallagher D. Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk. Int. J. Obes. (Lond.) 2007;31:1400–1405. doi: 10.1038/sj.ijo.0803621.
    1. Wronska A., Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol. (Oxf.) 2012;205:194–208. doi: 10.1111/j.1748-1716.2012.02409.x.
    1. Ryan A.S., Nicklas B.J. Age-related changes in fat deposition in mid-thigh muscle in women: Relationships with metabolic cardiovascular disease risk factors. Int. J. Obes. Relat. Metab. Disord. 1999;23:126–132. doi: 10.1038/sj.ijo.0800777.
    1. Snijder M.B., Visser M., Dekker J.M., Goodpaster B.H., Harris T.B., Kritchevsky S.B., De Rekeneire N., Kanaya A.M., Newman A.B., Tylavsky F.A., et al. Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study. Diabetologia. 2005;48:301–308. doi: 10.1007/s00125-004-1637-7.
    1. Yim J.-E., Heshka S., Albu J.B., Heymsfield S., Gallagher D. Femoral-gluteal subcutaneous and intermuscular adipose tissues have independent and opposing relationships with CVD risk. J. Appl. Physiol. 2008;104:700–707. doi: 10.1152/japplphysiol.01035.2007.
    1. Cartier A., Côté M., Lemieux I., Pérusse L., Tremblay A., Bouchard C., Després J.-P. Age-related differences in inflammatory markers in men: Contribution of visceral adiposity. Metabolism. 2009;58:1452–1458. doi: 10.1016/j.metabol.2009.04.025.
    1. Addison O., LaStayo P.C., Dibble L.E., Marcus R.L. Inflammation, aging, and adiposity: Implications for physical therapists. J. Geriatr. Phys. Ther. 2012;35:86–94. doi: 10.1519/JPT.0b013e3182312b14.
    1. Prior S.J., Joseph L.J., Brandauer J., Katzel L.I., Hagberg J.M., Ryan A.S. Reduction in midthigh low-density muscle with aerobic exercise training and weight loss impacts glucose tolerance in older men. J. Clin. Endocrinol. Metab. 2007;92:880–886. doi: 10.1210/jc.2006-2113.
    1. Dubé M.-C., Lemieux S., Piché M.-E., Corneau L., Bergeron J., Riou M.-E., Weisnagel S.J. The contribution of visceral adiposity and mid-thigh fat-rich muscle to the metabolic profile in postmenopausal women. Obesity (Silver Spring) 2011;19:953–959. doi: 10.1038/oby.2010.348.
    1. Durheim M.T., Slentz C.A., Bateman L.A., Mabe S.K., Kraus W.E. Relationships between exercise-induced reductions in thigh intermuscular adipose tissue, changes in lipoprotein particle size, and visceral adiposity. Am. J. Physiol. Endocrinol. Metab. 2008;295 doi: 10.1152/ajpendo.90397.2008.
    1. Goodpaster B.H., Carlson C.L., Visser M., Kelley D.E., Scherzinger A., Harris T.B., Stamm E., Newman A.B. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J. Appl. Physiol. 2001;90:2157–2165.
    1. Yoshida Y., Marcus R.L., Lastayo P.C. Intramuscular adipose tissue and central activation in older adults. Muscle Nerve. 2012;46:813–816. doi: 10.1002/mus.23506.
    1. Hughes V.A., Roubenoff R., Wood M., Frontera W.R., Evans W.J., Fiatarone Singh M.A. Anthropometric assessment of 10-y changes in body composition in the elderly. Am. J. Clin. Nutr. 2004;80:475–482.
    1. Raguso C.A., Kyle U., Kossovsky M.P., Roynette C., Paoloni-Giacobino A., Hans D., Genton L., Pichard C. A 3-year longitudinal study on body composition changes in the elderly: Role of physical exercise. Clin. Nutr. 2006;25:573–580. doi: 10.1016/j.clnu.2005.10.013.
    1. Ng A.C., Melton L.J., Atkinson E.J., Achenbach S.J., Holets M.F., Peterson J.M., Khosla S., Drake M.T. Relationship of adiposity to bone volumetric density and microstructure in men and women across the adult lifespan. Bone. 2013;55:119–125. doi: 10.1016/j.bone.2013.02.006.
    1. Haffner S.M., Katz M.S., Stern M.P., Dunn J.F. Relationship of sex hormone binding globulin to overall adiposity and body fat distribution in a biethnic population. Int. J. Obes. 1989;13:1–9.
    1. MacDonald P.C., Edman C.D., Hemsell D.L., Porter J.C., Siiteri P.K. Effect of obesity on conversion of plasma androstenedione to estrone in postmenopausal women with and without endometrial cancer. Am. J. Obstet. Gynecol. 1978;130:448–455. doi: 10.1016/0002-9378(78)90287-9.
    1. Cleland W.H., Mendelson C.R., Simpson E.R. Effects of aging and obesity on aromatase activity of human adipose cells. J. Clin. Endocrinol. Metab. 1985;60:174–177. doi: 10.1210/jcem-60-1-174.
    1. Napoli N., Vattikuti S., Yarramaneni J., Giri T.K., Nekkalapu S., Qualls C., Armamento-Villareal R.C. Increased 2-hydroxylation of estrogen is associated with lower body fat and increased lean body mass in postmenopausal women. Maturitas. 2012;72:66–71. doi: 10.1016/j.maturitas.2012.02.002.
    1. Hannemann A., Breer S., Wallaschofski H., Nauck M., Baumeister S.E., Barvencik F., Amling M., Schinke T., Haring R., Keller J. Osteocalcin is associated with testosterone in the general population and selected patients with bone disorders. Andrology. 2013;1:469–474. doi: 10.1111/j.2047-2927.2012.00044.x.
    1. Ferron M., Wei J., Yoshizawa T., Del Fattore A., DePinho R.A., Teti A., Ducy P., Karsenty G. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308. doi: 10.1016/j.cell.2010.06.003.
    1. Oury F., Sumara G., Sumara O., Ferron M., Chang H., Smith C.E., Hermo L., Suarez S., Roth B.L. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144:796–809. doi: 10.1016/j.cell.2011.02.004.
    1. Cawthon P.M., Shahnazari M., Orwoll E.S., Lane N.E. Osteoporosis in men: Findings from the Osteoporotic Fractures in Men Study (MrOS) Ther. Adv. Musculoskelet. Dis. 2016;8:15–27. doi: 10.1177/1759720X15621227.
    1. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359:1841–1850. doi: 10.1016/S0140-6736(02)08706-8.
    1. Sundh D., Mellström D., Nilsson M., Karlsson M., Ohlsson C., Lorentzon M. Increased cortical porosity in older men with fracture. J. Bone Miner. Res. 2015;30:1692–1700. doi: 10.1002/jbmr.2509.
    1. Donaldson L.J., Cook A., Thomson R.G. Incidence of fractures in a geographically defined population. J. Epidemiol. Community Health. 1990;44:241–245. doi: 10.1136/jech.44.3.241.
    1. Karsenty G. The mutual dependence between bone and gonads. J. Endocrinol. 2012;213:107–114. doi: 10.1530/JOE-11-0452.
    1. Khosla S., Melton L.J., Atkinson E.J., O’Fallon W.M. Relationship of serum sex steroid levels to longitudinal changes in bone density in young vs. elderly men. J. Clin. Endocrinol. Metab. 2001;86:3555–3561. doi: 10.1210/jcem.86.8.7736.
    1. Riggs B.L., Khosla S., Melton L.J. Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev. 2002;23:279–302. doi: 10.1210/edrv.23.3.0465.
    1. Nakamura T., Imai Y., Matsumoto T., Sato S., Takeuchi K., Igarashi K., Harada Y., Azuma Y., Krust A., Yamamoto Y., et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell. 2007;130:811–823. doi: 10.1016/j.cell.2007.07.025.
    1. Bobjer J., Bogefors K., Isaksson S., Leijonhufvud I., Åkesson K., Giwercman Y.L., Giwercman A. High prevalence of hypogonadism and associated impaired metabolic and bone mineral status in subfertile men. Clin. Endocrinol. 2016 doi: 10.1111/cen.13038.
    1. Haring R., Völzke H., Felix S.B., Schipf S., Dörr M., Rosskopf D., Nauck M., Schöfl C., Wallaschofski H. Prediction of metabolic syndrome by low serum testosterone levels in men: results from the study of health in Pomerania. Diabetes. 2009;58:2027–2031. doi: 10.2337/db09-0031.
    1. Yassin A., Nettleship J.E., Talib R.A., Almehmadi Y., Doros G. Effects of testosterone replacement therapy withdrawal and re-treatment in hypogonadal elderly men upon obesity, voiding function and prostate safety parameters. Aging Male. 2016;19:64–69. doi: 10.3109/13685538.2015.1126573.
    1. Nieschlag E. Current topics in testosterone replacement of hypogonadal men. Best Pract. Res. Clin. Endocrinol. Metab. 2015;29:77–90. doi: 10.1016/j.beem.2014.09.008.
    1. Prats-Puig A., Mas-Parareda M., Riera-Pérez E., González-Forcadell D., Mier C., Mallol-Guisset M., Díaz M., Bassols J., de Zegher F., Ibáñez L., et al. Carboxylation of osteocalcin affects its association with metabolic parameters in healthy children. Diabetes Care. 2010;33:661–663. doi: 10.2337/dc09-1837.
    1. Franceschi C., Capri M., Monti D., Giunta S., Olivieri F., Sevini F., Panourgia M.P., Invidia L., Celani L., Scurti M., et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007;128:92–105. doi: 10.1016/j.mad.2006.11.016.
    1. Targownik L.E., Bernstein C.N., Leslie W.D. Inflammatory bowel disease and the risk of osteoporosis and fracture. Maturitas. 2013;76:315–319. doi: 10.1016/j.maturitas.2013.09.009.
    1. Gautier A., Bonnet F., Dubois S., Massart C., Grosheny C., Bachelot A., Aubé C., Balkau B., Ducluzeau P.-H. Associations between visceral adipose tissue, inflammation and sex steroid concentrations in men. Clin. Endocrinol. 2013;78:373–378. doi: 10.1111/j.1365-2265.2012.04401.x.
    1. Weyer C., Funahashi T., Tanaka S., Hotta K., Matsuzawa Y., Pratley R.E., Tataranni P.A. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 2001;86:1930–1935. doi: 10.1210/jcem.86.5.7463.
    1. Lenchik L., Register T.C., Hsu F.C., Lohman K., Nicklas B.J., Freedman B.I., Langefeld C.D., Carr J.J., Bowden D.W. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33:646–651. doi: 10.1016/S8756-3282(03)00237-0.
    1. Yamauchi T., Kamon J., Waki H., Terauchi Y., Kubota N., Hara K., Mori Y., Ide T., Murakami K., Tsuboyama-Kasaoka N., et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001;7:941–946. doi: 10.1038/90984.
    1. Berner H.S., Lyngstadaas S.P., Spahr A., Monjo M., Thommesen L., Drevon C.A., Syversen U., Reseland J.E. Adiponectin and its receptors are expressed in bone-forming cells. Bone. 2004;35:842–849. doi: 10.1016/j.bone.2004.06.008.
    1. Wang Y., Lam K.S.L., Xu J.Y., Lu G., Xu L.Y., Cooper G.J.S., Xu A. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J. Biol. Chem. 2005;280:18341–18347. doi: 10.1074/jbc.M501149200.
    1. Williams G.A., Wang Y., Callon K.E., Watson M., Lin J., Lam J.B.B., Costa J.L., Orpe A., Broom N., Naot D., et al. In vitro and in vivo effects of adiponectin on bone. Endocrinology. 2009;150:3603–3610. doi: 10.1210/en.2008-1639.
    1. Richards J.B., Valdes A.M., Burling K., Perks U.C., Spector T.D. Serum adiponectin and bone mineral density in women. J. Clin. Endocrinol. Metab. 2007;92:1517–1523. doi: 10.1210/jc.2006-2097.
    1. Jürimäe J., Jürimäe T. Plasma adiponectin concentration in healthy pre- and postmenopausal women: Relationship with body composition, bone mineral, and metabolic variables. Am. J. Physiol. Endocrinol. Metab. 2007;293 doi: 10.1152/ajpendo.00610.2006.
    1. Peng X.-D., Xie H., Zhao Q., Wu X.-P., Sun Z.-Q., Liao E.-Y. Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin. Chim. Acta. 2008;387:31–35. doi: 10.1016/j.cca.2007.08.012.
    1. Napoli N., Pedone C., Pozzilli P., Lauretani F., Ferrucci L., Incalzi R.A. Adiponectin and bone mass density: The InCHIANTI study. Bone. 2010;47:1001–1005. doi: 10.1016/j.bone.2010.08.010.
    1. Tamura T., Yoneda M., Yamane K., Nakanishi S., Nakashima R., Okubo M., Kohno N. Serum leptin and adiponectin are positively associated with bone mineral density at the distal radius in patients with type 2 diabetes mellitus. Metabolism. 2007;56:623–628. doi: 10.1016/j.metabol.2006.12.008.
    1. Kontogianni M.D., Dafni U.G., Routsias J.G., Skopouli F.N. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J. Bone Miner. Res. 2004;19:546–551. doi: 10.1359/JBMR.040107.
    1. Pasco J.A., Henry M.J., Kotowicz M.A., Collier G.R., Ball M.J., Ugoni A.M., Nicholson G.C. Serum leptin levels are associated with bone mass in nonobese women. J. Clin. Endocrinol. Metab. 2001;86:1884–1887. doi: 10.1210/jc.86.5.1884.
    1. Elefteriou F., Takeda S., Ebihara K., Magre J., Patano N., Kim C.A., Ogawa Y., Liu X., Ware S.M., Craigen W.J., et al. Serum leptin level is a regulator of bone mass. Proc. Natl. Acad. Sci. USA. 2004;101:3258–3263. doi: 10.1073/pnas.0308744101.
    1. Ducy P., Amling M., Takeda S., Priemel M., Schilling A.F., Beil F.T., Shen J., Vinson C., Rueger J.M., Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell. 2000;100:197–207. doi: 10.1016/S0092-8674(00)81558-5.
    1. Blain H., Vuillemin A., Guillemin F., Durant R., Hanesse B., de Talance N., Doucet B., Jeandel C. Serum leptin level is a predictor of bone mineral density in postmenopausal women. J. Clin. Endocrinol. Metab. 2002;87:1030–1035. doi: 10.1210/jcem.87.3.8313.
    1. Shaarawy M., Abassi A.F., Hassan H., Salem M.E. Relationship between serum leptin concentrations and bone mineral density as well as biochemical markers of bone turnover in women with postmenopausal osteoporosis. Fertil. Steril. 2003;79:919–924. doi: 10.1016/S0015-0282(02)04915-4.
    1. Holecki M., Wiecek A. Relationship between body fat mass and bone metabolism. Pol. Arch. Med. Wewn. 2010;120:361–367.
    1. Couce M.E., Green D., Brunetto A., Achim C., Lloyd R.V., Burguera B. Limited brain access for leptin in obesity. Pituitary. 2001;4:101–110. doi: 10.1023/A:1012951214106.
    1. Lamghari M., Tavares L., Camboa N., Barbosa M.A. Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts. J. Cell. Biochem. 2006;98:1123–1129. doi: 10.1002/jcb.20853.
    1. Shintani M., Ogawa Y., Ebihara K., Aizawa-Abe M., Miyanaga F., Takaya K., Hayashi T., Inoue G., Hosoda K., Kojima M., et al. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes. 2001;50:227–232. doi: 10.2337/diabetes.50.2.227.
    1. Wren A.M., Small C.J., Abbott C.R., Dhillo W.S., Seal L.J., Cohen M.A., Batterham R.L., Taheri S., Stanley S.A., Ghatei M.A., et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2001;50:2540–2547. doi: 10.2337/diabetes.50.11.2540.
    1. Wren A.M., Seal L.J., Cohen M.A., Brynes A.E., Frost G.S., Murphy K.G., Dhillo W.S., Ghatei M.A., Bloom S.R. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 2001;86 doi: 10.1210/jcem.86.12.8111.
    1. Asakawa A., Inui A., Kaga T., Yuzuriha H., Nagata T., Ueno N., Makino S., Fujimiya M., Niijima A., Fujino M.A., et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology. 2001;120:337–345. doi: 10.1053/gast.2001.22158.
    1. Tschöp M., Smiley D.L., Heiman M.L. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–913. doi: 10.1038/35038090.
    1. Fukushima N., Hanada R., Teranishi H., Fukue Y., Tachibana T., Ishikawa H., Takeda S., Takeuchi Y., Fukumoto S., Kangawa K., et al. Ghrelin directly regulates bone formation. J. Bone Miner. Res. 2005;20:790–798. doi: 10.1359/JBMR.041237.
    1. Tavassoli M. Marrow adipose cells and hemopoiesis: An interpretative review. Exp. Hematol. 1984;12:139–146.
    1. Rosen C.J., Bouxsein M.L. Mechanisms of disease: Is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheumatol. 2006;2:35–43. doi: 10.1038/ncprheum0070.
    1. Rosen C.J., Klibanski A. Bone, fat, and body composition: Evolving concepts in the pathogenesis of osteoporosis. Am. J. Med. 2009;122:409–414. doi: 10.1016/j.amjmed.2008.11.027.
    1. Takeda S., Elefteriou F., Karsenty G. Common endocrine control of body weight, reproduction, and bone mass. Annu. Rev. Nutr. 2003;23:403–411. doi: 10.1146/annurev.nutr.23.011702.073312.
    1. Schellinger D., Lin C.S., Hatipoglu H.G., Fertikh D. Potential value of vertebral proton MR spectroscopy in determining bone weakness. Am. J. Neuroradiol. 2001;22:1620–1627.
    1. Bredella M.A., Gill C.M., Gerweck A.V., Landa M.G., Kumar V., Daley S.M., Torriani M., Miller K.K. Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology. 2013;269:534–541. doi: 10.1148/radiol.13130375.
    1. Parhami F. Possible role of oxidized lipids in osteoporosis: Could hyperlipidemia be a risk factor? Prostaglandins Leukot. Essent. Fat. Acids. 2003;68:373–378. doi: 10.1016/S0952-3278(03)00061-9.
    1. Rajamannan N.M. Low-density lipoprotein and aortic stenosis. Heart. 2008;94:1111–1112. doi: 10.1136/hrt.2007.130971.
    1. Zernicke R.F., Salem G.J., Barnard R.J., Schramm E. Long-term, high-fat-sucrose diet al.ters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone. 1995;16:25–31. doi: 10.1016/8756-3282(95)80007-D.
    1. Demigné C., Bloch-Faure M., Picard N., Sabboh H., Besson C., Rémésy C., Geoffroy V., Gaston A.-T., Nicoletti A., Hagège A., et al. Mice chronically fed a westernized experimental diet as a model of obesity, metabolic syndrome and osteoporosis. Eur. J. Nutr. 2006;45:298–306. doi: 10.1007/s00394-006-0599-6.
    1. Woo D.G., Lee B.Y., Lim D., Kim H.S. Relationship between nutrition factors and osteopenia: Effects of experimental diets on immature bone quality. J. Biomech. 2009;42:1102–1107. doi: 10.1016/j.jbiomech.2009.02.020.
    1. Patsch J.M., Kiefer F.W., Varga P., Pail P., Rauner M., Stupphann D., Resch H., Moser D., Zysset P.K., Stulnig T.M., et al. Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metabolism. 2011;60:243–249. doi: 10.1016/j.metabol.2009.11.023.
    1. Cao J.J., Sun L., Gao H. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann. N. Y. Acad. Sci. 2010;1192:292–297. doi: 10.1111/j.1749-6632.2009.05252.x.
    1. Ionova-Martin S.S., Wade J.M., Tang S., Shahnazari M., Ager J.W., Lane N.E., Yao W., Alliston T., Vaisse C., Ritchie R.O. Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice. Osteoporos. Int. 2011;22:2283–2293. doi: 10.1007/s00198-010-1432-x.
    1. Lorincz C., Reimer R.A., Boyd S.K., Zernicke R.F. High-fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br. J. Nutr. 2010;103:1302–1308. doi: 10.1017/S0007114509993084.
    1. Zernicke R.F., Salem G.J., Barnard R.J., Woodward J.S., Meduski J.W., Meduski J.D. Adaptations of immature trabecular bone to exercise and augmented dietary protein. Med. Sci. Sports Exerc. 1995;27:1486–1493. doi: 10.1249/00005768-199511000-00004.
    1. Wu W.X., Glasier A., Norman J., Kelly R.W., Baird D.T., McNeilly A.S. The effects of the antiprogestin mifepristone, in vivo, and progesterone in vitro on prolactin production by the human decidua in early pregnancy. Hum. Reprod. 1990;5:627–631.
    1. Tsanzi E., Light H.R., Tou J.C. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength. Bone. 2008;42:960–968. doi: 10.1016/j.bone.2008.01.020.
    1. Yarrow J.F., Toklu H.Z., Balaez A., Phillips E.G., Otzel D.M., Chen C., Wronski T.J., Aguirre J.I., Sakarya Y., Tümer N., et al. Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone. 2016;85:99–106. doi: 10.1016/j.bone.2016.02.004.
    1. Fried A., Manske S.L., Eller L.K., Lorincz C., Reimer R.A., Zernicke R.F. Skim milk powder enhances trabecular bone architecture compared with casein or whey in diet-induced obese rats. Nutrition. 2012;28:331–335. doi: 10.1016/j.nut.2011.07.022.
    1. Farina E.K., Kiel D.P., Roubenoff R., Schaefer E.J., Cupples L.A., Tucker K.L. Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: The Framingham Osteoporosis Study. Am. J. Clin. Nutr. 2011;93:1142–1151. doi: 10.3945/ajcn.110.005926.
    1. Farina E.K., Kiel D.P., Roubenoff R., Schaefer E.J., Cupples L.A., Tucker K.L. Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hip bone mineral density and hip fracture in older adults: The Framingham Osteoporosis Study. J. Bone Miner. Res. 2012;27:1222–1230. doi: 10.1002/jbmr.1581.
    1. Martin-Bautista E., Muñoz-Torres M., Fonolla J., Quesada M., Poyatos A., Lopez-Huertas E. Improvement of bone formation biomarkers after 1-year consumption with milk fortified with eicosapentaenoic acid, docosahexaenoic acid, oleic acid, and selected vitamins. Nutr. Res. 2010;30:320–326. doi: 10.1016/j.nutres.2010.05.007.
    1. Lappe J., Kunz I., Bendik I., Prudence K., Weber P., Recker R., Heaney R.P. Effect of a combination of genistein, polyunsaturated fatty acids and vitamins D3 and K1 on bone mineral density in postmenopausal women: A randomized, placebo-controlled, double-blind pilot study. Eur. J. Nutr. 2013;52:203–215. doi: 10.1007/s00394-012-0304-x.
    1. Mangano K.M., Sahni S., Kerstetter J.E., Kenny A.M., Hannan M.T. Polyunsaturated fatty acids and their relation with bone and muscle health in adults. Curr. Osteoporos. Rep. 2013;11:203–212. doi: 10.1007/s11914-013-0149-0.
    1. Weaver C.M., Gordon C.M., Janz K.F., Kalkwarf H.J., Lappe J.M., Lewis R., O’Karma M., Wallace T.C., Zemel B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016;27:1281–1386. doi: 10.1007/s00198-015-3440-3.
    1. Alexy U., Remer T., Manz F., Neu C.M., Schoenau E. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am. J. Clin. Nutr. 2005;82:1107–1114.
    1. Remer T., Manz F., Alexy U., Schoenau E., Wudy S.A., Shi L. Long-term high urinary potential renal acid load and low nitrogen excretion predict reduced diaphyseal bone mass and bone size in children. J. Clin. Endocrinol. Metab. 2011;96:2861–2868. doi: 10.1210/jc.2011-1005.
    1. Bounds W., Skinner J., Carruth B.R., Ziegler P. The relationship of dietary and lifestyle factors to bone mineral indexes in children. J. Am. Diet. Assoc. 2005;105:735–741. doi: 10.1016/j.jada.2005.02.046.
    1. Vatanparast H., Bailey D.A., Baxter-Jones A.D.G., Whiting S.J. The effects of dietary protein on bone mineral mass in young adults may be modulated by adolescent calcium intake. J. Nutr. 2007;137:2674–2679.
    1. Hoppe C., Mølgaard C., Michaelsen K.F. Bone size and bone mass in 10-year-old Danish children: Effect of current diet. Osteoporos. Int. 2000;11:1024–1030. doi: 10.1007/s001980070023.
    1. Iuliano-Burns S., Stone J., Hopper J.L., Seeman E. Diet and exercise during growth have site-specific skeletal effects: A co-twin control study. Osteoporos. Int. 2005;16:1225–1232. doi: 10.1007/s00198-004-1830-z.
    1. Chevalley T., Bonjour J.-P., Ferrari S., Rizzoli R. High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J. Bone Miner. Res. 2008;23:131–142. doi: 10.1359/jbmr.070907.
    1. Marotte C., Bryk G., Gonzales Chaves M.M.S., Lifshitz F., de Portela M.L.P.M., Zeni S.N. Low dietary calcium and obesity: A comparative study in genetically obese and normal rats during early growth. Eur. J. Nutr. 2014;53:769–778. doi: 10.1007/s00394-013-0581-z.
    1. Reid I.R. Therapy of osteoporosis: Calcium, vitamin D, and exercise. Am. J. Med. Sci. 1996;312:278–286. doi: 10.1016/S0002-9629(15)41843-9.
    1. Salamone L.M., Cauley J.A., Black D.M., Simkin-Silverman L., Lang W., Gregg E., Palermo L., Epstein R.S., Kuller L.H., Wing R. Effect of a lifestyle intervention on bone mineral density in premenopausal women: A randomized trial. Am. J. Clin. Nutr. 1999;70:97–103.
    1. Langlois J.A., Mussolino M.E., Visser M., Looker A.C., Harris T., Madans J. Weight loss from maximum body weight among middle-aged and older white women and the risk of hip fracture: The NHANES I epidemiologic follow-up study. Osteoporos. Int. 2001;12:763–768. doi: 10.1007/s001980170053.
    1. Ensrud K.E., Fullman R.L., Barrett-Connor E., Cauley J.A., Stefanick M.L., Fink H.A., Lewis C.E., Orwoll E. Voluntary weight reduction in older men increases hip bone loss: The osteoporotic fractures in men study. J. Clin. Endocrinol. Metab. 2005;90:1998–2004. doi: 10.1210/jc.2004-1805.
    1. Bleicher K., Cumming R.G., Naganathan V., Travison T.G., Sambrook P.N., Blyth F.M., Handelsman D.J., Le Couteur D.G., Waite L.M., Creasey H.M., et al. The role of fat and lean mass in bone loss in older men: Findings from the CHAMP study. Bone. 2011;49:1299–1305. doi: 10.1016/j.bone.2011.08.026.
    1. Hawkins J., Cifuentes M., Pleshko N.L., Ambia-Sobhan H., Shapses S.A. Energy restriction is associated with lower bone mineral density of the tibia and femur in lean but not obese female rats. J. Nutr. 2010;140:31–37. doi: 10.3945/jn.109.111450.
    1. Talbott S.M., Cifuentes M., Dunn M.G., Shapses S.A. Energy restriction reduces bone density and biomechanical properties in aged female rats. J. Nutr. 2001;131:2382–2387.
    1. Devlin M.J., Stetter C.M., Lin H.-M., Beck T.J., Legro R.S., Petit M.A., Lieberman D.E., Lloyd T. Peripubertal estrogen levels and physical activity affect femur geometry in young adult women. Osteoporos. Int. 2010;21:609–617. doi: 10.1007/s00198-009-0999-6.
    1. Labouesse M.A., Gertz E.R., Piccolo B.D., Souza E.C., Schuster G.U., Witbracht M.G., Woodhouse L.R., Adams S.H., Keim N.L., Van Loan M.D. Associations among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss. Bone. 2014;64:138–146. doi: 10.1016/j.bone.2014.03.047.
    1. Zibellini J., Seimon R.V., Lee C.M., Gibson A.A., Hsu M.S., Shapses S.A., Nguyen T.V., Sainsbury A. Does diet-induced weight loss lead to bone loss in overweight or obese adults? A systematic review and meta-analysis of clinical trials. J. Bone Miner. Res. 2015;30:2168–2178. doi: 10.1002/jbmr.2564.
    1. Pop L.C., Sukumar D., Tomaino K., Schlussel Y., Schneider S.H., Gordon C.L., Wang X., Shapses S.A. Moderate weight loss in obese and overweight men preserves bone quality. Am. J. Clin. Nutr. 2015;101:659–667. doi: 10.3945/ajcn.114.088534.
    1. Skerry T.M. The response of bone to mechanical loading and disuse: Fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch. Biochem. Biophys. 2008;473:117–123. doi: 10.1016/j.abb.2008.02.028.
    1. Villareal D.T., Chode S., Parimi N., Sinacore D.R., Hilton T., Armamento-Villareal R., Napoli N., Qualls C., Shah K. Weight loss, exercise, or both and physical function in obese older adults. N. Engl. J. Med. 2011;364:1218–1229. doi: 10.1056/NEJMoa1008234.
    1. Shah K., Armamento-Villareal R., Parimi N., Chode S., Sinacore D.R., Hilton T.N., Napoli N., Qualls C., Villareal D.T. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J. Bone Miner. Res. 2011;26:2851–2859. doi: 10.1002/jbmr.475.
    1. Daly R.M., Dunstan D.W., Owen N., Jolley D., Shaw J.E., Zimmet P.Z. Does high-intensity resistance training maintain bone mass during moderate weight loss in older overweight adults with type 2 diabetes? Osteoporos. Int. 2005;16:1703–1712. doi: 10.1007/s00198-005-1906-4.
    1. Reid I.R., Legge M., Stapleton J.P., Evans M.C., Grey A.B. Regular exercise dissociates fat mass and bone density in premenopausal women. J. Clin. Endocrinol. Metab. 1995;80:1764–1768.
    1. Meyer H.E., Willett W.C., Flint A.J., Feskanich D. Abdominal obesity and hip fracture: Results from the Nurses’ Health Study and the Health Professionals Follow-Up Study. Osteoporos. Int. 2016 doi: 10.1007/s00198-016-3508-8.
    1. Endocrine Disruption. [(accessed on 13 January 2016)]; Available online: .
    1. Birnbaum L.S. When environmental chemicals act like uncontrolled medicine. Trends Endocrinol. Metab. 2013;24:321–323. doi: 10.1016/j.tem.2012.12.005.
    1. Thayer K.A., Heindel J.J., Bucher J.R., Gallo M.A. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ. Health Perspect. 2012;120:779–789. doi: 10.1289/ehp.1104597.
    1. Kopras E., Potluri V., Bermudez M.-L., Williams K., Belcher S., Kasper S. Actions of endocrine-disrupting chemicals on stem/progenitor cells during development and disease. Endocr. Relat. Cancer. 2014;21 doi: 10.1530/ERC-13-0360.
    1. Tsukamoto Y., Ishihara Y., Miyagawa-Tomita S., Hagiwara H. Inhibition of ossification in vivo and differentiation of osteoblasts in vitro by tributyltin. Biochem. Pharmacol. 2004;68:739–746. doi: 10.1016/j.bcp.2004.04.020.
    1. Salmela E., Sahlberg C., Alaluusua S., Lukinmaa P.-L. Tributyltin impairs dentin mineralization and enamel formation in cultured mouse embryonic molar teeth. Toxicol. Sci. 2008;106:214–222. doi: 10.1093/toxsci/kfn156.
    1. Salmela E., Alaluusua S., Sahlberg C., Lukinmaa P.-L. Tributyltin alters osteocalcin, matrix metalloproteinase 20 and dentin sialophosphoprotein gene expression in mineralizing mouse embryonic tooth in vitro. Cells Tissues Organs. 2012;195:287–295. doi: 10.1159/000327529.
    1. Grün F., Blumberg B. (2006) Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006;147 doi: 10.1210/en.2005-1129.
    1. Grün F., Watanabe H., Zamanian Z., Maeda L., Arima K., Cubacha R., Gardiner D.M., Kanno J., Iguchi T., Blumberg B. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol. Endocrinol. 2006;20:2141–2155. doi: 10.1210/me.2005-0367.
    1. Choi W.-J., Han S.-H. Blood cadmium is associated with osteoporosis in obese males but not in non-obese males: The Korea National Health and Nutrition Examination Survey 2008–2011. Int. J. Environ. Res. Public Health. 2015;12:12144–12157. doi: 10.3390/ijerph121012144.
    1. Gupta V. Pleiotropic effects of incretins. Indian J. Endocrinol. Metab. 2012;16 doi: 10.4103/2230-8210.94259.
    1. Faienza M.F., Luce V., Ventura A., Colaianni G., Colucci S., Cavallo L., Grano M., Brunetti G. Skeleton and glucose metabolism: A bone-pancreas loop. Int. J. Endocrinol. 2015;2015 doi: 10.1155/2015/758148.
    1. Baggio L.L., Drucker D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–2157. doi: 10.1053/j.gastro.2007.03.054.
    1. Zhong Q., Itokawa T., Sridhar S., Ding K.-H., Xie D., Kang B., Bollag W.B., Bollag R.J., Hamrick M., Insogna K., et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am. J. Physiol. Endocrinol. Metab. 2007;292 doi: 10.1152/ajpendo.00364.2006.
    1. Pacheco-Pantoja E.L., Ranganath L.R., Gallagher J.A., Wilson P.J.M., Fraser W.D. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011;11 doi: 10.1186/1472-6793-11-12.
    1. Nuche-Berenguer B., Portal-Núñez S., Moreno P., González N., Acitores A., López-Herradón A., Esbrit P., Valverde I., Villanueva-Peñacarrillo M.L. Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J. Cell. Physiol. 2010;225:585–592. doi: 10.1002/jcp.22243.
    1. Yamada Y. Incretin and bone. Clin. Calcium. 2009;19:1312–1317.
    1. Nuche-Berenguer B., Moreno P., Esbrit P., Dapía S., Caeiro J.R., Cancelas J., Haro-Mora J.J., Villanueva-Peñacarrillo M.L. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif. Tissue Int. 2009;84:453–461. doi: 10.1007/s00223-009-9220-3.
    1. Nuche-Berenguer B., Moreno P., Portal-Nuñez S., Dapía S., Esbrit P., Villanueva-Peñacarrillo M.L. Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regul. Pept. 2010;159:61–66. doi: 10.1016/j.regpep.2009.06.010.
    1. Nuche-Berenguer B., Lozano D., Gutiérrez-Rojas I., Moreno P., Mariñoso M.L., Esbrit P., Villanueva-Peñacarrillo M.L. GLP-1 and exendin-4 can reverse hyperlipidic-related osteopenia. J. Endocrinol. 2011;209:203–210. doi: 10.1530/JOE-11-0015.
    1. Pereira M., Jeyabalan J., Jørgensen C.S., Hopkinson M., Al-Jazzar A., Roux J.P., Chavassieux P., Orriss I.R., Cleasby M.E., Chenu C. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone. 2015;81:459–467. doi: 10.1016/j.bone.2015.08.006.
    1. Lu N., Sun H., Yu J., Wang X., Liu D., Zhao L., Sun L., Zhao H., Tao B., Liu J. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0132744.
    1. Henriksen D.B., Alexandersen P., Hartmann B., Adrian C.L., Byrjalsen I., Bone H.G., Holst J.J. Christiansen C Four-month treatment with GLP-2 significantly increases hip BMD: A randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone. 2009;45:833–842. doi: 10.1016/j.bone.2009.07.008.
    1. Bunck M.C., Eliasson B., Cornér A., Heine R.J., Shaginian R.M., Taskinen M.-R., Yki-Järvinen H., Smith U., Diamant M. Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes. Diabetes Obes. Metab. 2011;13:374–377. doi: 10.1111/j.1463-1326.2010.01355.x.
    1. Gilbert M.P., Marre M., Holst J.J., Garber A., Baeres F.M.M., Thomsen H., Pratley R.E. Comparison of the long-term effects of liraglutide and glimepiride monotherapy on bone mineral density in patients with type 2 diabetes. Endocr. Pract. 2015 doi: 10.4158/EP15758.OR.
    1. Iepsen E.W., Lundgren J.R., Hartmann B., Pedersen O., Hansen T., Jørgensen N.R., Jensen J.-E.B., Holst J.J., Madsbad S., Torekov S.S. GLP-1 Receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women. J. Clin. Endocrinol. Metab. 2015;100:2909–2917. doi: 10.1210/jc.2015-1176.
    1. Mabilleau G., Mieczkowska A., Chappard D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: A meta-analysis of randomized clinical trials (-1:meta) J. Diabetes. 2014;6:260–236. doi: 10.1111/1753-0407.12102.
    1. Su B., Sheng H., Zhang M., Bu L., Yang P., Li L., Li F., Sheng C., Han Y., Qu S., Wang J. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: A meta-analysis of randomized controlled trials. Endocrine. 2014 doi: 10.1007/s12020-014-0361-4.
    1. Pace D.G., Blotner S., Guerciolini R. Short-term orlistat treatment does not affect mineral balance and bone turnover in obese men. J. Nutr. 2001;131:1694–1699.
    1. Gotfredsen A., Westergren Hendel H., Andersen T. Influence of orlistat on bone turnover and body composition. Int. J. Obes. Relat. Metab. Disord. 2001;25:1154–1160. doi: 10.1038/sj.ijo.0801639.
    1. Compston J.E., Laskey M.A., Croucher P.I., Coxon A., Kreitzman S. Effect of diet-induced weight loss on total body bone mass. Clin. Sci. 1992;82:429–432. doi: 10.1042/cs0820429.
    1. Brzozowska M.M., Sainsbury A., Eisman J.A., Baldock P.A., Center J.R. Bariatric surgery, bone loss, obesity and possible mechanisms. Obes. Rev. 2013;14:52–67. doi: 10.1111/j.1467-789X.2012.01050.x.
    1. Andersen R.E., Wadden T.A., Herzog R.J. Changes in bone mineral content in obese dieting women. Metabolism. 1997;46:857–861. doi: 10.1016/S0026-0495(97)90070-6.
    1. Jensen L.B., Kollerup G., Quaade F., Sørensen O.H. Bone minerals changes in obese women during a moderate weight loss with and without calcium supplementation. J. Bone Miner. Res. 2001;16:141–147. doi: 10.1359/jbmr.2001.16.1.141.
    1. Svendsen O.L., Hassager C., Christiansen C. Effect of an energy-restrictive diet, with or without exercise, on lean tissue mass, resting metabolic rate, cardiovascular risk factors, and bone in overweight postmenopausal women. Am. J. Med. 1993;95:131–140. doi: 10.1016/0002-9343(93)90253-L.
    1. Riedt C.S., Cifuentes M., Stahl T., Chowdhury H.A., Schlussel Y., Shapses S.A. Overweight postmenopausal women lose bone with moderate weight reduction and 1 g/day calcium intake. J. Bone Miner. Res. 2005;20:455–463. doi: 10.1359/JBMR.041132.
    1. Ricci T.A., Chowdhury H.A., Heymsfield S.B., Stahl T., Pierson R.N., Shapses S.A. Calcium supplementation suppresses bone turnover during weight reduction in postmenopausal women. J. Bone Miner. Res. 1998;13:1045–1050. doi: 10.1359/jbmr.1998.13.6.1045.
    1. Ramsdale S.J., Bassey E.J. Changes in bone mineral density associated with dietary-induced loss of body mass in young women. Clin. Sci. 1994;87:343–348. doi: 10.1042/cs0870343.
    1. Van Loan M.D., Johnson H.L., Barbieri T.F. Effect of weight loss on bone mineral content and bone mineral density in obese women. Am. J. Clin. Nutr. 1998;67:734–738.
    1. Shapses S.A., Von Thun N.L., Heymsfield S.B., Ricci T.A., Ospina M., Pierson R.N., Stahl T. Bone turnover and density in obese premenopausal women during moderate weight loss and calcium supplementation. J. Bone Miner. Res. 2001;16:1329–1336. doi: 10.1359/jbmr.2001.16.7.1329.
    1. Riedt C.S., Schlussel Y., von Thun N., Ambia-Sobhan H., Stahl T., Field M.P., Sherrell R.M., Shapses S.A. Premenopausal overweight women do not lose bone during moderate weight loss with adequate or higher calcium intake. Am. J. Clin. Nutr. 2007;85:972–980.
    1. Pritchard J.E., Nowson C.A., Wark J.D. Bone loss accompanying diet-induced or exercise-induced weight loss: A randomised controlled study. Int. J. Obes. Relat. Metab. Disord. 1996;20:513–520.
    1. Bakhireva L.N., Barrett-Connor E., Kritz-Silverstein D., Morton D.J. Modifiable predictors of bone loss in older men: A prospective study. Am. J. Prev. Med. 2004;26:436–442. doi: 10.1016/j.amepre.2004.02.013.
    1. Fogelholm G.M., Sievänen H.T., Kukkonen-Harjula T.K., Pasanen M.E. Bone mineral density during reduction, maintenance and regain of body weight in premenopausal, obese women. Osteoporos Int. 2001;12:199–206. doi: 10.1007/s001980170130.
    1. Hamilton K.C., Fisher G., Roy J.L., Gower B.A., Hunter G.R. The effects of weight loss on relative bone mineral density in premenopausal women. Obesity. 2013;21:441–448. doi: 10.1002/oby.20052.
    1. Villalon K.L., Gozansky W.S., van Pelt R.E., Wolfe P., Jankowski C.M., Schwartz R.S., Kohrt W.M. A losing battle: weight regain does not restore weight loss-induced bone loss in postmenopausal women. Obesity. 2011;19:2345–2350. doi: 10.1038/oby.2011.263.
    1. Gower B.A., Casazza K. Divergent effects of obesity on bone health. J. Clin. Densitom. 2013;16:450–454. doi: 10.1016/j.jocd.2013.08.010.
    1. Armamento-Villareal R., Sadler C., Napoli N., Shah K., Chode S., Sinacore D.R., Qualls C., Villareal D.T. Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J. Bone Miner. Res. 2012;27:1215–1221. doi: 10.1002/jbmr.1560.
    1. Shapses S.A., Riedt C.S. Bone, body weight, and weight reduction: What are the concerns? J. Nutr. 2006;136:1453–1456.
    1. Sundh D., Rudäng R., Zoulakis M., Nilsson A.G., Darelid A., Lorentzon M. A high amount of local adipose tissue is associated with high cortical porosity and low bone material strength in older women. J. Bone Miner. Res. 2016;31:749–757. doi: 10.1002/jbmr.2747.

Source: PubMed

3
Tilaa