Short-term bed rest-induced insulin resistance cannot be explained by increased mitochondrial H2 O2 emission

Marlou L Dirks, Paula M Miotto, Gijs H Goossens, Joan M Senden, Heather L Petrick, Janneau van Kranenburg, Luc J C van Loon, Graham P Holloway, Marlou L Dirks, Paula M Miotto, Gijs H Goossens, Joan M Senden, Heather L Petrick, Janneau van Kranenburg, Luc J C van Loon, Graham P Holloway

Abstract

We determined if bed rest increased mitochondrially derived reactive oxygen species and cellular redox stress, contributing to the induction of insulin resistance. Bed rest decreased maximal and submaximal ADP-stimulated mitochondrial respiration. Bed rest did not alter mitochondrial H2 O2 emission in the presence of ADP concentrations indicative of resting muscle, the ratio of H2 O2 emission to mitochondrial O2 consumption or markers of oxidative stress The present data suggest strongly that mitochondrial H2 O2 does not contribute to bed rest-induced insulin resistance ABSTRACT: Mitochondrial H2 O2 has been causally linked to diet-induced insulin resistance, although it remains unclear if muscle disuse similarly increases mitochondrial H2 O2 . Therefore, we investigated the potential that an increase in skeletal muscle mitochondrial H2 O2 emission, potentially as a result of decreased ADP sensitivity, contributes to cellular redox stress and the induction of insulin resistance during short-term bed rest in 20 healthy males. Bed rest led to a decline in glucose infusion rate during a hyperinsulinaemic-euglycaemic clamp (-42 ± 2%; P < 0.001), and in permeabilized skeletal muscle fibres it decreased OXPHOS protein content (-16 ± 8%) and mitochondrial respiration across a range of ADP concentrations (-13 ± 5%). While bed rest tended to increase maximal mitochondrial H2 O2 emission rates (P = 0.053), H2 O2 emission in the presence of ADP concentrations indicative of resting muscle, the ratio of H2 O2 emission to mitochondrial O2 consumption, and markers of oxidative stress were not altered following bed rest. Altogether, while bed rest impairs mitochondrial ADP-stimulated respiration, an increase in mitochondrial H2 O2 emission does not contribute to the induction of insulin resistance following short-term bed rest.

Trial registration: ClinicalTrials.gov NCT02521025.

Keywords: bed rest; insulin resistance; mitochondria; muscle disuse; reactive oxygen species.

© 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.

References

    1. Alibegovic AC, Hojbjerre L, Sonne MP, van Hall G, Stallknecht B, Dela F & Vaag A (2009). Impact of 9 days of bed rest on hepatic and peripheral insulin action, insulin secretion, and whole-body lipolysis in healthy young male offspring of patients with type 2 diabetes. Diabetes 58, 2749-2756.
    1. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW, 3rd, Kang L, Rabinovitch PS, Szeto HH, Houmard JA, Cortright RN, Wasserman DH & Neufer PD (2009). Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119, 573-581.
    1. Anderson EJ, Yamazaki H & Neufer PD (2007). Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. J Biol Chem 282, 31257-31266.
    1. Benton CR, Holloway GP, Han XX, Yoshida Y, Snook LA, Lally J, Glatz JF, Luiken JJ, Chabowski A & Bonen A (2010). Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats. Diabetologia 53, 2008-2019.
    1. Bergstrom J (1975). Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35, 609-616.
    1. Bienso RS, Ringholm S, Kiilerich K, Aachmann-Andersen NJ, Krogh-Madsen R, Guerra B, Plomgaard P, van Hall G, Treebak JT, Saltin B, Lundby C, Calbet JA, Pilegaard H & Wojtaszewski JF (2012). GLUT4 and glycogen synthase are key players in bed rest-induced insulin resistance. Diabetes 61, 1090-1099.
    1. Coyle EF, Martin WH, 3rd, Sinacore DR, Joyner MJ, Hagberg JM & Holloszy JO (1984). Time course of loss of adaptations after stopping prolonged intense endurance training. J Appl Physiol Respir Environ Exerc Physiol 57, 1857-1864.
    1. Cree MG, Paddon-Jones D, Newcomer BR, Ronsen O, Aarsland A, Wolfe RR & Ferrando A (2010). Twenty-eight-day bed rest with hypercortisolemia induces peripheral insulin resistance and increases intramuscular triglycerides. Metabolism 59, 703-710.
    1. Deitrick JE (1948). The effect of immobilization on metabolic and physiological functions of normal men. Bull N Y Acad Med 24, 364-375.
    1. Dirks ML, Hansen D, Van Assche A, Dendale P & Van Loon LJ (2015). Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clin Sci (Lond) 128, 357-365.
    1. Dirks ML, Smeets JSJ, Holwerda AM, Kouw IWK, Marzuca-Nassr GN, Gijsen AP, Holloway GP, Verdijk LB & van Loon LJC (2019). Dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during short-term bed rest. Am J Physiol Endocrinol Metab 316, E536-E545.
    1. Dirks ML, Wall BT, van de Valk B, Holloway TM, Holloway GP, Chabowski A, Goossens GH & van Loon LJ (2016). One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes 65, 2862-2875.
    1. Dudley GA, Tullson PC & Terjung RL (1987). Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 262, 9109-9114.
    1. Feng J, Zhu M, Schaub MC, Gehrig P, Roschitzki B, Lucchinetti E & Zaugg M (2008). Phosphoproteome analysis of isoflurane-protected heart mitochondria: phosphorylation of adenine nucleotide translocator-1 on Tyr194 regulates mitochondrial function. Cardiovasc Res 80, 20-29.
    1. Fisher-Wellman KH, Lin CT, Ryan TE, Reese LR, Gilliam LA, Cathey BL, Lark DS, Smith CD, Muoio DM & Neufer PD (2015). Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit. Biochem J 467, 271-280.
    1. Fritah A, Steel JH, Parker N, Nikolopoulou E, Christian M, Carling D & Parker MG (2012). Absence of RIP140 reveals a pathway regulating glut4-dependent glucose uptake in oxidative skeletal muscle through UCP1-mediated activation of AMPK. PLoS One 7, e32520.
    1. Gram M, Vigelso A, Yokota T, Hansen CN, Helge JW, Hey-Mogensen M & Dela F (2014). Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men. Exp Gerontol 58, 269-278.
    1. Gram M, Vigelso A, Yokota T, Helge JW, Dela F & Hey-Mogensen M (2015). Skeletal muscle mitochondrial H2O2 emission increases with immobilization and decreases after aerobic training in young and older men. J Physiol 593, 4011-4027.
    1. Haruna Y, Suzuki Y, Kawakubo K, Yanagibori R & Gunji A (1994). Decremental reset in basal metabolism during 20-days bed rest. Acta Physiol Scand Suppl 616, 43-49.
    1. Herbst EA, Paglialunga S, Gerling C, Whitfield J, Mukai K, Chabowski A, Heigenhauser GJ, Spriet LL & Holloway GP (2014). Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. J Physiol 592, 1341-1352.
    1. Holloszy JO & Coyle EF (1984). Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol 56, 831-838.
    1. Holloway GP, Holwerda AM, Miotto PM, Dirks ML, Verdijk LB & van Loon LJC (2018). Age-associated impairments in mitochondrial ADP sensitivity contribute to redox stress in senescent human skeletal muscle. Cell Rep 22, 2837-2848.
    1. Howlett RA, Parolin ML, Dyck DJ, Hultman E, Jones NL, Heigenhauser GJ & Spriet LL (1998). Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am J Physiol 275, R418-425.
    1. Ingemann-Hansen T & Halkjaer-Kristensen J (1980). Computerized tomographic determination of human thigh components. The effects of immobilization in plaster and subsequent physical training. Scand J Rehabil Med 12, 27-31.
    1. Kang L, Lustig ME, Bonner JS, Lee-Young RS, Mayes WH, James FD, Lin CT, Perry CG, Anderson EJ, Neufer PD & Wasserman DH (2012). Mitochondrial antioxidative capacity regulates muscle glucose uptake in the conscious mouse: effect of exercise and diet. J Appl Physiol (1985) 113, 1173-1183.
    1. Kenny HC, Rudwill F, Breen L, Salanova M, Blottner D, Heise T, Heer M, Blanc S & O'Gorman DJ (2017). Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance. Diabetologia 60, 1491-1501.
    1. Lark DS, Torres MJ, Lin CT, Ryan TE, Anderson EJ & Neufer PD (2016). Direct real-time quantification of mitochondrial oxidative phosphorylation efficiency in permeabilized skeletal muscle myofibers. Am J Physiol Cell Physiol 311, C239-245.
    1. Larsen S, Lundby AM, Dandanell S, Oberholzer L, Keiser S, Andersen AB, Haider T & Lundby C (2018). Four days of bed rest increases intrinsic mitochondrial respiratory capacity in young healthy males. Physiol Rep 6, e13793.
    1. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F & Hey-Mogensen M (2012). Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590, 3349-3360.
    1. Lee HY, Choi CS, Birkenfeld AL, Alves TC, Jornayvaz FR, Jurczak MJ, Zhang D, Woo WK, Shadel GS, Ladiges W, Rabinovitch PS, Santos JH, Petersen KF, Samuel VT & Shulman GI (2010). Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab 12, 668-674.
    1. Ludzki A, Paglialunga S, Smith BK, Herbst EA, Allison MK, Heigenhauser GJ, Neufer PD & Holloway GP (2015). Rapid eepression of ADP transport by palmitoyl-CoA is attenuated by exercise training in humans: a potential mechanism to decrease oxidative stress and improve skeletal muscle insulin signaling. Diabetes 64, 2769-2779.
    1. Menzies RA & Gold PH (1971). The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem 246, 2425-2429.
    1. Mielke C, Lefort N, McLean CG, Cordova JM, Langlais PR, Bordner AJ, Te JA, Ozkan SB, Willis WT & Mandarino LJ (2014). Adenine nucleotide translocase is acetylated in vivo in human muscle: modeling predicts a decreased ADP affinity and altered control of oxidative phosphorylation. Biochemistry 53, 3817-3829.
    1. Min K, Smuder AJ, Kwon OS, Kavazis AN, Szeto HH & Powers SK (2011). Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J Appl Physiol (1985) 111, 1459-1466.
    1. Miotto PM, LeBlanc PJ & Holloway GP (2018). High-fat diet causes mitochondrial dysfunction as a result of impaired ADP sensitivity. Diabetes 67, 2199-2205.
    1. Miotto PM, McGlory C, Bahniwal R, Kamal M, Phillips SM & Holloway GP (2019). Supplementation with dietary omega-3 mitigates immobilization-induced reductions in skeletal muscle mitochondrial respiration in young women. FASEB J 33, 8232-8240.
    1. Most J, Goossens GH, Jocken JW & Blaak EE (2014). Short-term supplementation with a specific combination of dietary polyphenols increases energy expenditure and alters substrate metabolism in overweight subjects. Int J Obes (Lond) 38, 698-706.
    1. Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ & Grant SM (1996). Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. Am J Physiol 270, E265-272.
    1. Picard M, Ritchie D, Wright KJ, Romestaing C, Thomas MM, Rowan SL, Taivassalo T & Hepple RT (2010). Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 9, 1032-1046.
    1. Queiroga CS, Almeida AS, Martel C, Brenner C, Alves PM & Vieira HL (2010). Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J Biol Chem 285, 17077-17088.
    1. Sakellariou GK, Pearson T, Lightfoot AP, Nye GA, Wells N, Giakoumaki II, Vasilaki A, Griffiths RD, Jackson MJ & McArdle A (2016). Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy. Sci Rep 6, 33944.
    1. Schoffelen PF, Westerterp KR, Saris WH & Ten Hoor F (1997). A dual-respiration chamber system with automated calibration. J Appl Physiol (1985) 83, 2064-2072.
    1. Smith BK, Perry CG, Herbst EA, Ritchie IR, Beaudoin MS, Smith JC, Neufer PD, Wright DC & Holloway GP (2013). Submaximal ADP-stimulated respiration is impaired in ZDF rats and recovered by resveratrol. J Physiol 591, 6089-6101.
    1. Srere PA (1969). Citrate synthase. Methods Enzymol 13, 3-11.
    1. Stoll B, Puiman PJ, Cui L, Chang X, Benight NM, Bauchart-Thevret C, Hartmann B, Holst JJ & Burrin DG (2012). Continuous parenteral and enteral nutrition induces metabolic dysfunction in neonatal pigs. JPEN J Parenter Enteral Nutr 36, 538-550.
    1. Stuart CA, Shangraw RE, Prince MJ, Peters EJ & Wolfe RR (1988). Bed-rest-induced insulin resistance occurs primarily in muscle. Metabolism 37, 802-806.
    1. Tzankoff SP & Norris AH (1977). Effect of muscle mass decrease on age-related BMR changes. J Appl Physiol Respir Environ Exerc Physiol 43, 1001-1006.
    1. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P & Bouillon R (2001). Intensive insulin therapy in critically ill patients. N Engl J Med 345, 1359-1367.
    1. Wall BT, Dirks ML, Snijders T, Stephens FB, Senden JM, Verscheijden ML & van Loon LJ (2015). Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males. Exp Gerontol 61, 76-83.
    1. Wright LE, Brandon AE, Hoy AJ, Forsberg GB, Lelliott CJ, Reznick J, Lofgren L, Oscarsson J, Stromstedt M, Cooney GJ & Turner N (2011). Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1β involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia 54, 1417-1426.
    1. Yan LJ & Sohal RS (1998). Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci U S A 95, 12896-12901.

Source: PubMed

3
Tilaa