Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders

Annaëlle Charrier, Bertrand Olliac, Pierre Roubertoux, Sylvie Tordjman, Annaëlle Charrier, Bertrand Olliac, Pierre Roubertoux, Sylvie Tordjman

Abstract

In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

Keywords: attention deficit hyperactivity disorder; autism spectrum disorder; circadian clocks network; circadian rhythm; clock genes; mood disorders; psychiatric disorders; schizophrenia; sleep-wake rhythm; synchronization of oscillators.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Model of the mammalian cell-autonomous oscillator (based on Lowrey and Takahashi, 2011) [69]. The transcriptional activators circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) stimulate the expression of cryptochrome-1 (Cry) and period (Per) genes. The protein products of these genes are associated in the cytoplasm to form dimers that go into the core. There, they serve two functions: first, the repression of their own transcription, via the inhibition of CLOCK–BMAL1; and second, the activation of Bmal1 gene, by a mechanism that remains to be discovered. These proteins are thus two regulating loops, one negative and the other positive. CLOCK and BMAL1 activate also the so-called clock-controlled genes (CCG) whose products transmit the rhythm information to the rest of the body via the output channels of the clock. Some proteins modulate the progression of control loops. Thus, casein kinase Iε (CKIε) can phosphorylate PER proteins, which destabilizes them and prevents their translocation into the nucleus.

References

    1. Czeisler C.A., Duffy J.F., Shanahan T.L., Brown E.N., Mitchell J.F., Rimmer D.W., Ronda J.M., Silva E.J., Allan J.S., Emens J.S., et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999;284:2177–2181. doi: 10.1126/science.284.5423.2177.
    1. Singh K., Zimmerman A.W. Sleep in Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder. Semin. Pediatr. Neurol. 2015;22:113–125. doi: 10.1016/j.spen.2015.03.006.
    1. Lai M.C., Lombardo M.V., Baron-Cohen S. Autism. Lancet. 2014;383:896–910. doi: 10.1016/S0140-6736(13)61539-1.
    1. Kotagal S., Broomall E. Sleep in children with autism spectrum disorder. Pediatr. Neurol. 2012;47:242–251. doi: 10.1016/j.pediatrneurol.2012.05.007.
    1. Onore C., Careaga M., Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav. Immun. 2012;26:383–392. doi: 10.1016/j.bbi.2011.08.007.
    1. Kohyama J. Possible neuronal mechanisms of sleep disturbances in patients with autism spectrum disorders and attention-deficit/hyperactivity disorder. Med. Hypotheses. 2016;97:131–133. doi: 10.1016/j.mehy.2016.11.001.
    1. Allik H., Larsson J.O., Smedje H. Sleep patterns of school-age children with Asperger syndrome or high-functioning autism. J. Autism Dev. Disord. 2006;36:585–595. doi: 10.1007/s10803-006-0099-9.
    1. Richdale A.L., Schreck K.A. Sleep problems in autism spectrum disorders: Prevalence, nature, and possible biopsychosocial aetiologies. Sleep Med. Rev. 2009;13:403–411. doi: 10.1016/j.smrv.2009.02.003.
    1. Polimeni M.A., Richdale A.L., Francis A.J. A survey of sleep problems in autism, Asperger’s disorder and typically developing children. J. Intellect. Disabil. Res. 2005;49:260–268. doi: 10.1111/j.1365-2788.2005.00642.x.
    1. Doo S., Wing Y.K. Sleep problems of children with pervasive developmental disorders: Correlation with parental stress. Dev. Med. Child. Neurol. 2006;48:650–655. doi: 10.1017/S001216220600137X.
    1. Giannotti F., Cortesi F., Cerquiglini A. An investigation of sleep characteristics, electroencephalogram abnormalities and epilepsy in developmentally regressed and non-regressed children with autism. J. Autism Dev. Disord. 2008;38:1888–1897. doi: 10.1007/s10803-008-0584-4.
    1. Stoleru S., Nottelmann E.D., Belmont B., Ronsaville D. Sleep problems in children of affectively ill mothers. J. Child. Psychol. Psychiatry Allied Discip. 1997;38:831–841. doi: 10.1111/j.1469-7610.1997.tb01601.x.
    1. Brown W.D. Insomnia: Prevalence and daytime consequences. In: Lee-Chiong T., editor. Sleep: A Comprehensive Handbook. John Wiley and Sons; Hoboken, NJ, USA: 2006. pp. 93–98.
    1. Ahmed A.E., Al-Jahdali H., Fatani A., Al-Rouqi K., Al-Jahdali F., Al-Harbi A., Baharoon S., Ali Y.Z., Khan M., Rumayyan A. The effects of age and gender on the prevalence of insomnia in a sample of the Saudi population. Ethn. Health. 2016:1–10. doi: 10.1080/13557858.2016.1244624.
    1. Lane J.M., Vlasac I., Anderson S.G., Kyle S.D., Dixon W.G., Bechtold D.A., Gill S., Little M.A., Luik A., Loudon A., et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 2016;7:10889. doi: 10.1038/ncomms10889.
    1. Benedetti F., Dallaspezia S., Fulgosi M.C., Lorenzi C., Serretti A., Barbini B., Colombo C., Smeraldi E. Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007;144B:631–635. doi: 10.1002/ajmg.b.30475.
    1. Serretti A., Benedetti F., Mandelli L., Lorenzi C., Pirovano A., Colombo C., Smeraldi E. Genetic dissection of psychopathological symptoms insomnia in mood disorders and CLOCK gene polymorphism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003;121B:35–38. doi: 10.1002/ajmg.b.20053.
    1. Scott A.J., Monk T.H., Brink L.L. Shiftwork as a Risk Factor for Depression: A Pilot Study. Int. J. Occup. Environ. Health. 1997;3:S2–S9.
    1. Bildt C., Michelsen H. Gender differences in the effects from working conditions on mental health: A 4-year follow-up. Int. Arch. Occup. Environ. Health. 2002;75:252–258. doi: 10.1007/s00420-001-0299-8.
    1. Costa G. Shift work and occupational medicine: An overview. Occup. Med. 2003;53:83–88. doi: 10.1093/occmed/kqg045.
    1. Muecke S. Effects of rotating night shifts: Literature review. J. Adv. Nurs. 2005;50:433–439. doi: 10.1111/j.1365-2648.2005.03409.x.
    1. Bara A.C., Arber S. Working shifts and mental health–findings from the British Household Panel Survey (1995–2005) Scand. J. Work Environ. Health. 2009;35:361–367. doi: 10.5271/sjweh.1344.
    1. Pallesen S., Bjorvatn B., Mageroy N., Saksvik I.B., Waage S. Measures to counteract the negative effects of night work. Scand. J. Work Environ. Health. 2010;36:109–120. doi: 10.5271/sjweh.2886.
    1. Harma M., Kecklund G. Shift work and health—How to proceed? Scand. J. Work Environ. Health. 2010;36:81–84. doi: 10.5271/sjweh.2902.
    1. James F.O., Cermakian N., Boivin D.B. Circadian rhythms of melatonin, cortisol, and clock gene expression during simulated night shift work. SLEEP. 2007;30:11–1427. doi: 10.1093/sleep/30.11.1427.
    1. Husse J., Hintze S.C., Eichele G., Lehnert H., Oster H. Circadian Clock Genes Per1 and Per2 Regulate the Response of Metabolism-Associated Transcripts to Sleep Disruption. PLoS ONE. 2012;7:12–52983. doi: 10.1371/journal.pone.0052983.
    1. Taniyama Y., yamauchi T., takeuchi S., Kuroda Y. PER1 polymorphism associated with shift work disorder. Sleep Biol. Rhythm. 2015;13:342–347. doi: 10.1111/sbr.12123.
    1. Duffy J.F., Kronauer R.E., Czeisler C.A. Phase-shifting human circadian rhythms: Influence of sleep timing, social contact and light exposure. J. Physiol. 1996;495:289–297. doi: 10.1113/jphysiol.1996.sp021593.
    1. Dawson D., Lack L., Morris M. Phase resetting of the human circadian pacemaker with use of a single pulse of bright light. Chronobiol. Int. 1993;10:94–102. doi: 10.3109/07420529309059697.
    1. Honman K., Honman S., Nakamura K., Sasaki M., Endo T., Takahashi T. Differential effects of bright light and social cues on reentrainment of human circadian rhythms. Am. J. Physiol. 1995;268:R528–R535.
    1. Klerman E.B., Rimmer D.W., Dijk D.J., Kronauer R.E., Rizzo J.F.I., Czeisler C.A. Nonphotic entrainment of the human circadian pacemaker. Am. J. Physiol. 1998;274:R991.
    1. Reinberg A., Touitou Y., Restoin A., Migraine C., Levi F., Montagner H. The genetic background of circadian and ultradian rhythm patterns of 17-hydroxycorticosteroids: A cross-twin study. J. Endocrinol. 1985;105:247–253. doi: 10.1677/joe.0.1050247.
    1. Moore R.Y. Circadian rhythms: Basic neurobiology and clinical applications. Annu. Rev. Med. 1997;48:253–266. doi: 10.1146/annurev.med.48.1.253.
    1. Reppert S.M., Weaver D.R. Coordination of circadian timing in mammals. Nature. 2002;418:935–941. doi: 10.1038/nature00965.
    1. Johnson C.H. Testing the Adaptive Value of Circadian Systems. Methods Enzymol. 2005;393:818–837.
    1. Pevet P., Challet E. Melatonin: Both master clock output and internal time-giver in the circadian clock network. J. Physiol. Paris. 2011;105:170–182. doi: 10.1016/j.jphysparis.2011.07.001.
    1. Konopka R.J., Benzer S. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 1971;58:2112–2116. doi: 10.1073/pnas.68.9.2112.
    1. Edery I., Rutila J.E., Rosbash M. Phase shifting of the circadian clock by induction of the Drosophila period protein. Science. 1994;263:237–240. doi: 10.1126/science.8284676.
    1. Sehgal A., Price J.L., Man B., Young M.W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science. 1994;263:1603–1606. doi: 10.1126/science.8128246.
    1. Gekakis N., Saez L., Delahaye-Brown A.M., Myers M.P., Sehgal A., Young M.W., Weitz C.J. Isolation of timeless by PER protein interaction: Defection interaction between timeless protein and long-period mutant per1. Science. 1995;270:811–815. doi: 10.1126/science.270.5237.811.
    1. Myers M., Wager-Smith K., Rothenfluh-Hilfiker A., Young M. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science. 1996;271:1736–1740. doi: 10.1126/science.271.5256.1736.
    1. Vitaterna M.H., King D.P., Chang A.M., Kornhauser J.M., Lowrey J.D. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science. 1994;264:719–725. doi: 10.1126/science.8171325.
    1. Pevet P., Bothorel B., Slotten H., Saboureau M. The chronobiotic properties of melatonin. Cell. Tissue Res. 2002;309:183–191. doi: 10.1007/s00441-002-0584-1.
    1. Slotten H.A., Krekling S., Sicard B., Pévet P. Daily infusion of melatonin entrains circadian activity rhythms in the diurnal rodent Arvicanthis ansorgei. Behav. Brain Res. 2002;133:11–19. doi: 10.1016/S0166-4328(01)00411-9.
    1. Slotten H.A., Pitrosky B., Krekling S., Pévet P. Entrainment of circadian activity rhythms in rats to melatonin administered at T cycles different from 24 hours. Neurosignals. 2002;11:73–80. doi: 10.1159/000058543.
    1. Johnston J.D., Messager S., Barrett P., Hazlerigg D.G. Melatonin action in the pituitary: Neuroendocrine synchronizer and developmental modulator? J. Neuroendocrinol. 2003;15:405–408. doi: 10.1046/j.1365-2826.2003.00972.x.
    1. Dardente H., Menet J.S., Poirel V.J., Streincher D., Gauer F., Vivien-Roels B., Klosen P., Pévet P., Masson-Mévet M. Melatonin induces Cry1 expression in the pars tuberalis of the rat. Mol. Brain Res. 2003;114:101–106. doi: 10.1016/S0169-328X(03)00134-7.
    1. Von Gall C., Weaver D.R., Moek J., Jilg A., Stehle J.H., Korf H.W. Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis. Ann. N. Y. Acad. Sci. 2005;1040:508–511. doi: 10.1196/annals.1327.105.
    1. Stehle J.H., von Gall C., Korf H.W. Organisation of the circadian system in melatonin- proficient C3H and melatonin-deficient C57BL mice: A comparative investigation. Cell. Tissue Res. 2002;309:173–182. doi: 10.1007/s00441-002-0583-2.
    1. Von Gall C., Garabette M.L., Kell C.A., Frenzel S., Dehghani F., Schumm-Draeger P.M., Weaver D.R., Korf H.W., Hastings M.H., Stehle J.H. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat. Neurosci. 2002;5:234–238. doi: 10.1038/nn806.
    1. Messager S., Garabette M.L., Hastings M.H., Hazlerigg D.G. Tissue-specific abolition of Per1 expression in the pars tuberalis by pinealectomy in the Syrian hamster. Neuroreport. 2001;12:579–582. doi: 10.1097/00001756-200103050-00029.
    1. Agez L., Laurent V., Guerrero H.Y., Pévet P., Masson-Pévet M., Gauer F. Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat. J. Pineal Res. 2009;46:95–105. doi: 10.1111/j.1600-079X.2008.00636.x.
    1. Zeman M., Herichova I. Melatonin and clock genes expression in the cardiovascular system. Front. Biosci. 2013;5:743–753. doi: 10.2741/S404.
    1. Johnston J.D., Tournier B.B., Andersson H., Masson-Pevet M., Lincoln G.A., Hazlerigg D.G. Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis. Endocrinology. 2006;147:959–965. doi: 10.1210/en.2005-1100.
    1. Agez L., Laurent V., Pevet P., Gauer F. Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience. 2007;144:522–530. doi: 10.1016/j.neuroscience.2006.09.030.
    1. Alonso-Vale M.I., Andreotti S., Mukai P.Y., Borges-Silva C.D., Peres S.B., Cipolla-Neto J., Lima F.B. Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J. Pineal Res. 2008;45:422–429. doi: 10.1111/j.1600-079X.2008.00610.x.
    1. Kennaway D.J., Owens J.A., Voultsios A., Wight N. Adipokines and adipocyte function in Clock mutant mice that retain melatonin rhythmicity. Obesity. 2012;20:295–305. doi: 10.1038/oby.2011.276.
    1. Delezie J., Dumont S., Dardente H., Oudart H., Gréchez-Cassiau A., Klosen P., Teboul M., Delaunay F., Pévet P., Challet E. The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 2012;26:3321–3335. doi: 10.1096/fj.12-208751.
    1. Xiang S., Mao L., Duplessis T., Yuan L., Dauchy R., Dauchy E., Blask D.E., Frasch T., Hill S.M. Oscillation of clock and clock controlled genes induced by serum shock in human breast epithelial and breast cancer cells: Regulation by melatonin. Breast Cancer Epub. 2012;6:137–150.
    1. Torres-Farfan C., Mendez N., Abarzua-Catalan L., Vilches N., Valenzuela G.J., Seron-Ferre M. A circadian clock entrained by melatonin is ticking in the rat fetal adrenal. Endocrinology. 2011;152:1891–1900. doi: 10.1210/en.2010-1260.
    1. Steeves T.D., King D.P., Zhao Y., Sangoram A.M., Du F., Bowcock A.M., Moore R.Y., Takahashi J.S. Molecular cloning and characterization of the human CLOCK gene: Expression in the suprachiasmatic nuclei. Genomics. 1999;57:189–200. doi: 10.1006/geno.1998.5675.
    1. Wisor J.P., Pasumarthi R., Gerashchenko D., Thompson C., Pathak S., Sancar A., Kilduff T.S. Sleep Deprivation Effects on Circadian Clock Gene Expression in the Cerebral Cortex Parallel Electroencephalographic Differences Among Mouse Strains. J. Neurosci. 2008;28:28–7193. doi: 10.1523/JNEUROSCI.1150-08.2008.
    1. Cedernaes J., Osler M.E., Voisin S., Broman J., Vogel H., Dickson S.L., Zierath J.R., Schiöth H.B., Benedict C. Acute sleep loss induces tissue-specific epigenetic and transcriptional alterations to circadian clock genes in men. J. Clin. Endocrinol. Metab. 2015;100:9. doi: 10.1210/JC.2015-2284.
    1. Franken P., Thomason R., Heller H.C., O’Hara B.F. A non-circadian role for clock-genes in sleep homeostasis: A strain comparison. BMC Neurosci. 2007;8:87. doi: 10.1186/1471-2202-8-87.
    1. Franken P., Dijk D.J. Circadian clock genes and sleep homeostasis. Eur. J. Neurosci. 2009;29:1820–1829. doi: 10.1111/j.1460-9568.2009.06723.x.
    1. Panda S., Antoch M.P., Miller B.H., Su A.I., Schook A.B., Straume M., Schultz P.G., Kay S.A., Takahashi J.S., Hogenesch J.B. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109:307–320. doi: 10.1016/S0092-8674(02)00722-5.
    1. Hardin P.E. Activating inhibitors and inhibiting activators: A day in the life of a fly. Curr. Opin. Neurobiol. 1998;8:642–647. doi: 10.1016/S0959-4388(98)80093-7.
    1. Dunlap J.C. Molecular bases for circadian clocks. Cell. 1999;96:271–290. doi: 10.1016/S0092-8674(00)80566-8.
    1. Lowrey P.L., Takahashi J.S. Genetics of Circadian Rhythms in Mammalian Model Organisms. Adv. Genet. 2011;74:175–230.
    1. Lee C., Etchegaray J.P., Cagampang F.R., Loudon A.S., Reppert S.M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001;107:855–867. doi: 10.1016/S0092-8674(01)00610-9.
    1. Kume K., Zylka M.J., Sriram S., Shearman L.P., Weaver D.R. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98:193–205. doi: 10.1016/S0092-8674(00)81014-4.
    1. Shearman L.P., Sriram S., Weaver D.R., Maywood E.S., Chaves I. Interacting molecular loops in the mammalian circadian clock. Science. 2000;288:1013–1019. doi: 10.1126/science.288.5468.1013.
    1. Marcheva B., Ramsey K.M., Buhr E.D., Kobayashi Y., Su H., Ko C.H., Bass J. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627–631. doi: 10.1038/nature09253.
    1. Janich P., Pascual G., Merlos-Suárez A. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature. 2011;480:209–214. doi: 10.1038/nature10649.
    1. Paschos G.K., Ibrahim S., Song W., Kunieda T., Grant G., Reyes T.M., Fitzgerald G.A. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat. Med. 2012;18:12–1768. doi: 10.1038/nm.2979.
    1. Takahashi J.S., Hong H.K., Ko C.H., McDearmon E.L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 2008;9:764–775. doi: 10.1038/nrg2430.
    1. Jiang F., Van Dyke R.D., Zhang J., Li F., Gozal D., Shen X. Effect of chronic sleep restriction on sleepiness and working memory in adolescents and young adults. J. Clin. Exp. Neuropsychol. 2011;33:892–900. doi: 10.1080/13803395.2011.570252.
    1. Wang G., Grone B., Colas D., Appelbaum L., Mourrain P. Synaptic plasticity in sleep: Learning, homeostasis and disease. Trends Neurosci. 2011;34:452–463. doi: 10.1016/j.tins.2011.07.005.
    1. Berger R.H., Miller A.L., Seifer R., Cares S.R., Le Bourgeois M.K. Acute sleep restriction effects on emotion responses in 30- to 36-month-old children. J. Sleep Res. 2012;21:235–246. doi: 10.1111/j.1365-2869.2011.00962.x.
    1. Deliens G., Gilson M., Peigneux P. Sleep and the processing of emotions. Exp. Brain Res. 2014;232:5–1403. doi: 10.1007/s00221-014-3832-1.
    1. Coogan A.N., Baird A.L., Popa-Wagner A., Thome J. Circadian rhythms and attention deficit hyperactivity disorder: The what, the when and the why. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016;67:74–81. doi: 10.1016/j.pnpbp.2016.01.006.
    1. Seegers V., Touchette E., Dionne G., Petit D., Seguin J.R., Montplaisir J., Vitaro F., Falissard B., Boivin M., Tremblay R.E. Short persistent sleep duration is associated with poor receptive vocabulary performance in middle childhood. J. Sleep Res. 2016;25:325–332. doi: 10.1111/jsr.12375.
    1. Tordjman S., Davlantis K.S., Georgieff N., Geoffray M.M., Speranza M., Anderson G.M., Xavier J., Botbol M., Oriol C., Bellissant E., et al. Autism as a disorder of biological and behavioral rhythms: Toward new therapeutic perspectives. Front. Pediatr. 2015;3:1. doi: 10.3389/fped.2015.00001.
    1. Tordjman S., Najjar I., Bellissant E., Anderson G.M., Barburoth M., Cohen D., Jaafari N., Schischmanoff O., Fagard O., Lagdas I., et al. Advances in the research of melatonin in autism spectrum disorders: Literature review and new perspectives. Int. J. Mol. Sci. 2013;14:20508–20542. doi: 10.3390/ijms141020508.
    1. Kobayashi Y., Ye Z., Hensch T.K. Clock genes control cortical critical period timing. Neuron. 2015;86:264–275. doi: 10.1016/j.neuron.2015.02.036.
    1. Geoffray M.M., Nicolas A., Speranza M., Georgieff N. Are circadian rhythms new pathways to understand Autism spectrum disorder? J. Neuropsychol. 2016 in press.
    1. Wöhr M., Orduz D., Gregory P., Moreno H., Khan U., Vörckel K.J., Wolfer D.P., Welzl H., Gall D., Schiffmann S.N., et al. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural. Transl. Psychiatry. 2015;5:525. doi: 10.1038/tp.2015.19.
    1. Wulff K., Dijk D.J., Middleton B., Foster R.G., Joyce E.M. Sleep and circadian rhythm disruption in schizophrenia. Br. J. Psychiatry J. Ment. Sci. 2012;200:308–316. doi: 10.1192/bjp.bp.111.096321.
    1. Nicholas B., Rudrasingham V., Nash S., Kirov G., Owen M.J., Wimpory D.C. Association of Per1 and Npas2 with autistic disorder: Support for the clock genes/social timing hypothesis. Mol. Psychiatry. 2007;12:581–592. doi: 10.1038/sj.mp.4001953.
    1. Kissling C., Retz W., Wiemann S., Coogan AN., Clement RM., Hunnerkopf R., Conner A.C., Freitag C.M., Rösler M., Thome J. A polymorphism at the 3′-untranslated region of the CLOCK gene is associated with adult attention-deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008;147:333–338. doi: 10.1002/ajmg.b.30602.
    1. Xu X., Breen G., Chen C.K., Huang Y.S., Wu Y.Y., Asherson P. Association study between a polymorphism at the 3′-untranslated region of CLOCK gene and attention deficit hyperactivity disorder. Behav. Brain Funct. 2010;6:48. doi: 10.1186/1744-9081-6-48.
    1. Sipila T., Kananen L., Greco D., Donner J., Silander K., Terwilliger J.D. An association analysis of circadian genes in anxiety disorders. Biol. Psychiatry. 2010;67:1163–1170. doi: 10.1016/j.biopsych.2009.12.011.
    1. Partonen T., Treutlein J., Alpman A., Frank J., Johansson C., Depner M., Aron L., Rietschel M., Wellek S., Soronen P. Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann. Med. 2007;39:229–238. doi: 10.1080/07853890701278795.
    1. Lavebratt C., Sjöholm L.K., Soronen P., Paunio T., Vawter M.P., Bunney W.E., Adolfsson R., Forsell Y., Wu J.C., Kelsoe J.R., et al. CRY2 Is Associated with Depression. PLoS ONE. 2010;5:e9407. doi: 10.1371/journal.pone.0009407.
    1. Soria V., Martinez-Amoros E., Escaramis G., Valero J., Perez-Egea R., Garcia C. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology. 2010;35:1279–1289. doi: 10.1038/npp.2009.230.
    1. Nievergelt C.M., Kripke D.F., Barrett T.B., Burg E., Remick R.A., Sadovnick A.D. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006;141B:234–241. doi: 10.1002/ajmg.b.30252.
    1. Shi J., Wittke-Thompson J.K., Badner J.A., Hattori E., Potash J.B., Willour V.L. Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008;147B:1047–1055. doi: 10.1002/ajmg.b.30714.
    1. Aston C., Jiang L., Sokolov B.P. Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J. Neurosci. Res. 2004;77:858–866. doi: 10.1002/jnr.20208.
    1. Mansour H.A., Wood J., Logue T., Chowdari K.V., Dayal M., Kupfer D.J., Monk T.H., Devlin B., Nimgaonkar V.L. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav. 2006;5:150–157. doi: 10.1111/j.1601-183X.2005.00147.x.
    1. Sun H.Q., Li S.X., Chen F.B., Zhang Y., Li P., Jin M., Sun Y., Wang F., Mi W.F., Shi L., et al. Diurnal neurobiological alterations after exposure to clozapine in first-episode schizophrenia patients. Psychoneuroendocrinology. 2016;64:108–116. doi: 10.1016/j.psyneuen.2015.11.013.
    1. Johansson A.S., Owe-Larsson B., Hetta J., Lundkvist G.B. Altered circadian clock gene expression in patients with schizophrenia. Schizophr. Res. 2016;174:17–23. doi: 10.1016/j.schres.2016.04.029.
    1. Buhr E.D., Takahashi J.S. Molecular components of the Mammalian circadian clock. Handb. Exp. Pharmacol. 2013;217:3–27.
    1. Oster H., Damerow S., Kiessling S., Jakubcakova V., Abraham D., Tian J., Hoffmann M.W., Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell. Metab. 2006;4:163–173. doi: 10.1016/j.cmet.2006.07.002.
    1. Son G.H., Chung S., Choe H.K., Kim H.D., Baik S.M., Lee H., Lee H.W., Choi S., Sun W., Kim H., et al. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc. Natl. Acad. Sci. USA. 2008;105:20970–20975. doi: 10.1073/pnas.0806962106.
    1. Yamamoto T., Nakahata Y., Tanaka M., Yoshida M., Soma H., Shinohara K., Yasuda A., Mamine T., Takumi T. Acute physical stress elevates mouse PERIOD1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. J. Biol. Chem. 2005;280:42036–42043. doi: 10.1074/jbc.M509600200.
    1. Dulcis D., Jamshidi P., Leutgeb S., Spitzer N.C. Neurotransmitter switching in the adult brain regulates behavior. Science. 2013;340:449–453. doi: 10.1126/science.1234152.
    1. Jackson A., Cavanagh J., Scott J. A systematic review of manic and depressive prodromes. J. Affect. Disord. 2003;74:209–217. doi: 10.1016/S0165-0327(02)00266-5.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Association; Washington, DC, USA: 2015.
    1. Millar A., Espie C.A., Scott J. The sleep of remitted bipolar outpatients: A controlled naturalistic study using actigraphy. J. Affect. Disord. 2004;80:145–153. doi: 10.1016/S0165-0327(03)00055-7.
    1. Mansour H.A., Wood J., Chowdari K.V., Dayal M., Thase M.E., Kupfer D.J., Monk T.H., Devlin B., Nimgaonkar V.L. Circadian phase variation in bipolar I disorder. Chronobiol. Int. 2005;22:571–584. doi: 10.1081/CBI-200062413.
    1. McClung C.A. Role for the Clock gene in bipolar disorder. Cold Spring Harb. Symp. Quant. Biol. 2007;72:637–644. doi: 10.1101/sqb.2007.72.031.
    1. Klemfuss H. Rhythms and the pharmacology of lithium. Pharmacol. Ther. 1992;56:53–78. doi: 10.1016/0163-7258(92)90037-Z.
    1. Abe M., Herzog E.D., Block G.D. Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuroreport. 2000;11:3261–3264. doi: 10.1097/00001756-200009280-00042.
    1. Yin L., Wang J., Klein P.S., Lazar M.A. Nuclear receptor REV-ERBα is a critical lithium-sensitive component of the circadian clock. Science. 2006;311:1002–1005. doi: 10.1126/science.1121613.
    1. Li J., Lu W.Q., Beesley S., Loudon A.S., Meng Q.J. Lithium impacts on the amplitude and period of the molecular circadian clockwork. PLoS ONE. 2012;7:33292. doi: 10.1371/journal.pone.0033292.
    1. Kaladchibachi S.A., Doble B., Anthopoulos N., Woodgett J.R., Manoukian A.S. Glycogen synthase kinase 3, circadian rythms, and bipolar disorder: A molecular link in the therapeutic action of lithium. J. Circadian Rythm. 2007;5:3. doi: 10.1186/1740-3391-5-3.
    1. Gould T.D., Manji H.K. Glycogen synthase kinase-3: A putative molecular target for lithium mimetic drugs. Neuropsychopharmacology. 2005;30:1223–1237. doi: 10.1038/sj.npp.1300731.
    1. Iitaka C., Miyazaki K., Akaike T., Ishida N. A role for glycogen synthase kinase-3β in the mammalian circadian clock. J. Biol. Chem. 2005;280:29397–29402. doi: 10.1074/jbc.M503526200.
    1. Serretti A., Cusin C., Benedetti F., Mandelli L., Pirovano A., Zanardi R., Colombo C., Smeraldi E. Insomnia improvement during antidepressant treatment and CLOCK gene polymorphism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005;137B:36–39. doi: 10.1002/ajmg.b.30130.
    1. Karthikeyan K., Marimuthu G., Ramasubramanian C., Arunachal G., Bahammam A., Spence D.W., Cardinali D.P., Brown G.M., Pandi-Perumal S.R. Association of Per3 length polymorphism with bipolar disorder and schizophrenia. Neuropsychiatr. Dis. Treat. 2014;10:2325–2330.
    1. Sjöholm L., Backlund L., Cheteh E.H., Ek I.R., Frisén L., Schalling M., Ösby U., Lavebratt C., Nikamo P. CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS ONE. 2010;5:e12632. doi: 10.1371/journal.pone.0012632.
    1. McGrath C.L., Glatt S.L., Sklar P., Le-Niculescu H., Kuczenski R., Doyle A.E., Biederman J., Mick E., Faraone S.V., Niculescu A.B., et al. Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry. 2009;9:70. doi: 10.1186/1471-244X-9-70.
    1. Kato T. Molecular genetics of bipolar disorder and depression. Psychiatry Clin. Neurosci. 2007;61:3–19. doi: 10.1111/j.1440-1819.2007.01604.x.
    1. Kato T., Kakiuchi C., Iwamoto K. Comprehensive gene expression analysis in bipolar disorder. Can. J. Psychiatry. 2007;52:763–771.
    1. McClung C.A. Circadian genes, rhythm and biology of mood disorder. Pharmacol. Ther. 2007;114:222–232. doi: 10.1016/j.pharmthera.2007.02.003.
    1. DeBundel D., Gangarossa G., Biever A., Bonnefont X., Valjent E. Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Front. Behav. Neurosci. 2013;7:152.
    1. Li J.Z., Bunney B.G., Meng F., Hagenauer M.H., Walsh D.M., Vawter M.P., Evans S.J., Choudary P.V., Cartagena P., Barchas J.D., et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc. Natl. Acad. Sci. USA. 2013;110:9950–9955. doi: 10.1073/pnas.1305814110.
    1. Kripke D.F., Nievergelt C.M., Joo E., Shekhtman T., Kelsoe J.R. Circadian polymorphisms associated with affective disorders. J. Circadian Rhythm. 2009;7:2. doi: 10.1186/1740-3391-7-2.
    1. Wang J., Nuccio S.R., Yang J.Y., Wu X., Bogoni A., Willner A.E. High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals. Opt. Lett. 2012;37:1139–1141. doi: 10.1364/OL.37.001139.
    1. Kovanen L., Kaunisto M., Donner K., Saarikoski S.T., Partonen T. CRY2 genetic variants associate with dysthymia. PLoS ONE. 2013;8:71450. doi: 10.1371/journal.pone.0071450.
    1. Hua P., Liu W., Chen D., Zhao Y., Chen L., Zhang N., Wang C., Guo S., Wang L., Xiao H., et al. Cry1 and Tef gene polymorphisms are associated with major depressive disorder in the Chinese population. J. Affect. Disord. 2014;157:100–103. doi: 10.1016/j.jad.2013.11.019.
    1. Shi S.Q., White M.J., Borsetti H.M., Pendergast J.S., Hida A., Ciarleglio C.M., de Verteuil P.A., Cadar A.G., Cala C., McMahon D.G., et al. Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks. Transl. Psychiatry. 2016;6:e748. doi: 10.1038/tp.2016.9.
    1. Pirovano A., Lorenzi C., Serretti A., Ploia C., Landoni S., Catalano M., Smeraldi E. Two new rare variants in the circadian “clock” gene may influence sleep pattern. Genet. Med. 2005;7:455–457. doi: 10.1097/01.GIM.0000170996.58079.6D.
    1. Desan P.H., Oren D.A., Malison R., Price L.H., Rosenbaum J., Smoller J., Charney D.S., Gelernter J. Genetic polymorphism at the CLOCK gene locus and major depression. Am. J. Med. Genet. 2000;96:418–421. doi: 10.1002/1096-8628(20000612)96:3<418::AID-AJMG34>;2-S.
    1. Serretti A., Gaspar-Barba E., Calati R., Cruz-Fuentes C.S., Gomez-Sanchez A., Perez-Molina A., de Ronchi D. 3111T/C clock gene polymorphism is not associated with sleep disturbances in untreated depressed patients. Chronobiol. Int. 2010;27:265–277. doi: 10.3109/07420521003663785.
    1. Jones C.R., Campbell S.S., Zone S.E., Cooper F., DeSano A., Murphy P.J., Jones B., Czajkowski L., Ptácek L.J. Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans. Nat. Med. 1999;5:1062–1065.
    1. Toh K.L., Jones C.R., He Y., Eide E.J., Hinz W.A., Virshup D.M., Ptácek L.J., Fu Y.H. An hPer2 phosphorylation site mutation in familial advanced sleep-phase syndrome. Science. 2001;291:1040–1043. doi: 10.1126/science.1057499.
    1. Xu Y., Padiath Q.S., Shapiro R.E., Jones C.R., Wu S.C., Saigoh N., Saigoh K., Ptacek L.J., Fu Y.H. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature. 2005;434:640–644. doi: 10.1038/nature03453.
    1. Meng Q.-J., Logunova L., Maywood E.S., Gallego M., Lebiecki J., Brown T.M., Loudon A.S.I. Setting clock speed in mammals: The CK1ε tau mutation in mice accelerates the circadian pacemaker by selectively destabilizing PERIOD proteins. Neuron. 2008;58:78–88. doi: 10.1016/j.neuron.2008.01.019.
    1. Xu Y., Toh K.L., Jones C.R., Shin J.Y., Fu Y.H. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell. 2007;128:59–70. doi: 10.1016/j.cell.2006.11.043.
    1. Hirano A., Shi G., Jones C.R., Lipzen A., Pennacchio L.A., Xu Y., Hallows W.C., McMahon T., Yamazaki M., Ptáček L.J., et al. A Cryptochrome 2 mutation yields advanced sleep phase in humans. Hum. Biol. Med. Neurosci. 2016;10:7554. doi: 10.7554/eLife.16695.
    1. Wehr T.A. A circadian signal of change of season in patients with seasonal affective disorder. Arch. Gen. Psychiatry. 2001;58:1108–1114. doi: 10.1001/archpsyc.58.12.1108.
    1. Lewy A.J., Bauer V.K., Cutler N.L., Sack R.L., Ahmed S., Thomas K.H., Blood M.L., Jackson J.M. Morning versus eveninglight treatment of patients with winter depression. Arch. Gen. Psychiatry. 1998;55:890–896. doi: 10.1001/archpsyc.55.10.890.
    1. Johansson C., Willeit M., Smedh C., Ekholm J., Paunio T., Kieseppa T., Lichtermann D., Praschak-Rieder N., Neumeister A., Nilsson L.G. Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology. 2003;28:734–739. doi: 10.1038/sj.npp.1300121.
    1. Iwase T., Kajimura N., Uchiyama M., Ebisawa T., Yoshimura K., Kamei Y., Shibui K., Kim K., Kudo Y., Katoh M., et al. Mutation screening of the human Clock gene in circadian rhythm sleep disorders. Psychiatry Res. 2002;109:121–128. doi: 10.1016/S0165-1781(02)00006-9.
    1. Takimoto M., Hamada A., Tomoda A., Ohdo S., Ohmura T., Sakato H., Kawatani J., Jodoi T., Nakagawa H., Terazono H., et al. Daily expression of clock genes in whole blood cells in healthy subjects and a patient with circadian rhythm sleep disorder. Am. J. Physiol. 2005;289:R1273–R1279. doi: 10.1152/ajpregu.00126.2005.
    1. Utge S.J., Soronen P., Loukola A., Kronholm E., Ollila H.M., Pirkola S., Porkka-Heiskanen T., Partonen T., Paunio T. Systematic analysis of circadian genes in a population-based sample reveals association of TIMELESS with depression and sleep disturbance. PLoS ONE. 2010;5:e9259. doi: 10.1371/journal.pone.0009259.
    1. Konofal E., Lecendreux M., Mouren-Siméoni M.C. Mise au point des études cliniques sur le rapport veille-sommeil dans le trouble déficit de l’attention/hyperactivité de l’enfant. Ann. Medico-Psychol. 2002;2:105–117. doi: 10.1016/S0003-4487(01)00090-7.
    1. Dickerson Mayes S., Calhoun S.L., Bixler E.O., Vgontzas A.N., Mahr F., Hillwig-Garcia J., Elamir B., Edhere-Ekezie L., Parvin M. ADHD Subtypes and Comorbid Anxiety, Depression, and Oppositional-Defiant Disorder: Differences in Sleep Problems. J. Pediatr. Psychol. 2009;34:328–337. doi: 10.1093/jpepsy/jsn083.
    1. Monti J.M., BaHammam A.S., Pandi-Perumal S.R., Bromundt V., Spence D.W., Cardinali D.P., Brown G.M. Sleep and circadian rhythm dysregulation in schizophrenia. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2013;43:209–216. doi: 10.1016/j.pnpbp.2012.12.021.
    1. Chouinard S., Poulin J., Stip E., Godbout R. Sleep in untreated patients with schizophrenia: A meta-analysis. Schizophr. Bull. 2004;30:957–967. doi: 10.1093/oxfordjournals.schbul.a007145.
    1. Afonso P., Figueira M.L., Paiva T. Sleep-promoting action of the endogenous melatonin in schizophrenia compared to healthy controls. Int. J. Psychiatry Clin. Pract. 2011;15:311–315. doi: 10.3109/13651501.2011.605954.
    1. Bromundt V., Koster M., Georgiev-Kill A., Opwis K., Wirz-Justice A., Stoppe G., Cajochen C. Sleep-wake cycles and cognitive functioning in schizophrenia. Br. J. Psychiatry J. Ment. Sci. 2011;198:269–276. doi: 10.1192/bjp.bp.110.078022.
    1. Morgan R., Cheadle A.J. Circadian body temperature in chronic schizophrenia. Br. J. Psychiatry J. Ment. Sci. 1976;129:350–354. doi: 10.1192/bjp.129.4.350.
    1. Rao M.L., Gross G., Strebel B., Halaris A., Huber G., Braunig P., Marler M. Circadian rhythm of tryptophan, serotonin, melatonin, and pituitary hormones in schizophrenia. Biol. Psychiatry. 1994;35:151–163. doi: 10.1016/0006-3223(94)91147-9.
    1. Lamont E.W., Coutu D.L., Cermakian N., Boivin D.B. Circadian rhythms and clock genes in psychotic disorders. Isr. J. Psychiatry Relat. Sci. 2010;47:27–35.
    1. Takao T., Tachikawa H., Kawanishi Y., Mizukami K., Asada T. CLOCK gene T3111C polymorphism is associated with Japanese schizophrenics: A preliminary study. Eur. Neuropsychopharmacol. 2007;17:273–276. doi: 10.1016/j.euroneuro.2006.09.002.
    1. Rivto E.R., Ritvo R., Yuwiler A., Brothers A., Freeman B.J., Plotkin S. Elevated daytime melatonin concentrations in autism: A pilot study. Eur. Child Adolesc. Psychiatry. 1993;2:75.
    1. Nir I., Meir D., Zilber N., Knobler H., Hadjez J., Lerner Y. Brief report: Circadian melatonin, thyroid-stimulating hormone, prolactin, and cortisol levels in serum of young adults with autism. J. Autism Dev. Disord. 1995;25:641. doi: 10.1007/BF02178193.
    1. Kulman G., Lissoni P., Rovelli F., Roselli M.G., Brivio F., Sequeri P. Evidence of pineal endocrine hypofunction in autistic children. Neuroendocrinol. Lett. 2000;21:31.
    1. Tordjman S., Anderson G.M., Pichard N., Charbuy H., Touitou Y. Nocturnal excretion of 6-sulphatoxymelatonin in children and adolescents with autistic disorder. Biol. Psychiatry. 2005;57:134. doi: 10.1016/j.biopsych.2004.11.003.
    1. Tordjman S., Anderson G.M., Bellissant E., Botbol M., Charbuy H., Camus F., Graignic R., Kermarrec S., Fougerou C., Cohen D., et al. Day and nighttime excretion of 6-sulphatoxymelatonin in adolescents and young adults with autistic disorder. Psychoneuroendocrinology. 2012;37:1990–1997. doi: 10.1016/j.psyneuen.2012.04.013.
    1. Melke J., Goubran-Botros H., Chaste P., Betancur C., Nygren G., Anckarsäter H., Rastam M., Ståhlberg O., Gillberg I.C., Delorme R., et al. Abnormal melatonin synthesis in autism spectrum disorders. Mol. Psychiatry. 2007;13:90–98. doi: 10.1038/sj.mp.4002016.
    1. Freitag C.M. The genetics of autistic disorders and its clinical relevance: A review of the literature. Mol. Psychiatry. 2007;12:2. doi: 10.1038/sj.mp.4001896.
    1. Sarowar T., Chhabra R., Vilella A., Boeckers T.M., Zoli M., Grabrucker A.M. Activity and circadian rhythm influence synaptic Shank3 protein levels in mice. J. Neurochem. 2016;138:887–895. doi: 10.1111/jnc.13709.
    1. Bourgeron T. The Possible Interplay of Synaptic and Clock Genes in Autism Spectrum Disorders. Cold Spring Harb. Symp. Quant. Biol. 2007;72:645–654. doi: 10.1101/sqb.2007.72.020.
    1. Wimpory D., Nicholas B., Nash S. Social timing, clock genes and autism: A new hypothesis. J. Intellect. Disabil. Res. 2002;46:352. doi: 10.1046/j.1365-2788.2002.00423.x.
    1. Yang Z., Matsumoto A., Nakayama K., Jimbo E.F., Kojima K., Nagata K., Iwamoto S., Yamagata T. Circadian-relevant genes are highly polymorphic in autism spectrum disorder patients. Brain Dev. 2016;38:91–99. doi: 10.1016/j.braindev.2015.04.006.
    1. Roubertoux P.L., Tordjman S. The autism spectrum disorders (ASD): From the clinics to the molecular analysis. In: Roubertoux P.L., editor. Organism Models of Autism Spectrum Disorders. Springer; New York, NY, USA: 2015. pp. 29–66.

Source: PubMed

3
Tilaa