Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon

Elmar Peschke, Ina Bähr, Eckhard Mühlbauer, Elmar Peschke, Ina Bähr, Eckhard Mühlbauer

Abstract

The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin-insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes.

Figures

Figure 1
Figure 1
The pineal hormone melatonin acts on the pancreatic β-cell via two receptor isoforms (MT1 and MT2) which transmit their signals through guanosine triphosphate (GTP)-binding proteins (G-proteins). The inhibitory action of melatonin on insulin secretion is transmitted by activation of the Gi-protein signaling cascade involving cyclic adenosine monophosphate (cAMP) (MT1-dependent signaling) or cAMP and cyclic guanosine monophosphate (cGMP) as second messengers (MT2). Melatonin downregulates adenylate or guanylate cyclase activity, leading to reduced second messenger levels and attenuated protein kinase A (pKA) or protein kinase G (pKG) activity. Consecutively insulin secretion is reduced. As a secondary effect, phosphorylation and activation of the cAMP-modulated transcription factor cAMP response element-binding protein (CREB) is downregulated. In addition, the MT1 receptor is also known to alternatively couple to Gq-proteins and thus modulates cell-internal IP3 and Ca2+ levels. Melatonin signaling impinges on the rhythm of an autonomous, islet-located circadian clock as a synchronizer. This rhythm is generated by the antiphasic action of the clock genes Per and Cry (coding for a heterodimer with inhibitory action) or Bmal and Clock (producing heterodimeric proteins with transcriptionally enhancing action).
Figure 2
Figure 2
Synoptic presentation of the insulin–melatonin antagonism in relation to the importance of melatonin for type 1 and type 2 diabetes, including interactions with glucagon and catecholamines. At a relatively early stage of type 2 diabetes (left side), insulin secretion is increased while melatonin synthesis is decreased. These reactions were observed in type 2 diabetic Goto Kakizaki (GK) rats and humans. In contrast, under type 1 diabetic conditions (right side), insulin was greatly reduced and, subsequently, melatonin was significantly increased. These reactions were observed in streptozotocin (STZ)-treated Wistar (WR) rats, as well as in LEW.1AR1-iddm rats, a spontaneous animal model of human type 1 diabetes mellitus. Thus, the influence of insulin on the pinealocytes is mediated by insulin receptors in the pineal gland (upper panel), and the influence of melatonin on the pancreatic β-cells is mediated by the MT1 and MT2 melatonin receptors (lower panel). Much more conclusive, however, is the well-known insulin-catecholamine relationship, which may be a key to understanding the insulin-melatonin antagonism. The increase of catecholamines stimulates adrenoceptor β1 and, consequently, the cAMP cascade, while adrenoceptor α1 activates the IP3 cascade in the pineal gland; together they stimulate melatonin synthesis and secretion (upper panel). Catecholamines (in contrast to acetylcholine), on the other hand, have an inhibitory effect on the insulin secretion (lower panel). To support this, the GK rat model of type 2 diabetes shows diminished plasma catecholamines (left side), whereas the rat models of type 1 diabetes (STZ and LEW.1AR1-iddm) exhibit increased catecholamines (right side). This supports the conviction that type 1 diabetes is associated with stress and enhanced melatonin secretion. An explanation of the increased melatonin levels in type 1 diabetic STZ and also possibly LEW.1AR1-iddm rats could be that melatonin protects the organism by attenuating the oxidative stress-induced β-cell damage in type 1 diabetes.

References

    1. Parhon C.I. Congrès d’Endocrinologie de Bucarest. 1939;I:187.
    1. Parhon C.I., Potop I., Felix E., Boeru V. Influenta epifisectomiei si a administrarii de extract epifisar asupra unor data metabolice privind mineralele (Ca, K, P, Si, Mg), lipidele, protidele si glucidele, la sobolanul alb adult. Stud. Cercet. Endocr. 1952;3:321–329.
    1. Milcou I., Nanu L., Marcean R. De l’existence d’une hormone hypoglycémiante épiphysaire synergique de l’insuline. Ann. Endocrinol. (Paris) 1957;18:612–620.
    1. Milcu S.M. Role de l’épiphyse dans le metabolisme glucidique. J. Annu. Diabetol. Dieu. 1968;9:163–180.
    1. Milcu S.M., Milcu I. Über ein hypoglykämisch wirkendes Hormon in der Zirbeldrüse. Medizinische. 1958;17:711–715.
    1. Milcu I., Nanu L., Marcean R., Sitaru S. L’action de l’extrait pinéal et de la pinéalectomie sur le glycogène hépatique et musculaire après infusion prolongée de glucose. Stud. Cercet Endocr. 1963;14:651–655.
    1. Milcou S.M., Milcou I., Nanu L. Le role de la glande pinéale dans le métabolisme des glucides. Ann. Endocrinol. (Paris) 1963;24:233–254.
    1. Lerner A.B., Case J.D., Takahashi Y., Lee T.H., Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 1958;80:2587.
    1. Lerner A.B., Case J.D., Heinzelman R.V. Structure of melatonin. J. Am. Chem. Soc. 1959;81:6084–6092.
    1. Milcu I., Nanu L., Marcean R., Sitaru S. Research on the diabetogenic effects of epiphysectomy in the lamb. Stud. Cercet. Endocr. 1964;15:507–513.
    1. Milcu S.M., Nanu-Ionescu L., Milcu I. The Effect of Pinealectomy on Plasma Insulin in Rats. In: Wolstenholme G.E.W., Knight J., editors. The Pineal Gland. Churchill Livingstone; Edinburgh-London, UK: 1971. pp. 345–357.
    1. Diaz B., Blazquez E. Effect of pinealectomy on plasma glucose, insulin and glucagon levels in the rat. Horm. Metab. Res. 1986;18:225–229.
    1. Mellado M.C., Rodriguez M.V., Diaz B., de Diego J.G., Alvarez E., Blázquez E. Role of the Pineal Gland in the Normal Maintenance of Circulating Levels and of Liver Receptor Concentrations of Insulin and Glucagon in the Rat. Proceedings of the Workshop on the Pineal Gland; Salamanca, Spain. 26–28 May 1986; pp. 52–56.
    1. Rodriguez V., Mellado C., Alvarez E., de Diego J.G., Blazquez E. Effect of pinealectomy on liver insulin and glucagon receptor concentrations in the rat. J. Pineal Res. 1989;6:77–88.
    1. Munoz Barragán L., López Gil J.A., Toranzo D., Blázquez J.L., Pizarro M.D.L., Pastor F.E., Mosqueira M.I. The Pineal Gland: A Neuroendocrine “Crossroad”. Proceedings of the Workshop on the Pineal Gland; Salamanca, Spain. 26–28 May 1986; pp. 57–61.
    1. Munoz Barragán L., Toranzo D., Blázquez E., Ghiglione M., Pastor F.E. Role of the pineal gland on insulin and glucagon release of control and diabetic rats. Diabetes. 1983;32:141A.
    1. Munoz Barragán L., Toranzo D., Blázquez E., Pastor F.E., Mosqueira M.I., López J.A., Blázquez J.J. A radio-immunoanalytical and immunocytochemical study on A and B insular cells in response to pinealectomy or pineal denervation. Diabetologia. 1984;27:313A.
    1. De Lima L.M., dos Reis L.C., de Lima M.A. Influence of the pineal gland on the physiology, morphometry and morphology of pancreatic islets in rats. Braz. J. Biol. 2001;61:333–340.
    1. Shima T., Chun S.J., Niijima A., Bizot-Espiard J.G., Guardiola-Lemaitre B., Hosokawa M., Nagai K. Melatonin suppresses hyperglycemia caused by intracerebroventricular injection of 2-deoxy-D-glucose in rats. Neurosci. Lett. 1997;226:119–122.
    1. Conti A., Maestroni G.J. Melatonin rhythms in mice: Role in autoimmune and lymphoproliferative diseases. Ann. N. Y. Acad. Sci. 1998;840:395–410.
    1. Conti A., Maestroni G.J. Role of the pineal gland and melatonin in the development of autoimmune diabetes in non-obese diabetic mice. J. Pineal Res. 1996;20:164–172.
    1. Benson B., Miller C.W., Sorrentino S. Effects of blinding on blood glucose and serum insulin-like activity in rats. Texas Rep. Biol. Med. 1971;29:513–525.
    1. Burns J.K. Serum sodium and potassium and blood glucose levels in cynamolgus monkeys after administration of melatonin. J. Physiol. 1973;232:84P–85P.
    1. Csaba G., Barath P. Are Langerhan’s islets influenced by the pineal body? Experientia. 1971;27:962.
    1. Csaba G., Nagy S.U. The regulatory role of the pineal gland on the thyroid gland, adrenal medulla and islets of Langerhans. Acta. Biol. Med. Ger. 1973;31:617–619.
    1. Nanu-Ionescu L., Ionescu V. La glande pinéale et le métabolisme de l’insuline. I. Le niveau sanguin de làctivité insulinique totale et de l’insuline “libre” et “liée” dans làpinéalisme experimental. Stud. Cercet. Endocr. 1969;20:237–243.
    1. Nanu-Ionescu L., Marcean R. La glande pinéale et le métabolisme de l’insuline. II. Les facteurs plasmatique anti-insuliniques dans lápinéalisme expérimental. Rev. Roum. Endocr. 1970;2:55–61.
    1. Gorray K.C., Quay W.B. Effects of pinealectomy and of sham-pinealectomy on blood glucose levels in the alloxan-diabetic rat. Horm. Metab. Res. 1978;10:389–392.
    1. Quay W.B., Gorray K.C. Pineal effects on metabolism and glucose homeostasis: Evidence for lines of humoral mediation of pineal influences on tumor growth. J. Neural Transm. 1980;47:107–120.
    1. Rasmussen D.D., Boldt B.M., Wilkinson C.W., Yellon S.M., Matsumoto A.M. Daily melatonin administration at middle age suppresses male rat visceral fat, plasma leptin, and plasma insulin to youthful levels. Endocrinology. 1999;140:1009–1012.
    1. Wolden-Hanson T., Mitton D.R., McCants R.L., Yellon S.M., Wilkinson C.W., Matsumoto A.M., Rasmussen D.D. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology. 2000;141:487–497.
    1. Rasmussen D.D., Mitton D.R., Larsen S.A., Yellon S.M. Aging-dependent changes in the effect of daily melatonin supplementation on rat metabolic and behavioral responses. J. Pineal Res. 2001;31:89–94.
    1. Dhar M., Dayal S.S., Ramesh Babu C.S., Arora S.R. Effect of melatonin on glucose tolerance and blood glucose circadian rhythm in rabbits. Indian J. Physiol. Pharmacol. 1983;27:109–117.
    1. Cagnacci A., Arangino S., Renzi A., Paoletti A.M., Melis G.B., Cagnacci P., Volpe A. Influence of melatonin administration on glucose tolerance and insulin sensitivity of postmenopausal women. Clin. Endocrinol. (Oxf. ) 2001;54:339–346.
    1. Champney T.H., Steger R.W., Christie D.S., Reiter R.J. Alterations in components of the pineal melatonin synthetic pathway by acute insulin stress in the rat and Syrian hamster. Brain Res. 1985;338:25–32.
    1. Champney T.H., Brainard G.C., Richardson B.A., Reiter R.J. Experimentally-induced diabetes reduces nocturnal pineal melatonin content in the Syrian hamster. Comp. Biochem. Physiol. A. 1983;76:199–201.
    1. Boden G., Ruiz J., Urbain J.L., Chen X. Evidence for a circadian rhythm of insulin secretion. Am. J. Physiol. 1996;271:E246–E252.
    1. Champney T.H., Holtorf A.P., Craft C.M., Reiter R.J. Hormonal modulation of pineal melatonin synthesis in rats and Syrian hamsters: Effects of streptozotocin-induced diabetes and insulin injections. Comp. Biochem. Physiol. A. 1986;83:391–395.
    1. O’Brien I.A., Lewin I.G., O’Hare J.P., Arendt J., Corrall R.J. Abnormal circadian rhythm of melatonin in diabetic autonomic neuropathy. Clin. Endocrinol. (Oxf. ) 1986;24:359–364.
    1. John T.M., Viswanathan M., George J.C., Scanes C.G. Influence of chronic melatonin implantation on circulating levels of catecholamines, growth hormone, thyroid hormones, glucose, and free fatty acids in the pigeon. Gen. Comp. Endocrinol. 1990;79:226–232.
    1. Lynch H.J., Hsuan M., Wurtman R.J. Sympathetic neural control of indoleamine metabolism in the rat pineal gland. Adv. Exp. Med. Biol. 1975;54:93–114.
    1. Tannenbaum M.G., Reiter R.J., Vaughan M.K., Troiani M.E., Gonzalez-Brito A. Adrenalectomy prevents changes in rat pineal melatonin content and N-acetyltransferase activity induced by acute insulin stress. J. Pineal Res. 1987;4:395–402.
    1. Mahata S.K., Mandal A., Ghosh A. Influence of age and splanchnic nerve on the action of melatonin in the adrenomedullary catecholamine content and blood glucose level in the avian group. J. Comp. Physiol. B. 1988;158:601–607.
    1. Mahata S.K. Effect of insulin on serotonin, 5-hydroxyindole-acetic acid, norepinephrine, epinephrine and corticosterone contents in chick. Neurosci. Lett. 1991;121:115–118.
    1. Maitra S.K., Dey M., Dutta S., Bhattacharya S., Dey R., Sengupta A. Influences of graded dose of melatonin on the levels of blood glucose and adrenal catecholamines in male roseringed parakeets (Psittacula krameri) under different photoperiods. Arch. Physiol. Biochem. 2000;108:444–450.
    1. Maitra S.K., Dey M., Dey R., Bhattacharya S., Sengupta A. Influence of photoperiods on glycemic and adrenal catecholaminergic responses to melatonin administrations in adult male roseringed parakeets, Psittacula krameri Neumann. Indian J. Exp. Biol. 2000;38:1111–1116.
    1. Feldman J.M., Lebovitz H.E. Structural determinants of indole amine action on in vitro insulin release. Endocrinology. 1972;91:809–816.
    1. Frankel B.J., Strandberg M.J. Insulin release from isolated mouse islets in vitro: No effect of physiological levels of melatonin or arginine vasotocin. J. Pineal Res. 1991;11:145–148.
    1. Bizot-Espiard J.G., Double A., Cousin B., Lesieur D., Guardiola-Lemaitre B., Delagrange P., Ktorza A., Penicaud L. Lack of melatonin effects on insulin action in normal rats. Horm. Metab. Res. 1998;30:711–716.
    1. Niijima A., Chun S.J., Shima T., Bizot-Espiard J.G., Guardiola-Lemaitre B., Nagai K. Effect of intravenous administration of melatonin on the efferent activity of the adrenal nerve. J. Auton. Nerv. Syst. 1998;71:134–138.
    1. Peschke E., Fauteck J.D., Musshoff U., Schmidt F., Beckmann A., Peschke D. Evidence for a melatonin receptor within pancreatic islets of neonate rats: Functional, autoradiographic, and molecular investigations. J. Pineal Res. 2000;28:156–164.
    1. Kemp D.M., Ubeda M., Habener J.F. Identification and functional characterization of melatonin Mel 1a receptors in pancreatic beta cells: Potential role in incretin-mediated cell function by sensitization of cAMP signaling. Mol. Cell Endocrinol. 2002;191:157–166.
    1. Reppert S.M., Weaver D.R., Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron. 1994;13:1177–85.
    1. Reppert S.M., Godson C., Mahle C.D., Weaver D.R., Slaugenhaupt S.A., Gusella J.F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: The Mel1b melatonin receptor. Proc. Natl. Acad. Sci. USA. 1995;92:8734–8738.
    1. Reppert S.M., Weaver D.R., Ebisawa T., Mahle C.D., Kolakowski L.F., Jr Cloning of a melatonin-related receptor from human pituitary. FEBS Lett. 1996;386:219–224.
    1. Dufourny L., Migaud M., Thiery J.C., Malpaux B. Development of an in vivo adeno-associated virus-mediated siRNA approach to knockdown tyrosine hydroxylase in the lateral retrochiasmatic area of the ovine brain. J. Neurosci. Methods. 2008;170:56–66.
    1. Brydon L., Barrett P., Morgan P.J., Strosberg A.D., Jockers R. Investigation of the human Mel 1a melatonin receptor using anti-receptor antibodies. Adv. Exp. Med. Biol. 1999;460:215–220.
    1. Roka F., Brydon L., Waldhoer M., Strosberg A.D., Freissmuth M., Jockers R., Nanoff C. Tight association of the human Mel(1a)-melatonin receptor and G(i): Precoupling and constitutive activity. Mol. Pharmacol. 1999;56:1014–1024.
    1. Browning C., Beresford I., Fraser N., Giles H. Pharmacological characterization of human recombinant melatonin mt(1) and MT(2) receptors. Br. J. Pharmacol. 2000;129:877–886.
    1. Godson C., Reppert S.M. The Mel1a melatonin receptor is coupled to parallel signal transduction pathways. Endocrinology. 1997;138:397–404.
    1. Brydon L., Roka F., Petit L., de Coppet P., Tissot M., Barrett P., Morgan P.J., Nanoff C., Strosberg A.D., Jockers R. Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3), and G(q/11) proteins. Mol. Endocrinol. 1999;13:2025–2038.
    1. Blumenau C., Berger E., Fauteck J.D., Madeja M., Wittkowski W., Speckmann E.J., Musshoff U. Expression and functional characterization of the mt1 melatonin receptor from rat brain in Xenopus oocytes: Evidence for coupling to the phosphoinositol pathway. J. Pineal Res. 2001;30:139–146.
    1. Ross A.W., Webster C.A., Thompson M., Barrett P., Morgan P.J. A novel interaction between inhibitory melatonin receptors and protein kinase C-dependent signal transduction in ovine pars tuberalis cells. Endocrinology. 1998;139:1723–1730.
    1. Jarzynka M.J., Passey D.K., Ignatius P.F., Melan M.A., Radio N.M., Jockers R., Rasenick M.M., Brydon L., Witt-Enderby P.A. Modulation of melatonin receptors and G-protein function by microtubules. J. Pineal Res. 2006;41:324–336.
    1. Brydon L., Petit L., de Coppet P., Barrett P., Morgan P.J., Strosberg A.D., Jockers R. Polymorphism and signalling of melatonin receptors. Reprod. Nutr. Dev. 1999;39:315–324.
    1. MacKenzie R.S., Melan M.A., Passey D.K., Witt-Enderby P.A. Dual coupling of MT(1) and MT(2) melatonin receptors to cyclic AMP and phosphoinositide signal transduction cascades and their regulation following melatonin exposure. Biochem. Pharmacol. 2002;63:587–595.
    1. Witt-Enderby P.A., Masana M.I., Dubocovich M.L. Physiological exposure to melatonin supersensitizes the cyclic adenosine 3′,5′-monophosphate-dependent signal transduction cascade in Chinese hamster ovary cells expressing the human mt1 melatonin receptor. Endocrinology. 1998;139:3064–3071.
    1. Shiu S.Y., Pang B., Tam C.W., Yao K.M. Signal transduction of receptor-mediated antiproliferative action of melatonin on human prostate epithelial cells involves dual activation of Galpha(s) and Galpha(q) proteins. J. Pineal Res. 2010;49:301–311.
    1. Brydon L., Petit L., Delagrange P., Strosberg A.D., Jockers R. Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology. 2001;142:4264–4271.
    1. Picinato M.C., Hirata A.E., Cipolla-Neto J., Curi R., Carvalho C.R., Anhe G.F., Carpinelli A.R. Activation of insulin and IGF-1 signaling pathways by melatonin through MT1 receptor in isolated rat pancreatic islets. J. Pineal Res. 2008;44:88–94.
    1. Anhe G.F., Caperuto L.C., Pereira-Da-Silva M., Souza L.C., Hirata A.E., Velloso L.A., Cipolla-Neto J., Carvalho C.R. In vivo activation of insulin receptor tyrosine kinase by melatonin in the rat hypothalamus. J. Neurochem. 2004;90:559–566.
    1. Von Gall C., Weaver D.R., Moek J., Jilg A., Stehle J.H., Korf H.W. Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis. Ann. N. Y. Acad. Sci. 2005;1040:508–511.
    1. Hunt A.E., Al-Ghoul W.M., Gillette M.U., Dubocovich M.L. Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am. J. Physiol. Cell Physiol. 2001;280:C110–C118.
    1. Slominski R.M., Reiter R.J., Schlabritz-Loutsevitch N., Ostrom R.S., Slominski A.T. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell Endocrinol. 2012;351:152–166.
    1. Albizu L., Moreno J.L., Gonzalez-Maeso J., Sealfon S.C. Heteromerization of G protein-coupled receptors: Relevance to neurological disorders and neurotherapeutics. CNS Neurol. Disord. Drug Targets. 2010;9:636–650.
    1. Ayoub M.A., Couturier C., Lucas-Meunier E., Angers S., Fossier P., Bouvier M., Jockers R. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 2002;277:21522–21528.
    1. Ayoub M.A., Levoye A., Delagrange P., Jockers R. Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol. Pharmacol. 2004;66:312–321.
    1. Levoye A., Dam J., Ayoub M.A., Guillaume J.L., Couturier C., Delagrange P., Jockers R. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J. 2006;25:3012–3023.
    1. Guillaume J.L., Daulat A.M., Maurice P., Levoye A., Migaud M., Brydon L., Malpaux B., Borg-Capra C., Jockers R. The PDZ protein mupp1 promotes Gi coupling and signaling of the Mt1 melatonin receptor. J. Biol. Chem. 2008;283:16762–16771.
    1. Daulat A.M., Maurice P., Froment C., Guillaume J.L., Broussard C., Monsarrat B., Delagrange P., Jockers R. Purification and identification of G protein-coupled receptor protein complexes under native conditions. Mol. Cell Proteomics. 2007;6:835–844.
    1. Daulat A.M., Maurice P., Jockers R. Recent methodological advances in the discovery of GPCR-associated protein complexes. Trends Pharmacol. Sci. 2009;30:72–78.
    1. Maurice P., Daulat A.M., Broussard C., Mozo J., Clary G., Hotellier F., Chafey P., Guillaume J.L., Ferry G., Boutin J.A., et al. A generic approach for the purification of signaling complexes that specifically interact with the carboxyl-terminal domain of G protein-coupled receptors. Mol. Cell Proteomics. 2008;7:1556–1569.
    1. Maurice P., Daulat A.M., Turecek R., Ivankova-Susankova K., Zamponi F., Kamal M., Clement N., Guillaume J.L., Bettler B., Gales C., et al. Molecular organization and dynamics of the melatonin MT receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling. EMBO J. 2010;29:3646–3659.
    1. Devavry S., Legros C., Brasseur C., Cohen W., Guenin S.P., Delagrange P., Malpaux B., Ouvry C., Coge F., Nosjean O., et al. Molecular pharmacology of the mouse melatonin receptors MT(1) and MT(2) Eur. J. Pharmacol. 2012;677:15–21.
    1. Dubocovich M.L., Delagrange P., Krause D.N., Sugden D., Cardinali D.P., Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol. Rev. 2010;62:343–380.
    1. Hardeland R. Investigational melatonin receptor agonists. Expert Opin. Investig. Drugs. 2010;19:747–764.
    1. Barrett P., Choi W.S., Morris M., Morgan P. A role for tyrosine phosphorylation in the regulation and sensitization of adenylate cyclase by melatonin. FASEB J. 2000;14:1619–1628.
    1. Von Gall C., Garabette M.L., Kell C.A., Frenzel S., Dehghani F., Schumm-Draeger P.M., Weaver D.R., Korf H.W., Hastings M.H., Stehle J.H. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat. Neurosci. 2002;5:234–238.
    1. Barrett P., Schuster C., Mercer J., Morgan P.J. Sensitization: A mechanism for melatonin action in the pars tuberalis. J. Neuroendocrinol. 2003;15:415–421.
    1. Gerdin M.J., Masana M.I., Rivera-Bermudez M.A., Hudson R.L., Earnest D.J., Gillette M.U., Dubocovich M.L. Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J. 2004;18:1646–1656.
    1. Bondi C.D., McKeon R.M., Bennett J.M., Ignatius P.F., Brydon L., Jockers R., Melan M.A., Witt-Enderby P.A. MT1 melatonin receptor internalization underlies melatonin-induced morphologic changes in Chinese hamster ovary cells and these processes are dependent on Gi proteins, MEK 1/2 and microtubule modulation. J. Pineal Res. 2008;44:288–298.
    1. Kokkola T., Vaittinen M., Laitinen J.T. Inverse agonist exposure enhances ligand binding and G protein activation of the human MT1 melatonin receptor, but leads to receptor down-regulation. J. Pineal Res. 2007;43:255–262.
    1. Maury E., Ramsey K.M., Bass J. Circadian rhythms and metabolic syndrome: From experimental genetics to human disease. Circ. Res. 2010;106:447–462.
    1. Welsh D.K., Yoo S.H., Liu A.C., Takahashi J.S., Kay S.A. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 2004;14:2289–2295.
    1. Damiola F., Le Minh N., Preitner N., Kornmann B., Fleury-Olela F., Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14:2950–2961.
    1. Peschke E., Peschke D. Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia. 1998;41:1085–1092.
    1. Delattre E., Cipolla Neto J., Boschero A. Diurnal variations in insulin secretion and K+ permeability in isolated rat islets. Clin. Exp. Pharmacol. Physiol. 1999;26:505–510.
    1. Picinato M.C., Haber E.P., Carpinelli A.R., Cipolla-Neto J. Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat. J. Pineal Res. 2002;33:172–177.
    1. Boden G., Chen X., Polansky M. Disruption of circadian insulin secretion is associated with reduced glucose uptake in first-degree relatives of patients with type 2 diabetes. Diabetes. 1999;48:2182–2188.
    1. Kalsbeek A., Buijs R.M. Output pathways of the mammalian suprachiasmatic nucleus: Coding circadian time by transmitter selection and specific targeting. Cell Tissue Res. 2002;309:109–118.
    1. Kalsbeek A., Foppen E., Schalij I., Van Heijningen C., van der Vliet J., Fliers E., Buijs R.M. Circadian control of the daily plasma glucose rhythm: An interplay of GABA and glutamate. PLoS One. 2008;3:e3194.
    1. Muhlbauer E., Wolgast S., Finckh U., Peschke D., Peschke E. Indication of circadian oscillations in the rat pancreas. FEBS Lett. 2004;564:91–96.
    1. Stamenkovic J.A., Olsson A.H., Nagorny C.L., Malmgren S., Dekker-Nitert M., Ling C., Mulder H. Regulation of core clock genes in human islets. Metabolism. 2012;61:978–985.
    1. Marcheva B., Ramsey K.M., Buhr E.D., Kobayashi Y., Su H., Ko C.H., Ivanova G., Omura C., Mo S., Vitaterna M.H., et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627–631.
    1. Peschke E., Muhlbauer E., Musshoff U., Csernus V.J., Chankiewitz E., Peschke D. Receptor (MT(1)) mediated influence of melatonin on cAMP concentration and insulin secretion of rat insulinoma cells INS-1. J. Pineal Res. 2002;33:63–71.
    1. Peschke E., Stumpf I., Bazwinsky I., Litvak L., Dralle H., Muhlbauer E. Melatonin and type 2 diabetes—A possible link? J. Pineal Res. 2007;42:350–358.
    1. Muhlbauer E., Peschke E. Evidence for the expression of both the MT1- and in addition, the MT2-melatonin receptor, in the rat pancreas, islet and beta-cell. J. Pineal Res. 2007;42:105–106.
    1. Lyssenko V., Nagorny C.L., Erdos M.R., Wierup N., Jonsson A., Spegel P., Bugliani M., Saxena R., Fex M., Pulizzi N., et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 2009;41:82–88.
    1. Prokopenko I., Langenberg C., Florez J.C., Saxena R., Soranzo N., Thorleifsson G., Loos R.J., Manning A.K., Jackson A.U., Aulchenko Y., et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 2009;41:77–81.
    1. Nagorny C.L.F., Sathanoori R., Voss U., Mulder H., Wierup N. Distribution of melatonin receptors in murine pancreatic islets. J. Pineal Res. 2011;50:412–417.
    1. Bouatia-Naji N., Bonnefond A., Cavalcanti-Proenca C., Sparso T., Holmkvist J., Marchand M., Delplanque J., Lobbens S., Rocheleau G., Durand E., et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 2009;41:89–94.
    1. Ramracheya R.D., Muller D.S., Squires P.E., Brereton H., Sugden D., Huang G.C., Amiel S.A., Jones P.M., Persaud S.J. Function and expression of melatonin receptors on human pancreatic islets. J. Pineal Res. 2008;44:273–279.
    1. Liu C., Weaver D.R., Jin X., Shearman L.P., Pieschl R.L., Gribkoff V.K., Reppert S.M. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997;19:91–102.
    1. Jin X., von Gall C., Pieschl R.L., Gribkoff V.K., Stehle J.H., Reppert S.M., Weaver D.R. Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol. Cell Biol. 2003;23:1054–1060.
    1. Picinato M.C., Haber E.P., Cipolla-Neto J., Curi R., de Oliveira Carvalho C.R., Carpinelli A.R. Melatonin inhibits insulin secretion and decreases PKA levels without interfering with glucose metabolism in rat pancreatic islets. J. Pineal Res. 2002;33:156–160.
    1. Tasali E., Leproult R., Ehrmann D.A., Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc. Natl. Acad. Sci. USA. 2008;105:1044–1049.
    1. Van Cauter E., Blackman J.D., Roland D., Spire J.P., Refetoff S., Polonsky K.S. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J. Clin. Invest. 1991;88:934–942.
    1. Braun M., Ramracheya R., Johnson P.R., Rorsman P. Exocytotic properties of human pancreatic β-cells. Ann. N. Y. Acad. Sci. 2009;1152:187–193.
    1. Tengholm A., Gylfe E. Oscillatory control of insulin secretion. Mol. Cell Endocrinol. 2009;297:58–72.
    1. Mears D. Regulation of insulin secretion in islets of Langerhans by Ca2+ channels. J. Membr. Biol. 2004;200:57–66.
    1. Muhlbauer E., Albrecht E., Bazwinsky-Wutschke I., Peschke E. Melatonin influences insulin secretion primarily via MT(1) receptors in rat insulinoma cells (INS-1) and mouse pancreatic islets. J. Pineal Res. 2012;52:446–459.
    1. Stumpf I., Muhlbauer E., Peschke E. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells. J. Pineal Res. 2008;45:318–327.
    1. Stumpf I., Bazwinsky I., Peschke E. Modulation of the cGMP signaling pathway by melatonin in pancreatic beta-cells. J. Pineal Res. 2009;46:140–147.
    1. Mühlbauer E., Albrecht E., Hofmann K., Bazwinsky-Wutschke I., Peschke E. Melatonin inhibits insulin secretion in rat insulinoma beta-cells (INS-1) heterologously expressing the human melatonin receptor isoform MT2. J. Pineal Res. 2011;51:361–372.
    1. Bazwinsky-Wutschke I., Wolgast S., Muhlbauer E., Albrecht E., Peschke E. Phosphorylation of cyclic AMP-response element-binding protein (CREB) is influenced by melatonin treatment in pancreatic rat insulinoma beta-cells (INS-1) J. Pineal Res. 2012;53:344–357.
    1. Furstenau U., Schwaninger M., Blume R., Jendrusch E.M., Knepel W. Characterization of a novel calcium response element in the glucagon gene. J. Biol. Chem. 1999;274:5851–5860.
    1. Oetjen E., Grapentin D., Blume R., Seeger M., Krause D., Eggers A., Knepel W. Regulation of human insulin gene transcription by the immunosuppressive drugs cyclosporin A and tacrolimus at concentrations that inhibit calcineurin activity and involving the transcription factor CREB. Naunyn. Schmiedebergs. Arch. Pharmacol. 2003;367:227–236.
    1. Sander M., German M.S. The beta cell transcription factors and development of the pancreas. J. Mol. Med. (Berl.) 1997;75:327–340.
    1. Staiger H., Machicao F., Schafer S.A., Kirchhoff K., Kantartzis K., Guthoff M., Silbernagel G., Stefan N., Haring H.U., Fritsche A. Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine beta-cell function. PLoS One. 2008;3:e3962.
    1. Simonis-Bik A.M., Nijpels G., van Haeften T.W., Houwing-Duistermaat J.J., Boomsma D.I., Reiling E., van Hove E.C., Diamant M., Kramer M.H., Heine R.J., et al. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes. 2010;59:293–301.
    1. Chambers J.C., Zhang W., Zabaneh D., Sehmi J., Jain P., McCarthy M.I., Froguel P., Ruokonen A., Balding D., Jarvelin M.R., et al. Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes. 2009;58:2703–2708.
    1. Olsson L., Pettersen E., Ahlbom A., Carlsson S., Midthjell K., Grill V. No effect by the common gene variant rs10830963 of the melatonin receptor 1B on the association between sleep disturbances and type 2 diabetes: Results from the nord-trondelag health study. Diabetologia. 2011;54:1375–1378.
    1. Andersson E.A., Holst B., Sparso T., Grarup N., Banasik K., Holmkvist J., Jorgensen T., Borch-Johnsen K., Egerod K.L., Lauritzen T., et al. MTNR1B G24E variant associates with BMI and fasting plasma glucose in the general population in studies of 22,142 Europeans. Diabetes. 2010;59:1539–1548.
    1. Bonnefond A., Clement N., Fawcett K., Yengo L., Vaillant E., Guillaume J.L., Dechaume A., Payne F., Roussel R., Czernichow S., et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 2012;44:297–301.
    1. Peschke E., Frese T., Chankiewitz E., Peschke D., Preiss U., Schneyer U., Spessert R., Muhlbauer E. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J. Pineal Res. 2006;40:135–143.
    1. Bizot-Espiard J.G., Double A., Guardiola-Lemaitre B., Delagrange P., Ktorza A., Penicaud L. Diurnal rhythms in plasma glucose, insulin, growth hormone and melatonin levels in fasted and hyperglycaemic rats. Diabetes Metab. 1998;24:235–240.
    1. la Fleur S.E., Kalsbeek A., Wortel J., van der Vliet J., Buijs R.M. Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations. J. Neuroendocrinol. 2001;13:1025–1032.
    1. Peschke E., Peschke D., Hammer T., Csernus V. Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro. J. Pineal Res. 1997;23:156–163.
    1. Reppert S.M., Weaver D.R., Cassone V.M., Godson C., Kolakowski L.F., Jr Melatonin receptors are for the birds: Molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron. 1995;15:1003–1015.
    1. Vanecek J. Cellular mechanisms of melatonin action. Physiol. Rev. 1998;78:687–721.
    1. Simonneaux V., Ribelayga C. Generation of the melatonin endocrine message in mammals: A review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev. 2003;55:325–395.
    1. Peschke E. Zum Einfluss von Melatonin auf Insulinsekretion, Signaltransduktion und Sekretionsrhythmus pankreatischer B-Zellen in vitro. Abh. Sächs. Akad. Wiss. Math.-nat. Kl. 2003;60:89–119.
    1. Peschke E. Über den phylogenetischen Funktionswandel des Pinealorgans und seine Bedeutung für die Insulinsekretion bei Mammalia. Sitzungsber. Sächs. Akad. Wiss. Math.-nat. Kl. 2004;129:1–34.
    1. Popova J.S., Dubocovich M.L. Melatonin receptor-mediated stimulation of phosphoinositide breakdown in chick brain slices. J. Neurochem. 1995;64:130–138.
    1. Zemkova H., Vanecek J. Differences in gonadotropin-releasing hormone-induced calcium signaling between melatonin-sensitive and melatonin-insensitive neonatal rat gonadotrophs. Endocrinology. 2000;141:1017–1026.
    1. Balik A., Kretschmannova K., Mazna P., Svobodova I., Zemkova H. Melatonin action in neonatal gonadotrophs. Physiol. Res. 2004;53:S153–S166.
    1. Girouard H., de Champlain J. Inhibitory effect of melatonin on alpha1-adrenergic-induced vasoconstriction in mesenteric beds of spontaneously hypertensive rats. Am. J. Hypertens. 2004;17:339–346.
    1. Bach A.G., Wolgast S., Muhlbauer E., Peschke E. Melatonin stimulates inositol-1,4,5-trisphosphate and Ca2+ release from INS1 insulinoma cells. J. Pineal Res. 2005;39:316–323.
    1. Bach A.G., Peschke E. Melatonin and Type 2 Diabetes. In: Watson R.R., editor. Melatonin in the Promotion of Health. 2nd ed. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2012. pp. 147–165.
    1. Lai F.P., Mody S.M., Yung L.Y., Pang C.S., Pang S.F., Wong Y.H. Chimeric Galphaq subunits can distinguish the long form of the Xenopus Mel1c melatonin receptor from the mammalian mt1 and MT2 melatonin receptors. J. Pineal Res. 2001;30:171–179.
    1. Lai F.P., Mody S.M., Yung L.Y., Kam J.Y., Pang C.S., Pang S.F., Wong Y.H. Molecular determinants for the differential coupling of Galpha(16) to the melatonin MT1, MT2 and Xenopus Mel1c receptors. J. Neurochem. 2002;80:736–745.
    1. Peschke E. Melatonin, endocrine pancreas and diabetes. J. Pineal Res. 2008;44:26–40.
    1. Mulder H., Nagorny C.L., Lyssenko V., Groop L. Melatonin receptors in pancreatic islets: Good morning to a novel type 2 diabetes gene. Diabetologia. 2009;52:1240–1249.
    1. Radziuk J., Pye S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia. 2006;49:1619–1628.
    1. Van Cauter E. Putative roles of melatonin in glucose regulation. Therapie. 1998;53:467–472.
    1. Peschke D., Peschke E., Mess B. Circannual rhythm and increase of body weight and food intake in the young Wistar-rat following pinealectomy and ganglionectomy. Neuroendocrinol. Lett. 1987;9:321–327.
    1. Murialdo G., Costelli P., Fonzi S., Parodi C., Torre F., Cenacchi T., Polleri A. Circadian secretion of melatonin and thyrotropin in hospitalized aged patients. Aging (Milano) 1993;5:39–46.
    1. Reiter R.J. Oxidative damage in the central nervous system: Protection by melatonin. Prog. Neurobiol. 1998;56:359–384.
    1. Tarquini B., Cornelissen G., Perfetto F., Tarquini R., Halberg F. Chronome assessment of circulating melatonin in humans. In Vivo. 1997;11:473–484.
    1. Morgan L., Hampton S., Gibbs M., Arendt J. Circadian aspects of postprandial metabolism. Chronobiol. Int. 2003;20:795–808.
    1. Qin L.Q., Li J., Wang Y., Wang J., Xu J.Y., Kaneko T. The effects of nocturnal life on endocrine circadian patterns in healthy adults. Life Sci. 2003;73:2467–2475.
    1. Ribeiro D.C., Hampton S.M., Morgan L., Deacon S., Arendt J. Altered postprandial hormone and metabolic responses in a simulated shift work environment. J. Endocrinol. 1998;158:305–310.
    1. Robeva R., Kirilov G., Tomova A., Kumanov P. Low testosterone levels and unimpaired melatonin secretion in young males with metabolic syndrome. Andrologia. 2006;38:216–220.
    1. Peschke E., Schucht H., Muhlbauer E. Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both Wistar and type 2-diabetic Goto-Kakizaki rats. J. Pineal Res. 2010;49:373–381.
    1. Frese T., Bach A.G., Muhlbauer E., Ponicke K., Bromme H.J., Welp A., Peschke E. Pineal melatonin synthesis is decreased in type 2 diabetic Goto-Kakizaki rats. Life Sci. 2009;85:526–533.
    1. Peschke E., Bach A.G., Muhlbauer E. Parallel signaling pathways of melatonin in the pancreatic beta-cell. J. Pineal Res. 2006;40:184–191.
    1. Peschke E., Muhlbauer E. New evidence for a role of melatonin in glucose regulation. Best Pract. Res. Clin. Endocrinol. Metab. 2010;24:829–841.
    1. Bach A.G., Mühlbauer E., Peschke E. Adrenoceptor expression and diurnal rhythms of melatonin and its precursors in the pineal gland of type 2 diabetic Goto-Kakizaki rats. Endocrinology. 2010;151:2483–2493.
    1. Peschke E., Hofmann K., Ponicke K., Wedekind D., Muhlbauer E. Catecholamines are the key for explaining the biological relevance of insulin-melatonin antagonisms in type 1 and type 2 diabetes. J. Pineal Res. 2012;52:389–396.
    1. Peschke E., Wolgast S., Bazwinsky I., Ponicke K., Muhlbauer E. Increased melatonin synthesis in pineal glands of rats in streptozotocin induced type 1 diabetes. J. Pineal Res. 2008;45:439–448.
    1. Nishida S., Segawa T., Murai I., Nakagawa S. Long-term melatonin administration reduces hyperinsulinemia and improves the altered fatty-acid compositions in type 2 diabetic rats via the restoration of Delta-5 desaturase activity. J. Pineal Res. 2002;32:26–33.
    1. Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine. 2005;27:131–136.
    1. Bojkova B., Orendas P., Friedmanova L., Kassayova M., Datelinka I., Ahlersova E., Ahlers I. Prolonged melatonin administration in 6-month-old Sprague-Dawley rats: metabolic alterations. Acta Physiol. Hung. 2008;95:65–76.
    1. Nishida S., Sato R., Murai I., Nakagawa S. Effect of pinealectomy on plasma levels of insulin and leptin and on hepatic lipids in type 2 diabetic rats. J. Pineal Res. 2003;35:251–256.
    1. Peschke E., Hofmann K., Bahr I., Streck S., Albrecht E., Wedekind D., Muhlbauer E. The insulin-melatonin antagonism: studies in the LEW.1AR1-iddm rat (an animal model of human type 1 diabetes mellitus) Diabetologia. 2011;54:1831–1840.
    1. Ahrén B. Islet G protein-coupled receptors as potential tragets for treatment of type 2 diabetes. Nat. Rev. Drug Discov. 2009;8:369–385.
    1. Ahrén B. GLP-1 for type 2 diabetes. Exp. Cell Res. 2011;317:1239–1245.
    1. Saunders C., Limbird L.E. Localization and trafficking of alpha2-adrenergic receptor subtypes in cells and tissues. Pharmacol. Ther. 1999;84:193–205.
    1. Klein D.C. Arylalkylamine N-acetyltransferase: “the Timezyme”. J. Biol. Chem. 2007;282:4233–4237.
    1. Arendt J. Importance and relevance of melatonin to human biological rhythms. J. Neuroendocrinol. 2003;15:427–431.
    1. Korf H.W., Schomerus C., Stehle J.H. The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv. Anat. Embryol. Cell Biol. 1998;146:1–100.
    1. Korf H.W., Stehle J.H. The circadian system: Circuits-cells-clock genes. Cell Tissue Res. 2002;309:1–2.
    1. Reiter R.J., Paredes S.D., Manchester L.C., Tan D.X. Reducing oxidative/nitrosative stress: A newly-discovered genre for melatonin. Crit. Rev. Biochem. Mol. Biol. 2009;44:175–200.
    1. Lenzen S. Oxidative stress: The vulnerable beta cell. Biochem. Soc. Trans. 2008;36:343–347.
    1. Unger R.H. Role of glucagon in the pathogenesis of diabetes: The status of the controversy. Metabolism. 1978;27:1691–1709.
    1. Reaven G.M., Chen Y.D., Golay A., Swislocki A.L., Jaspan J.B. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1987;64:106–110.
    1. Larsson H., Ahren B. Islet dysfunction in insulin resistance involves impaired insulin secretion and increased glucagon secretion in postmenopausal women with impaired glucose tolerance. Diabetes Care. 2000;23:650–657.
    1. Burcelin R., Knauf C., Cani P.D. Pancreatic alpha-cell dysfunction in diabetes. Diabetes Metab. 2008;34:S49–S55.
    1. Quesada I., Tuduri E., Ripoll C., Nadal A. Physiology of the pancreatic alpha-cell and glucagon secretion: Role in glucose homeostasis and diabetes. J. Endocrinol. 2008;199:5–19.
    1. Yamamoto H., Nagai K., Nakagawa H. Role of SCN in daily rhythms of plasma glucose, FFA, insulin and glucagon. Chronobiol. Int. 1987;4:483–491.
    1. Tasaka Y., Inoue S., Maruno K., Hirata Y. Twenty-four-hour variations of plasma pancreatic polypeptide, insulin and glucagon in normal human subjects. Endocrinol. Jpn. 1980;27:495–498.
    1. Gagliardino J.J., Pessacq M.T., Hernandez R.E., Rebolledo O.R. Circadian variations in serum glucagon and hepatic glycogen and cyclic amp concentrations. J. Endocrinol. 1978;78:297–298.
    1. Ruiter M., La Fleur S.E., van Heijningen C., van der Vliet J., Kalsbeek A., Buijs R.M. The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes. 2003;52:1709–1715.
    1. Kosa E., Maurel D., Siaud P. Effects of pinealectomy on glucagon responsiveness to hypoglycaemia induced by insulin injections in fed rats. Exp. Physiol. 2001;86:617–620.
    1. Schmid S.M., Hallschmid M., Jauch-Chara K., Bandorf N., Born J., Schultes B. Sleep loss alters basal metabolic hormone secretion and modulates the dynamic counterregulatory response to hypoglycemia. J. Clin. Endocrinol. Metab. 2007;92:3044–3051.
    1. Schmid S.M., Jauch-Chara K., Hallschmid M., Schultes B. Mild sleep restriction acutely reduces plasma glucagon levels in healthy men. J. Clin. Endocrinol. Metab. 2009;94:5169–5173.
    1. Ravier M.A., Rutter G.A. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes. 2005;54:1789–1797.
    1. Bähr I., Mühlbauer E., Schucht H., Peschke E. Melatonin stimulates glucagon secretion in vitro and in vivo. J. Pineal Res. 2011;50:336–344.
    1. Bahr I., Muhlbauer E., Albrecht E., Peschke E. Evidence of the receptor-mediated influence of melatonin on pancreatic glucagon secretion via the Galphaq protein-coupled and PI3K signaling pathways. J. Pineal Res. 2012;53:390–398.
    1. Ward W.K., Bolgiano D.C., McKnight B., Halter J.B., Porte D., Jr Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J. Clin. Invest. 1984;74:1318–1328.
    1. Cryer P.E. Hypoglycaemia: The limiting factor in the glycaemic management of Type I and Type II diabetes. Diabetologia. 2002;45:937–948.
    1. Suzuki N., Aizawa T., Asanuma N., Sato Y., Komatsu M., Hidaka H., Itoh N., Yamauchi K., Hashizume K. An early insulin intervention accelerates pancreatic beta-cell dysfunction in young Goto-Kakizaki rats, a model of naturally occurring noninsulin-dependent diabetes. Endocrinology. 1997;138:1106–1110.
    1. Seica R.M., Martins M.J., Pessa P.B., Santos R.M., Rosario L.M., Suzuki K.I., Martins M.I. Morphological changes of islet of Langerhans in an animal model of type 2 diabetes. Acta Med. Port. 2003;16:381–388.
    1. Li C., Shi Y., You L., Wang L., Chen Z.J. Melatonin receptor 1A gene polymorphism associated with polycystic ovary syndrome. Gynecol. Obstet. Invest. 2011;72:130–134.
    1. New D.C., Tsim S.T., Wong Y.H. G protein-linked effector and second messenger systems involved in melatonin signal transduction. Neurosignals. 2003;12:59–70.
    1. Lai L., Yuan L., Chen Q., Dong C., Mao L., Rowan B., Frasch T., Hill S.M. The Galphai and Galphaq proteins mediate the effects of melatonin on steroid/thyroid hormone receptor transcriptional activity and breast cancer cell proliferation. J. Pineal Res. 2008;45:476–488.
    1. Yibchok-anun S., Cheng H., Abu-Basha E.A., Ding J., Ioudina M., Hsu W.H. Mechanisms of bradykinin-induced glucagon release in clonal alpha-cells In-R1-G9: Involvement of Ca2+-dependent and -independent pathways. Mol. Cell Endocrinol. 2002;192:27–36.
    1. Yibchok-Anun S., Cheng H., Chen T.H., Hsu W.H. Mechanisms of AVP-induced glucagon release in clonal alpha-cells in-R1-G9: Involvement of Ca2+-dependent and -independent pathways. Br. J. Pharmacol. 2000;129:257–264.
    1. Bode H.P., Yule D.I., Fehmann H.C., Goke B., Williams J.A. Spontaneous calcium oscillations in clonal endocrine pancreatic glucagon-secreting cells. Biochem. Biophys. Res. Commun. 1994;205:435–440.
    1. Gromada J., Bokvist K., Ding W.G., Barg S., Buschard K., Renstrom E., Rorsman P. Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J. Gen. Physiol. 1997;110:217–228.
    1. Kong P.J., Byun J.S., Lim S.Y., Lee J.J., Hong S.J., Kwon K.J., Kim S.S. Melatonin induces Akt phosphorylation through melatonin receptor- and PI3K-dependent pathways in primary astrocytes. Korean J. Physiol. Pharmacol. 2008;12:37–41.
    1. Cui P., Yu M., Luo Z., Dai M., Han J., Xiu R., Yang Z. Intracellular signaling pathways involved in cell growth inhibition of human umbilical vein endothelial cells by melatonin. J. Pineal Res. 2008;44:107–114.
    1. Batty I.H., Hickinson D.M., Downes C.P. Cross-talk between phospholipase C and phosphoinositide 3-kinase signalling pathways. Biochem. Soc. Trans. 1997;25:1132–1137.
    1. Schwaninger M., Lux G., Blume R., Oetjen E., Hidaka H., Knepel W. Membrane depolarization and calcium influx induce glucagon gene transcription in pancreatic islet cells through the cyclic AMP-responsive element. J. Biol. Chem. 1993;268:5168–5177.
    1. Ishikawa K., Shimazu T. Daily rhythms of glycogen synthetase and phosphorylase activities in rat liver: influence of food and light. Life Sci. 1976;19:1873–1878.
    1. Kida K., Nishio T., Yokozawa T., Nagai K., Matsuda H., Nakagawa H. The circadian change of gluconeogenesis in the liver in vivo in fed rats. J. Biochem. 1980;88:1009–1013.
    1. Roesler W.J., Khandelwal R.L. Diurnal variations in the activities of the glycogen metabolizing enzymes in mouse liver. Int. J. Biochem. 1985;17:81–85.
    1. Stokkan K.A., Yamazaki S., Tei H., Sakaki Y., Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291:490–493.
    1. Rudic R.D., McNamara P., Curtis A.M., Boston R.C., Panda S., Hogenesch J.B., Fitzgerald G.A. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2:e377.
    1. Muhlbauer E., Gross E., Labucay K., Wolgast S., Peschke E. Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. Eur. J. Pharmacol. 2009;606:61–71.
    1. Poon A.M., Choy E.H., Pang S.F. Modulation of blood glucose by melatonin: A direct action on melatonin receptors in mouse hepatocytes. Biol. Signals Recept. 2001;10:367–379.
    1. Mazepa R.C., Cuevas M.J., Collado P.S., Gonzalez-Gallego J. Melatonin increases muscle and liver glycogen content in nonexercised and exercised rats. Life Sci. 2000;66:153–160.
    1. Shieh J.M., Wu H.T., Cheng K.C., Cheng J.T. Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in hepatic cells. J. Pineal Res. 2009;47:339–344.
    1. Gottlieb D.J., Punjabi N.M., Newman A.B., Resnick H.E., Redline S., Baldwin C.M., Nieto F.J. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch. Intern. Med. 2005;165:863–867.
    1. Yaggi H.K., Araujo A.B., McKinlay J.B. Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care. 2006;29:657–661.
    1. Donga E., van Dijk M., van Dijk J.G., Biermasz N.R., Lammers G.J., van Kralingen K.W., Corssmit E.P., Romijn J.A. A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J. Clin. Endocrinol. Metab. 2010;95:2963–2968.

Source: PubMed

3
Tilaa