Diet, Stress and Mental Health

J Douglas Bremner, Kasra Moazzami, Matthew T Wittbrodt, Jonathon A Nye, Bruno B Lima, Charles F Gillespie, Mark H Rapaport, Bradley D Pearce, Amit J Shah, Viola Vaccarino, J Douglas Bremner, Kasra Moazzami, Matthew T Wittbrodt, Jonathon A Nye, Bruno B Lima, Charles F Gillespie, Mark H Rapaport, Bradley D Pearce, Amit J Shah, Viola Vaccarino

Abstract

Introduction: There has long been an interest in the effects of diet on mental health, and the interaction of the two with stress; however, the nature of these relationships is not well understood. Although associations between diet, obesity and the related metabolic syndrome (MetS), stress, and mental disorders exist, causal pathways have not been established.

Methods: We reviewed the literature on the relationship between diet, stress, obesity and psychiatric disorders related to stress.

Results: Diet and obesity can affect mood through direct effects, or stress-related mental disorders could lead to changes in diet habits that affect weight. Alternatively, common factors such as stress or predisposition could lead to both obesity and stress-related mental disorders, such as depression and posttraumatic stress disorder (PTSD). Specific aspects of diet can lead to acute changes in mood as well as stimulate inflammation, which has led to efforts to assess polyunsaturated fats (PUFA) as a treatment for depression. Bidirectional relationships between these different factors are also likely. Finally, there has been increased attention recently on the relationship between the gut and the brain, with the realization that the gut microbiome has an influence on brain function and probably also mood and behavior, introducing another way diet can influence mental health and disorders. Brain areas and neurotransmitters and neuropeptides that are involved in both mood and appetite likely play a role in mediating this relationship.

Conclusions: Understanding the relationship between diet, stress and mood and behavior could have important implications for the treatment of both stress-related mental disorders and obesity.

Keywords: Mediterranean diet; brain; cardiovascular disease; child abuse; coronary artery disease; depressive disorder; diet; galanin; ghrelin; metabolic syndrome; microbiome; myocardial ischemia; nutrition; obesity; posttraumatic; serotonin; somatostatin; stress disorders.

Conflict of interest statement

None of the authors have a relevant financial conflict to disclose.

Figures

Figure 1
Figure 1
The complex relationship between diet, obesity and behavior. Stress acts through the brain to both affect eating and exercise behaviors (Path A) and stress-related psychiatric disorders including posttraumatic stress disorder (PTSD) and depression (Path B), both of which can lead to changes in metabolism, metabolic syndrome (MetS) and obesity (Paths A and B). Binary relationships also exist between unhealthy eating and PTSD/depression and the brain (i.e., both in turn lead to changes in brain function). Unhealthy eating can result in diets high in saturated fat (fatty food ingestion) (Path A) that can affect mood (dysphoria) as well as leakiness of the intestinal wall (Path A), which can lead to changes in the gut microbiome which modulate obesity, MetS and metabolism (Path A), as well as feeding back on the brain (Path A) to influence mood (dysphoria). Physical disorders including cardiovascular disease (CVD) and diabetes (Path C) and physical factors such as intra-abdominal fat (Path C) are affected by stress and related to PTSD and depression. A complex system of neurotransmitters (norepinephrine, serotonin, dopamine) (Path D), inflammatory markers (Path E) and neuropeptides (ghrelin, somatostatin, galanin) (Path F) present in the gut and brain are also influenced by stress via the brain, influence the gut microbiota and physical disorders and factors in a binary fashion and in turn regulate both feeding behavior and psychiatric disorders. Within the figure, the line color indicates the path, with dashed lines indicating primary pathways and solid lines indicating secondary pathways.

References

    1. Sofi F., Cesari F., Abbate R., Gensini G.F., Casini A. Adherence to Mediterranean diet and health status: A meta-analysis. BMJ. 2008;337:a1344. doi: 10.1136/bmj.a1344.
    1. Perk J., De Backer G., Gohlke H., Graham I., Reiner Z., Verschuren M., Albus C., Benlian P., Boysen G., Cifkova R., et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR) Eur. Heart J. 2012;33:1635–1701. doi: 10.1093/eurheartj/ehs092.
    1. Vaccarino V., Bremner J.D. Behavioral, emotional and neurobiological determinants of coronary heart disease risk in women. Neurosci. Biobehav. Rev. 2017;74:297–309. doi: 10.1016/j.neubiorev.2016.04.023.
    1. Vaccarino V., Goldberg J., Rooks C., Shah A.J., Veledar E., Faber T.L., Votaw J.R., Forsberg C.W., Bremner J.D. Post-traumatic stress disorder and incidence of coronary heart disease: A twin study. J. Am. Coll. Cardiol. 2013;62:97–978. doi: 10.1016/j.jacc.2013.04.085.
    1. Vaccarino V., Votaw J., Faber T., Veledar E., Murrah N.V., Jones L.R., Zhao J., Su S., Goldberg J., Raggi J.P., et al. Major depression and coronary flow reserve detected by positron emission tomography. Arch. Intern. Med. 2009;169:1668–1676. doi: 10.1001/archinternmed.2009.330.
    1. Carney R.M., Freedland K.E. Depression and coronary heart disease. Nat. Rev. Cardiol. 2017;14:145–155. doi: 10.1038/nrcardio.2016.181.
    1. Penninx B.W. Depression and cardiovascular disease: Epidemiological evidence on their linking mechanisms. Neurosci. Biobehav. Rev. 2017;74:277–286. doi: 10.1016/j.neubiorev.2016.07.003.
    1. Freedland K.E., Carney R.M. Depression as a risk factor for adverse outcomes in coronary heart disease. BMC Med. 2013;11:131. doi: 10.1186/1741-7015-11-131.
    1. Vaccarino V., Mayer E., Bremner J.D. Stress and Health. In: Bremner J.D., editor. Posttraumatic Stress Disorder: From Neurobiology to Treatment. Wiley-Blackwell Press; Hoboken, NJ, USA: 2016.
    1. Vaccarino V., Bremner J.D. Psychiatric and behavioral aspects of cardiovascular disease. In: Zipes D.P., Libby P., Bonow R.O., Mann D.L., Tomaselli G.F., editors. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. Elsevier-Saunders; Philadelphia, PA, USA: 2018. pp. 1880–1889.
    1. Freeman M.P., Rapaport M.H. Omega-3 fatty acids and depression: From cellular mechanisms to clinical care. J. Clin. Psychiatry. 2011;72:258–259. doi: 10.4088/JCP.11ac06830.
    1. Williamson D.F., Thompson T.J., Anda R.F., Dietz W.H., Felitti V. Body weight and obesity in adulthood and self-reported abuse in childhood. Int. J. Obes. Relat. Metab. Disord. 2002;26:1075–1082. doi: 10.1038/sj.ijo.0802038.
    1. Fowler N., Vo P.T., Sisk C.L., Klump K.L. Stress as a potential moderator of ovarian hormone influences on binge eating in women. F1000Research. 2019;8 doi: 10.12688/f1000research.16895.1.
    1. Moazzami K., Lima B.B., Sullivan S., Shah A., Bremner J.D., Vaccarino V. Independent and joint association of obesity and metabolic syndrome with depression and inflammation. Health Psychol. 2019;38:586–595. doi: 10.1037/hea0000764.
    1. Bremner J.D., editor. Posttraumatic Stress Disorder: From Neurobiology to Treatment. 1st ed. Wiley; Hoboken, NJ, USA: 2016.
    1. Valassi E., Schacchi M., Cavagnini F. Neuroendocrine control of food intake. Nutr. Metab. Cardiovasc. Dis. 2007;18:158–168. doi: 10.1016/j.numecd.2007.06.004.
    1. Bremner J.D. Obesity linked to smaller cerebral volume: What should we make of this? Psychosom. Med. 2009;71:483–484. doi: 10.1097/PSY.0b013e3181a99ab2.
    1. Mayer E. The Mind-Gut Connection: How the Hidden Conversation Within Our Bodies Affects Our Mood, Our Choices, and Our Overall Health. HarperCollins; New York, NY, USA: 2016.
    1. American Psychiatric Association . The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) 5th ed. American Psychiatric Association; Washington, DC, USA: 2013.
    1. Ladabaum U., Mannalithara A., Myer P.A., Singh G. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am. J. Med. 2014;127:717–727.e12. doi: 10.1016/j.amjmed.2014.02.026.
    1. Flegal K.M., Carroll M.D., Ogden C.L., Johnson C.L. Prevalence and trends in obesity among US adults, 1999–2000. J. Am. Med. Assoc. 2002;288:1723–1727. doi: 10.1001/jama.288.14.1723.
    1. Hogue C.W., Jr., Stearns J.D., Colantuoni E., Robinson K.A., Stierer T., Mitter N., Pronovost P.J., Needham D.M. The impact of obesity on outcomes after critical illness: A meta-analysis. Intensive Care Med. 2009;35:1152–1170. doi: 10.1007/s00134-009-1424-5.
    1. Bremner J.D. Before You Take That Pill: Why the Drug Industry May Be Bad for Your Health: Risks and Side Effects You Won’t Find on the Label of Commonly Prescribed Drugs, Vitamins, and Supplements. Penguin/Avery; New York, NY, USA: 2008.
    1. Pollan M. The Omnivore’s Dilemma: A Natural History of Four Meals. Penguin Press; New York, NY, USA: 2006.
    1. Mathes W.F., Brownley K.A., Mo X., Bulik C.M. The biology of binge eating. Appetite. 2009;52:545–553. doi: 10.1016/j.appet.2009.03.005.
    1. Olshansky S.J., Passaro D.J., Hershow R.C., Layden J., Carnes B.A., Brody J., Hayflick L., Butler R.N., Allison D.B., Ludwig D.S. A potential decline in life expectancy in the United States in the 21st century. N. Engl. J. Med. 2005;352:1138–1145. doi: 10.1056/NEJMsr043743.
    1. Yusuf S., Hawken S., Ounpuu S., Dans T., Avezum A., Lanas F., McQueen M., Budaj A., Pais P., Varigos J. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet. 2004;364:937–952. doi: 10.1016/S0140-6736(04)17018-9.
    1. Anand S.S., Islam S., Rosengren A., Franzosi M.G., Steyn K., Yusufali A.H., Keltai M., Diaz R., Rangarajan S., Yusuf S. Risk factors for myocardial infarction in women and men: Insights from the INTERHEART study. Eur. Heart J. 2008;29:932–940. doi: 10.1093/eurheartj/ehn018.
    1. Zimmet P., Alberti K.G.M.M., Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–787. doi: 10.1038/414782a.
    1. World Health Organization Diabetes. [(accessed on 1 April 2019)]; Available online: .
    1. Ko G.T., Chan J.C., Tsang L.W., Yeung V.T., Chow C.C., Cockram C.S. Outcomes of screening for diabetes in high-risk Hong Kong Chinese subjects. Diabetes Care. 2000;23:1290–1294. doi: 10.2337/diacare.23.9.1290.
    1. Sakurai Y. Duration of obesity and risk of non-insulin-dependent diabetes mellitus. Biomed. Pharmacother. 2000;54:80–84. doi: 10.1016/S0753-3322(00)88856-3.
    1. Sakurai Y., Teruya K., Shimada N., Umeda T., Tanaka H., Muto T., Kondo T., Nakamura K., Yoshizawa N. Association between duration of obesity and risk of non-insulin-dependent diabetes mellitus. The Sotetsu Study. Am. J. Epidemiol. 1999;149:256–260. doi: 10.1093/oxfordjournals.aje.a009800.
    1. García-Toro M., Vicens-Pons E., Gili M., Roca M., Serrano-Ripoll M.J., Vives M., Leivad A., Yáñez A.M., Bennasar-Veny M., Oliván-Blázquez B. Obesity, metabolic syndrome and Mediterranean diet: Impact on depression outcome. J. Affect. Disord. 2016;194:105–108. doi: 10.1016/j.jad.2015.12.064.
    1. Tuomilehto J., Lindstrom J., Eriksson J.G., Valle T.T., Halalainen H., Ilanne-Parikka P., Keinanen-Kiukaanniemi S., Laakso M., Louheranta A., Rastas M., et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001;344:1343–1350. doi: 10.1056/NEJM200105033441801.
    1. Halton T.L., Willett W.C., Liu S., Manson J.E., Albert C.M., Rexrode K., Hu F.B. Low-carbohydrate-diet score and the risk of coronary heart disease in women. N. Engl. J. Med. 2006;355:1991–2002. doi: 10.1056/NEJMoa055317.
    1. de Lorgeril M., Salen P., Martin J.L., Monjaud I., Delaye J., Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: Final report of the Lyon Diet Heart Study. Circulation. 1999;99:779–785. doi: 10.1161/01.CIR.99.6.779.
    1. Dai J., Lampert R., Wilson P.W., Goldberg J., Ziegler T.R., Vaccarino V. Mediterranean dietary pattern is associated with improved cardiac autonomic function among middle-aged men: A twin study. Circ. Cardiovasc. Qual. Outcomes. 2010;3:366–373. doi: 10.1161/CIRCOUTCOMES.109.905810.
    1. Trichopoulou A., Orfanos P., Norat T., Bueno-de-Mesquita B., Ocke M.C., Peeters P.H.M., van der Schouw Y.T., Boeing H., Hoffmann K., Boffetta P., et al. Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. Br. Med. J. 2005;330:991–998. doi: 10.1136/bmj.38415.644155.8F.
    1. Fung T.T., Rexrode K.M., Mantzoros C.S., Manson J.E., Willett W.C., Hu F.B. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation. 2009;119:1093–1100. doi: 10.1161/CIRCULATIONAHA.108.816736.
    1. Estruch R., Ros E., Salas-Salvadó J., Covas M.-I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary prevention of cardiovascular disease with a Mediterranean Diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018;378:e34. doi: 10.1056/NEJMoa1800389.
    1. Markowitz S., Friedman M.A., Arent S.M. Understanding the relation between obesity and depression: Causal mechanisms and implications for treatment. Clin. Psychol. Sci. Pr. 2008;15:1–20. doi: 10.1111/j.1468-2850.2008.00106.x.
    1. Fernanda Fernandes M., Mutch D.M., Leri F. The relationship between fatty acids and different depression-related brain regions, and their potential role as biomarkers of response to antidepressants. Nutrients. 2017;9:298. doi: 10.3390/nu9030298.
    1. Weltens N., Zhao D., Van Oudenhove L. Where is the comfort in comfort foods? Mechanisms linking fat signaling, reward, and emotion. Neurogastroenterol. Motil. 2014;26:303–315. doi: 10.1111/nmo.12309.
    1. Van Oudenhove L., McKie S., Lassman D., Uddin B., Paine P., Coen S., Gregory L., Tack J., Aziz Q. Fatty acid–induced gut-brain signaling attenuates neural and behavioral effects of sad emotion in humans. J. Clin. InvestIG. 2011;121:3094–3099. doi: 10.1172/JCI46380.
    1. Tomiyama A.J., Dallman M.F., Epel E.S. Comfort food is comforting to those most stressed: Evidence of the chronic stress response network in high stress women. Psychoneuroendocrinology. 2011;36:1513–1519. doi: 10.1016/j.psyneuen.2011.04.005.
    1. Shively C.A., Register T.C., Clarkson T.B. Social stress, visceral obesity, and coronary artery atherosclerosis: Product of a primate adaptation. Am. J. Primatol. 2009;71:742–751. doi: 10.1002/ajp.20706.
    1. Dong M., Giles W.H., Felitti V.J., Dube S.R., Williams J.E., Chapman D.P., Anda R.F. Insights into causal pathways for ischemic heart disease: Adverse childhood experiences study. Circulation. 2004;110:1761–1766. doi: 10.1161/01.CIR.0000143074.54995.7F.
    1. Rich-Edwards J.W., Spiegelman D., Lividoti Hibert E.N., Jun H.J., Todd T.J., Kawachi I., Wright R.J. Abuse in childhood and adolescence as a predictor of type 2 diabetes in adult women. Am. J. Prev. Med. 2010;39:529–536. doi: 10.1016/j.amepre.2010.09.007.
    1. Su S., Jimenez M.P., Roberts C.T., Loucks E.B. The role of adverse childhood experiences in cardiovascular disease risk: A review with emphasis on plausible mechanisms. Curr. Cardiol. Rep. 2015;17:88. doi: 10.1007/s11886-015-0645-1.
    1. Hamilton M.K., Boudry G., Lemay D.G., Raybould H.E. Changes in intestinal barrier function and gut microbiota in high fat diet-fed rats are dynamic and region dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 2015;308:G840–G851. doi: 10.1152/ajpgi.00029.2015.
    1. Mayer E.A., Tillisch K., Gupta A. Gut/brain axis and the microbiota. J. Clin. Investig. 2015;125:926–938. doi: 10.1172/JCI76304.
    1. Anda R.F., Felitti V.J., Walker J., Whitfield C., Bremner J.D., Perry B.D., Dube S.R., Giles W.H. The enduring effects of childhood abuse and related experiences in childhood: A convergence of evidence from neurobiology and epidemiology. Eur. Arch. Psychiatry Clin. Neurosci. 2006;256:174–186. doi: 10.1007/s00406-005-0624-4.
    1. Lin P.-Y., Su K.-P. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J. Clin. Psychiatry. 2007;68:1056–1061. doi: 10.4088/JCP.v68n0712.
    1. Lacasse J.R., Leo J. Serotonin and depression: A disconnect between the advertisements and the scientific literature. PLoS Med. 2005;2:e392. doi: 10.1371/journal.pmed.0020392.
    1. Wells A.S., Read N.W., Uvnas-Moberg K., Alster P. Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones. Physiol. Behav. 1997;61:679–686. doi: 10.1016/S0031-9384(96)00519-7.
    1. Wells A.S., Read N.W., Macdonald I.A. Effects of carbohydrate and lipid on resting energy expenditure, heart rate, sleepiness, and mood. Physiol. Behav. 1998;63:621–628. doi: 10.1016/S0031-9384(97)00517-9.
    1. Pischke C.R., Frenda S., Ornish D., Weidner G. Lifestyle changes are related to reductions in depression in persons with elevated coronary risk factors. Psychol. Health. 2010;29:1–24. doi: 10.1080/08870440903002986.
    1. Pellegrin K.L., O’Neil P.M., Stellefson E.J., Fossey M.D., Ballenger J.C., cochrane C.E., Currey H.S. Average daily nutrient intake and mood among obese women. Nutr. Res. 1998;18:1103–1112. doi: 10.1016/S0271-5317(98)00092-X.
    1. Sánchez-Villegas A., Delgado-Rodríguez M., Alonso A., Schlatter J., Lahortiga F., Serra Majem L., Martínez-González M.A. Association of the Mediterranean dietary pattern with the incidence of depression: The Seguimiento Universidad de Navarra/University of Navarra follow-up (SUN) cohort. Arch. Gen. Psychiatry. 2009;66:1090–1098. doi: 10.1001/archgenpsychiatry.2009.129.
    1. Firth J., Marx W., Dash S., Carney R., Teasdale S.B., Solmi M., Stubbs B., Schuch F.B., Carvalho A.F., Jacka F., et al. The effects of dietary improvement on symptoms of depression and anxiety: A meta-analysis of randomized controlled trials. Psychosom. Med. 2019;81:265–280. doi: 10.1097/PSY.0000000000000673.
    1. Agarwal U., Mishra S., Xu J., Levin S., Gonzales J., Barnard N.D. A multicenter randomized controlled trial of a nutrition intervention program in a multiethnic adult population in the corporate setting reduces depression and anxiety and improves quality of life: The GEICO study. Am. J. Health Promot. 2015;29:245–254. doi: 10.4278/ajhp.130218-QUAN-72.
    1. ndevelt R., Lemberger J., Bregman J., Kowen G., Berger-Fecht I., Lander H., Karpati T., Shahar D. Intensive dietary intervention by a dietitian as a case manager among community dwelling older adults: The EDIT study. J. Nutr. Health Aging. 2011;15:624–630. doi: 10.1007/s12603-011-0074-9.
    1. Forster S.E., Powers H.J., Foulds G.A., Flower D.J., Hopkinson K., Parker S.G., Young T.A., Saxton J., Pockley A.G., Williams E.A. Improvement in nutritional status reduces the clinical impact of infections in older adults. J. Am. Geriatr. Soc. 2012;60:1645–1654. doi: 10.1111/j.1532-5415.2012.04118.x.
    1. Scheier M.F., Helgeson V.S., Schulz R., Colvin S., Berga S., Bridges M.W., Knapp J., Gerszten K., Pappert W.S. Interventions to enhance physical and psychological functioning among younger women who are ending nonhormonal adjuvant treatment for early-stage breast cancer. J. Clin. Oncol. 2005;23:4298. doi: 10.1200/JCO.2005.05.362.
    1. Halyburton A.K., Brinkworth G.D., Wilson C.J., Noakes M., Buckley J.D., Keogh J.B., Clifton P.M. Low- and high-carbohydrate weight-loss diets have similar effects on mood but not cognitive performance. Am. J. Clin. Nutr. 2007;86:580–587. doi: 10.1093/ajcn/86.3.580.
    1. Assaf A.R., Beresford S.A., Risica P.M., Aragaki A., Brunner R.L., Bowen D.J., Naughton M., Rosal M.C., Snetselaar L., Wenger N. Low-fat dietary pattern intervention and health-related quality of life: The Women’s Health Initiative randomized controlled dietary modification trial. J. Acad. Nutr. Diet. 2016;116:259–271. doi: 10.1016/j.jand.2015.07.016.
    1. Nieman D.C., Custer W.F., Butterworth D.E., Utter A.C., Henson D.A. Psychological response to exercise training and/or energy restriction in obese women. J. Psychosom. Res. 2000;48:23–29. doi: 10.1016/S0022-3999(99)00066-5.
    1. Kiernan M., King A.C., Stefanick M.L., Killen J.D. Men gain additional psychological benefits by adding exercise to a weight-loss program. Obesity. 2001;9:770–777. doi: 10.1038/oby.2001.106.
    1. Jenkinson C.M., Doherty M., Avery A.J., Read A., Taylor M.A., Sach T.H., Silcocks P., Muir K.R. Effects of dietary intervention and quadriceps strengthening exercises on pain and function in overweight people with knee pain: Randomised controlled trial. Br. Med. J. 2009;339:b3170. doi: 10.1136/bmj.b3170.
    1. Serrano Ripoll M.J., Oliván-Blázquez B., Vicens-Pons E., Roca M., Gili M., Leiva A., García-Campayo J., Demarzo M.P., García-Toro M. Lifestyle change recommendations in major depression: Do they work? J. Affect. Disord. 2015;183:221–228. doi: 10.1016/j.jad.2015.04.059.
    1. Wardle J., Rogers P., Judd P., Taylor M.A., Rapoport L., Green M., Nicholson Perry K. Randomized trial of the effects of cholesterol-lowering dietary treatment on psychological function. Am. J. Med. 2000;108:547–553. doi: 10.1016/S0002-9343(00)00330-2.
    1. Hyyppä M.T., Kronholm E., Virtanen A., Leino A., Jula A. Does simvastatin affect mood and steroid hormone levels in hypercholesterolemic men? A randomized double-blind trial. Psychoneuroendocrinology. 2003;28:181–194. doi: 10.1016/S0306-4530(02)00014-8.
    1. McMillan L., Owen L., Kras M., Scholey A. Behavioural effects of a 10-day Mediterranean diet. Results from a pilot study evaluating mood and cognitive performance. Appetite. 2011;56:143–147. doi: 10.1016/j.appet.2010.11.149.
    1. Garcia-Toro M., Ibarra O., Gili M., Salva J., Monzón S., Vives M., Serrano M.J., Garcia-Campayo J., Roca M. Effectiveness of hygienic-dietary recommendations as enhancers of antidepressant treatment in patients with Depression: Study protocol of a randomized controlled trial. BMC Public Health. 2010;10:404. doi: 10.1186/1471-2458-10-404.
    1. Toobert D.J., Glasgow R.E., Strycker L.A., Barrera M., Ritzwoller D.P., Weidner G. Long-term effects of the Mediterranean lifestyle program: A randomized clinical trial for postmenopausal women with type 2 diabetes. Int. J. Behav. Nutr. Phys. Act. 2007;4:1–7. doi: 10.1186/1479-5868-4-1.
    1. Garcia-Toro M., Gili M., Ibarra O., Monzón S., Vives M., Garcia-Campayo J., Gomez-Juanes R., Roca M. Metabolic syndrome improvement in depression six months after prescribing simple hygienic-dietary recommendations. BMC Res. Notes. 2014;7:339. doi: 10.1186/1756-0500-7-339.
    1. Kasckow J., Klaus J., Morse J., Oslin D., Luther J., Fox L., Reynolds C., Haas G.L. Using problem solving therapy to treat veterans with subsyndromal depression: A pilot study. Int. J. Geriatr. Psychiatry. 2014;29:1255–1261. doi: 10.1002/gps.4105.
    1. Kasckow J., Morse J., Begley A., Anderson S., Bensasi S., Thomas S., Quinn S.C., Reynolds C.F.r. Treatment of post-traumatic stress disorder symptoms in emotionally distressed individuals. Psychiatry Res. 2014;220:370–375. doi: 10.1016/j.psychres.2014.06.043.
    1. Jacka F.N., O’Neil A., Opie R., Itsiopoulos C., Cotton S., Mohebbi M., Castle D., Dash S., Mihalopoulos C., Chatterton M.L., et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial) BMC Med. 2017;15:23. doi: 10.1186/s12916-017-0791-y.
    1. Castro-Diehl C., Wood A.C., Redline S., Reid M., Johnson D.A., Maras J.E., Jacobs D.R., Jr., Shea S., Crawford A., St-Onge M.P. Mediterranean diet pattern and sleep duration and insomnia symptoms in the Multi-Ethnic Study of Atherosclerosis. Sleep. 2018;41 doi: 10.1093/sleep/zsy158.
    1. Campanini M.Z., Guallar-Castillon P., Rodriguez-Artalejo F., Lopez-Garcia E. Mediterranean Diet and Changes in Sleep Duration and Indicators of Sleep Quality in Older Adults. Sleep. 2017;40 doi: 10.1093/sleep/zsw083.
    1. Mamalaki E., Anastasiou C.A., Ntanasi E., Tsapanou A., Kosmidis M.H., Dardiotis E., Hadjigeorgiou G.M., Sakka P., Scarmeas N., Yannakoulia M. Associations between the mediterranean diet and sleep in older adults: Results from the hellenic longitudinal investigation of aging and diet study. Geriatr. Gerontol. Int. 2018;18:1543–1548. doi: 10.1111/ggi.13521.
    1. Jaussent I., Dauvilliers Y., Ancelin M.L., Dartigues J.F., Tavernier B., Touchon J., Ritchie K., Besset A. Insomnia symptoms in older adults: Associated factors and gender differences. Am. J. Geriatr. Psychiatry. 2011;19:88–97. doi: 10.1097/JGP.0b013e3181e049b6.
    1. Liu Q., Wu D., Ni N., Ren H., Luo C., He C., Kang J.-X., Wan J.-B., Su H. Omega-3 polyunsaturated fatty acids protect neural progenitor cells against oxidative injury. Mar. Drugs. 2014;12:2341–2356. doi: 10.3390/md12052341.
    1. Russell F.D., Bürgin-Maunder C.S. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar. Drugs. 2012;10:2535–2559. doi: 10.3390/md10112535.
    1. Brouwer I.A., Zock P.L., Camm A.J., Bocker D., Hauer R.N.W., Wever E.F.D., Dullemeijer C., Ronden J.E., Katan M.B., Lubinski A., et al. Effect of fish oil on ventricular tachyarrhythmia and death in patients with implantable cardioverter defibrillators: The study on Omega-3 fatty acids and ventricular arrhthmia (SOFA) randomized trial. J. Am. Med. Assoc. 2006;295:2613–2619. doi: 10.1001/jama.295.22.2613.
    1. Burr M.L., Fehily A.M., Gilbert J.F., Rogers S., Holliday R.M., Sweetnam P.M. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction. Lancet. 1989;2:757–761. doi: 10.1016/S0140-6736(89)90828-3.
    1. Hooper L., Thompson R.L., Harrison R.A., Summerbell C.D., Ness A.R., Moore H.J., Worthington H.V., Durrington P.N., Higgins J.P., Capps N.E., et al. Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: Systematic review. BMJ. 2006;332:752–760. doi: 10.1136/bmj.38755.366331.2F.
    1. Bremner J.D., McCaffery P. The neurobiology of retinoic acid in affective disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2008;32:315–331. doi: 10.1016/j.pnpbp.2007.07.001.
    1. Danese A., Moffitt T.E., Pariante C.M., Ambler A., Poulton R., Caspi A. Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch. Gen. Psychiatry. 2008;65:409–415. doi: 10.1001/archpsyc.65.4.409.
    1. Miller A.H., Raison C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016;16:22–34. doi: 10.1038/nri.2015.5.
    1. Miller A.H., Maletic V., Raison C.L. Inflammation and its discontents: The role of cytokines in the pathphysiology of depression. Biol. Psychiatry. 2009;65:732–741. doi: 10.1016/j.biopsych.2008.11.029.
    1. Rapaport M.H., Nierenberg A.A., Schettler P.J., Kinkead B., Cardoos A., Walker R., Mischoulon D. Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: A proof-of-concept study. Mol. Psychiatry. 2016;21:71–79. doi: 10.1038/mp.2015.22.
    1. Allam-Ndoul B., Guénard F., Barbier O., Vohl M.-C. Effect of n-3 fatty acids on the expression of inflammatory genes in THP-1 macrophages. Lipids Health Dis. 2016;15:1–7. doi: 10.1186/s12944-016-0241-4.
    1. Guo H., Callaway J.B., Ting J.P.-Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893.
    1. Lima B.B., Hammadah M., Wilmot K., Pearce B.D., Shah A., Levantsevych O., Kaseer B., Obideen M., Gafeer M.M., Kim J.H., et al. Posttraumatic Stress Disorder is associated with enhanced interleukin-6 response to mental stress in subjects with a recent myocardial infarction. Brain. Behav. Immun. 2019;75:26–33. doi: 10.1016/j.bbi.2018.08.015.
    1. Serhan C.N. Novel pro-resolving lipid mediators in inflammation are leads for resolution physiology. Nature. 2014;510:92–101. doi: 10.1038/nature13479.
    1. Chiang N., Serhan C.N. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol. Asp. Med. 2017;58:114–129. doi: 10.1016/j.mam.2017.03.005.
    1. Oh S.F., Dona M., Fredman G., Krishnamoorthy S., Irimia D., Serhan C.N. Resolvin E2 formation and impact in inflammation-resolution. J. Immunol. 2012;188:4527–4534. doi: 10.4049/jimmunol.1103652.
    1. Deyama S., Ishikawa Y., Yoshikawa K., Shimoda K., Ide S., Satoh M., Minami M. Resolvin D1 and D2 reverse lipopolysaccharide-induced depression-like behaviors through the mTORC1 signaling pathway. Int. J. Neuropsychopharmacol. 2017;20:575–584. doi: 10.1093/ijnp/pyx023.
    1. Gilbert K., Bernier J., Godbout R., Rousseau G. Resolvin D1, a metabolite of omega-3 polyunsaturated fatty acid, decreases post-myocardial infarct depression. Mar. Drugs. 2014;12:5306–5407. doi: 10.3390/md12115396.
    1. Deyama S., Shimoda K., Suzuki H., Ishikawa Y., Ishimura K., Fukuda H., Hitora-Imamura N., Ide S., Satoh M., Kaneda K., et al. Resolvin E1/E2 ameliorate lipopolysaccharide-induced depression-like behaviors via ChemR23. Psychopharmacology. 2018;235:329–336. doi: 10.1007/s00213-017-4774-7.
    1. Ishikawaa Y., Deyamaa S., Shimodaa K., Yoshikawaa K., Idea S., Satohd M., Minamia M. Rapid and sustained antidepressant effects of resolvin D1 and D2 in a chronic unpredictable stress model. Behav. Brain Res. 2017;332:233–236. doi: 10.1016/j.bbr.2017.06.010.
    1. Alcocer-Gómez E., de Miguel M., Casas-Barquero N., Núñez-Vasco J., Sánchez-Alcazar J.A., Fernández-Rodríguez A., Cordero M.D. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain. Behav. Immun. 2014;36:111–117. doi: 10.1016/j.bbi.2013.10.017.
    1. Akosile W., Voisey J., Lawford B., Colquhounc D., Young R.M., Mehta D. The inflammasome NLRP12 is associated with both depression and coronary artery disease in Vietnam veterans. Psychiatry Res. 2018;270:775–779. doi: 10.1016/j.psychres.2018.10.051.
    1. Vaccarino V., Brennan M.L., Miller A.H., Bremner J.D., Ritchie J.C., Lindau F., Veledar E., Su S., Murrah N.V., Jones L., et al. Association of major depressive disorder with serum myeloperoxidase and other markers of inflammation: A twin study. Biol. Psychiatry. 2008;64:476–483. doi: 10.1016/j.biopsych.2008.04.023.
    1. Kiecolt-Glaser J.K., Belury M.A., Porter K., Beversdorf D.Q., Lemeshow S., Glaser R. Depressive symptoms, omega-6 fatty acids, and inflammation in older adults. Psychosom. Med. 2007;69:217–224. doi: 10.1097/PSY.0b013e3180313a45.
    1. Sublette M.E., Hibbeln J.R., Galfalvy H., Oquendo M.A., Mann J.J. Omega-3 polyunsaturated essential fatty acid status as a predictor of future suicide risk. Am. J. Psychiatry. 2006;163:1100–1102. doi: 10.1176/ajp.2006.163.6.1100.
    1. Capuron L., Su S., Miller A.H., Bremner J.D., Goldberg J., Vogt G.J., Maisano C., Jones L., Murrah N.V., Vaccarino V. Depressive symptoms and metabolic syndrome: Is inflammation the underlying link? Biol. Psychiatry. 2008;64:896–900. doi: 10.1016/j.biopsych.2008.05.019.
    1. Gharekhani A., Khatami M.-R., Dashti-Khavidaki S., Razeghi E., Noorbala A.-A., Hashemi-Nazari S.-S., Mansournia M.-A. The effect of omega-3 fatty acids on depressive symptoms and inflammatory markers in maintenance hemodialysis patients: A randomized, placebo-controlled clinical trial. Eur. J. Clin. Pharmacol. 2014;70:655–665. doi: 10.1007/s00228-014-1666-1.
    1. Su K.-P., Lai H.-C., Yang H.-T., Su W.-P., Peng C.-Y., Chang J.P.-C., Chang H.-C., Pariante C.M. Omega-3 fatty acids in the prevention of interferon-alpha-induced depression: Results from a randomized, controlled trial. Biol. Psychiatry. 2014;76:559–566. doi: 10.1016/j.biopsych.2014.01.008.
    1. Poppitt S.D., Howe C.A., Lithander F.E., Silvers K.M., Lin R.B., Croft J., Ratnasabapathy Y., Gibson R.A., Anderson C.S. Effects of moderate-dose omega-3 fish oil on cardiovascular risk factors and mood after ischemic stroke: A randomized, controlled trial. Stroke. 2009;40:3485–3492. doi: 10.1161/STROKEAHA.109.555136.
    1. Sinn N., Milte C.M., Street S.J., Buckley J.D., Coates A.M., Petkov J., Howe P.R. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: A 6-month randomised controlled trial. Br. J. Nutr. 2012;107:1682–1693. doi: 10.1017/S0007114511004788.
    1. Einvik G., Ekeberg O., Lavik J.G., Ellingsen I., Klemsdal T.O., Hjerkinn E. The influence of long-term awareness of hyperlipidemia and of 3 years of dietary counseling on depression, anxiety, and quality of life. J. Psychosom. Res. 2010;68:567–572. doi: 10.1016/j.jpsychores.2009.11.004.
    1. Andreeva V.A., Galan P., Torres M., Julia C., Hercberg S., Kesse-Guyot E. Supplementation with B vitamins or n-3 fatty acids and depressive symptoms in cardiovascular disease survivors: Ancillary findings from the SUpplementation with FOLate, vitamins B-6 and B-12 and/or OMega-3 fatty acids (SU.FOL.OM3) randomised trial. Am. J. Clin. Nutr. 2012;96:208–214. doi: 10.3945/ajcn.112.035253.
    1. Giltay E.J., Geleijnse J.M., Kromhout D. Effects of n-3 fatty acids on depressive symptoms and dispositional optimism after myocardial infarction. Am. J. Clin. Nutr. 2011;94:1442–1450. doi: 10.3945/ajcn.111.018259.
    1. Doornbos B., van Goor S.A., Dijck-Brouwer D.A., Schaafsma A., Korf J., Muskiet F.A. Supplementation of a low dose of DHA or DHA+AA does not prevent peripartum depressive symptoms in a small population based sample. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2009;33:49–52. doi: 10.1016/j.pnpbp.2008.10.003.
    1. Llorente A.M., Jensen C.L., Voigt R.G., Fraley J.K., Berretta M.C., Heird W.C. Effect of maternal docosahexaenoic acid supplementation on postpartum depression and information processing. Am. J. Obstet. Gynecol. 2003;188:1348–1353. doi: 10.1067/mob.2003.275.
    1. Makrides M., Gibson R.A., McPhee A.J., Yelland L., Quinlivan J., Ryan P., the DOMInO Investigative Team Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: A randomized controlled trial. JAMA. 2010;304:1675–1683. doi: 10.1001/jama.2010.1507.
    1. Mozurkewich E.L., Clinton C.M., Chilimigras J.L., Hamilton S.E., Allbaugh L.J., Berman D.R., Marcus S.M., Romero V.C., Treadwell M.C., Keeton K.L., et al. The Mothers, Omega-3, and Mental Health Study: A double-blind, randomized controlled trial. Am. J. Obstet. Gynecol. 2013;208:e1-9. doi: 10.1016/j.ajog.2012.10.203.
    1. Stoll A.L., Severus E., Freeman M.P., Rueter S., Zboyan H.A., Diamond E., Cress K.K., Marangell L.B. Omega 3 fatty acids in bipolar disorder: A preliminary double-blind, placebo-controlled trial. Arch. Gen. Psychiatry. 1999;56:407–412. doi: 10.1001/archpsyc.56.5.407.
    1. Freeman M.P., Hibbeln J.R., Wisner K.L., Davis J.M., Mischoulon D., Peet M., Keck P.E., Marangell L.B., Richardson A.J., Lake J., et al. Omega-3 fatty acids: Evidence basis of treatment and future research in psychiatry. J. Clin. Psychiatry. 2006;67:1954–1967. doi: 10.4088/JCP.v67n1217.
    1. Peet M., Horrobin D.F. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch. Gen. Psychiatry. 2002;59:913–919. doi: 10.1001/archpsyc.59.10.913.
    1. Su K.P., Huang S.Y., Chiu T.-H., Huang K.-C., Huang C.-L., Chang H.-C., Pariante C.M. Omega-3 fatty acids for major depressive disorder during pregnancy: Results from a randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry. 2008;69:644–651. doi: 10.4088/JCP.v69n0418.
    1. Nemets H., Nemets B., Apter A., Bracha Z., Belmaker R.H. Omega-3 treatment of childhood depression: A controlled, double-blind pilot study. Am. J. Psychiatry. 2006;163:1098–1100. doi: 10.1176/ajp.2006.163.6.1098.
    1. Freeman M.P., Davis M., Sinha P., Wisner K.L., Hibbeln J.R., Gelenberg A.J. Omega-3 fatty acids and supportive psychotherapy for perinatal depression: A randomized placebo-controlled study. J. Affect. Disord. 2008;110:142–148. doi: 10.1016/j.jad.2007.12.228.
    1. Parker G., Gibson N.A., Brotchie H., Heruc G., Rees A.M., Hadzi-Pavlovic D. Omega-3 fatty acids and mood disorders. Am. J. Psychiatry. 2006;163:969–978. doi: 10.1176/ajp.2006.163.6.969.
    1. Grosso G., Pajak A., Marventano S., Castellano S., Galvano F., Bucolo C., Drago F., Caraci F. Role of omega-3 fatty acids in the treatment of depressive disorders: A comprehensive meta-analysis of randomized clinical trials. PLoS ONE. 2014;9:e96905. doi: 10.1371/journal.pone.0096905.
    1. Hallahan B., Ryan T., Hibbeln J.R., Murray I.T., Glynn S., Ramsden C.E., SanGiovanni J.P., Davis J.M. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br. J. Psychiatry. 2016;209:192–201. doi: 10.1192/bjp.bp.114.160242.
    1. Martins J.G., Bentsen H., Puri B.K. Eicosapentaenoic acid appears to be the key omega-3 fatty acid component associated with efficacy in major depressive disorder: A critique of Bloch and Hannestad and updated metaanalysis. Mol. Psychiatry. 2012;17:1144–1149. doi: 10.1038/mp.2012.25.
    1. Mocking R.J., Harmsen I., Assies J., Koeter M.W., Ruhé H.G., Schene A.H. Metaanalysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl. Psychiatry. 2016;6:e756. doi: 10.1038/tp.2016.29.
    1. Sublette M.E., Ellis S.P., Geant A.L., Mann J.J. Metaanalysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J. Clin. Psychiatry. 2011;72:1577–1584. doi: 10.4088/JCP.10m06634.
    1. Appleton K.M., Rogers P.J., Ness A.R. Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. Am. J. Clin. Nutr. 2010;91:757–770. doi: 10.3945/ajcn.2009.28313.
    1. Gertsik L., Poland R.E., Bresee C., Rapaport M.H. Omega-3 fatty acid augmentation of citalopram treatment for patients with major depressive disorder. J. Clin. Psychopharmacol. 2012;32:61–64. doi: 10.1097/JCP.0b013e31823f3b5f.
    1. Lesperance F., Frasure-Smith N., St-Andre E., Turecki G., Lesperance P., Wisniewski S.R. The efficacy of omega-3 supplementation for major depression: A randomized controlled trial. J. Clin. Psychiatry. 2011;72:1054–1062. doi: 10.4088/JCP.10m05966blu.
    1. Felger J.C., Li Z., Haroon E., Woolwine B.J., Jung M.Y., Hu X., Miller A.H. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol. Psychiatry. 2016;21:1358–1365. doi: 10.1038/mp.2015.168.
    1. Bot M., Pouwer F., Assies J., Jansen E.H., Diamant M., Snoek F.J., Beekman A.T., de Jonge P. Eicosapentaenoic acid as an add-on to antidepressant medication for co-morbid major depression in patients with diabetes mellitus: A randomized, double-blind placebo controlled study. J. Affect. Disord. 2010;126:282–286. doi: 10.1016/j.jad.2010.04.008.
    1. da Silva T.M., Munhoz R.P., Alvarez C., Naliwaiko K., Kiss A., Andreatini R., Ferraz A.C. Depression in Parkinson’s disease: A double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. J. Affect. Disord. 2008;111:351–359. doi: 10.1016/j.jad.2008.03.008.
    1. Grenyer B.F.S., Crowe T., Meyer B., Owen A.J., Grigonis-Deane E.M., Caputi P., Howe P.R.C. Fish oil supplementation in the treatment of major depression: A randomised double-blind placebo-controlled trial. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2007;31:1393–1396. doi: 10.1016/j.pnpbp.2007.06.004.
    1. Silvers K.M., Woolley C.C., Hamilton F.C., Watts P.M., Watson R.A. Randomised double-blind placebo-controlled trial of fish oil in the treatment of depression. Prostaglandins Leukot. Essent. Fat. Acids. 2005;72:211–218. doi: 10.1016/j.plefa.2004.11.004.
    1. Tayama J., Ogawa S., Nakaya N., Sone T., Hamaguchi T., Takeoka A., Hamazaki K., Okamura H., Yajima J., Kobayashi M., et al. Omega-3 polyunsaturated fatty acids and psychological intervention for workers with mild to moderate depression: A double-blind randomized controlled trial. J. Affect. Disord. 2019;245:364–370. doi: 10.1016/j.jad.2018.11.039.
    1. Marangell L.B., Martinez J.M., Zboyan H.A., Kertz B., Seung Kim H.F., Puryear L.J. A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am. J. Psychiatry. 2003;160:996–998. doi: 10.1176/appi.ajp.160.5.996.
    1. Mischoulon D., Papakostas G.I., Dording C.M., Farabaugh A.H., Sonawalla S.B., Agoston A.M., Smith J., Beaumont E.C., Dahan L.E., Alpert J.E., et al. A double-blind, randomized controlled trial of ethyl-eicosapentaenoate for major depressive disorder. J. Clin. Psychiatry. 2009;70:1636–1644. doi: 10.4088/JCP.08m04603.
    1. Rees A.-M., Austin M.-P., Parker G.B. Omega-3 fatty acids as a treatment for perinatal depression: Randomized double-blind placebo-controlled trial. Aust. N. Z. J. Psychiatry. 2008;42:199–205. doi: 10.1080/00048670701827267.
    1. Carney R.M., Freedland K.E., Rubin E.H., Rich M.W., Steinmeyer B.C., Harris W.S. Omega-3 augmentation of sertraline in treatment of depression in patients with coronary heart disease: A randomized controlled trial. J. Am. Med. Assoc. 2009;302:1651–1657. doi: 10.1001/jama.2009.1487.
    1. Carney R.M., Freedland K.E., Rubin E.H., Rich M.W., Steinmeyer B.C., Harris W.S. A randomized placebo-controlled trial of omega-3 and sertraline in depressed patients with or at risk for coronary heart disease. J. Clin. Psychiatry. 2019;80:19m12742. doi: 10.4088/JCP.19m12742.
    1. Almeida O.P., Flicker L., Lautenshlager N.T., Leedman P., Vasikaran S., van Bockxmeer F.M. Contribution of the MTHFR gene to the causal pathway for depression, anxiety and cognitive impairment in later life. Neurobiol. Aging. 2005;26:251–257. doi: 10.1016/j.neurobiolaging.2004.03.007.
    1. Bressa G.M. S-adenosyl-l-methionine (SAMe) as antidepressant: Meta-analysis of clinical studies. Acta Neurol. Scand. 1994;89:7–14. doi: 10.1111/j.1600-0404.1994.tb05403.x.
    1. Bottiglieri T. Homocysteine and folate metabolism in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2005;29:1103–1112. doi: 10.1016/j.pnpbp.2005.06.021.
    1. Tolmunen T., Hintikka J., Voutilainene S., Ruusunen A., Alfthan G., Nyyssonen K., Viinamaki H., Kaplan G.A., Salonen J.T. Association between depressive symptoms and serum concentrations of homocysteine in men: A population study. Am. J. Clin. Nutr. 2004;80:1574–1578. doi: 10.1093/ajcn/80.6.1574.
    1. Tiemeier T., van Tuijl H.R., Hofman A., Meijer J., Kiliaan A.J., Breteler M.M. Vitamin B12, folate, and homocysteine in depression: The Rotterdam Study. Am. J. Psychiatry. 2002;159:2099–2101. doi: 10.1176/appi.ajp.159.12.2099.
    1. Reynolds E.H., Carney M.W.P., Toone B.K. Methylation and Mood. Lancet. 1984;324:196–198. doi: 10.1016/S0140-6736(84)90482-3.
    1. Dedoussis G.V., Panagiotakos D.B., Chrysohoou C., Pitsavos C., Zampelas A., Choumerianou D., Stefanadis C. Effect of interaction between adherence to a Mediterranean diet and the methylenetetrahydrofolate reductase 677C-->T mutation on homocysteine concentrations in healthy adults: The ATTICA Study. Am. J. Clin. Nutr. 2004;80:849–854. doi: 10.1093/ajcn/80.4.849.
    1. Kim J.M., Stewart R., Kim S.W., Yang S.J., Shin I.S., Yoon J.S. Predictive value of folate, vitamin B12 and homocysteine levels in late-life depression. Br. J. Psychiatry. 2008;192:268–274. doi: 10.1192/bjp.bp.107.039511.
    1. Forti P., Rietti E., Pisacane N., Olivelli V., Dalmonte E., Mecocci P., Ravaglia G. Blood homocysteine and risk of depression in the elderly. Arch. Gerontol. Geriatr. 2010;51:21–25. doi: 10.1016/j.archger.2009.06.009.
    1. Nabi H., Bochud M., Glaus J., Lasserre A.M., Waeber G., Vollenweider P., Preisig M. Association of serum homocysteine with major depressive disorder: Results from a large population-based study. Psychoneuroendocrinology. 2013;38:2309–2318. doi: 10.1016/j.psyneuen.2013.04.018.
    1. Papakostas G.I., Petersen T., Lebowitz B.D., Mischoulon D., Ryan J.L., Nierenberg A.A., Bottiglieri T., Alpert J.E., Rosenbaum J.F., Fava M. The relationship between serum folate, vitamin B12, and homocysteine levels in major depressive disorder and the timing of improvement with fluoxetine. Int. J. Neuropsychopharmacol. 2005;8:523–528. doi: 10.1017/S1461145705005195.
    1. Papakostas G.I., Petersen T., Mischoulon D., Green C.H., Nierenberg A.A., Bottiglieri T., Rosenbaum J.F., Alpert J.E., Fava M. Serum folate, vitamin B12, and homocysteine in major depressive disorder, Part 2: Predictors of relapse during the continuation phase of pharmacotherapy. J. Clin. Psychiatry. 2004;65:1096–1098. doi: 10.4088/JCP.v65n0811.
    1. Papakostas G.I., Petersen T., Mischoulon D., Ryan J.L., Nierenberg A.A., Bottiglieri T., Rosenbaum J.F., Alpert J.E., Fava M. Serum folate, vitamin B12, and homocysteine in major depressive disorder, Part 1: Predictors of clinical response in fluoxetine-resistant depression. J. Clin. Psychiatry. 2004;65:1090–1095. doi: 10.4088/JCP.v65n0810.
    1. Papakostas G.I., Iosifescu D.V., Renshaw P.F., Lyoo I.K., Lee H.K., Alpert J.E., Nierenberg A.A., Fava M. Brain MRI white matter hyperintensities and one-carbon cycle metabolism in non-geriatric outpatients with major depressive disorder (Part II) Psychiatry Res. 2005;140:301–307. doi: 10.1016/j.pscychresns.2005.09.001.
    1. McMahon J.A., Green T.J., Skeaff C.M., Knight R.G., Mann J.I., Williams S.M. A controlled trial of homocysteine lowering and cognitive performance. N. Engl. J. Med. 2006;354:2764–2772. doi: 10.1056/NEJMoa054025.
    1. De Koning E.J., Zwaluw N.L., Wijngaarden J.P., Sohl E., Brouwer-Brolsma E.M., van Marwijk H.W., Enneman A.W., Swart K.M., van Dijk S.C., Ham A.C., et al. Effects of two-year vitamin B(12) and folic acid supplementation on depressive symptoms and quality of life in older adults with elevated homocysteine concentrations: Additional results from the B-PROOF Study, an RCT. Nutrients. 2016;8:748. doi: 10.3390/nu8110748.
    1. Schefft C., Kilarski L.L., Bschor T.B., Köhler S. Efficacy of adding nutritional supplements in unipolar depression: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2017;27:1090–1109. doi: 10.1016/j.euroneuro.2017.07.004.
    1. Okereke O.I., Cook N.R., Albert C.M., Van Denburgh M., Buring J.E., Manson J.E. Effect of long-term supplementation with folic acid and B vitamins on risk of depression in older women. Br. J. Psychiatry. 2015;206:324–331. doi: 10.1192/bjp.bp.114.148361.
    1. Kwok T., Wu Y., Lee J., Lee R., Yung C.Y., Choi G., Lee V., Harrison J., Lam L., Mok V. A randomized placebo-controlled trial of using B vitamins to prevent cognitive decline in older mild cognitive impairment patients. Clin. Nutr. 2019;S0261-5614:33132. doi: 10.1016/j.clnu.2019.11.005.
    1. Mech A.W., Farah A. Correlation of clinical response with homocystein reduction during therapy with reduced B vitamins in patients with MDD who are positive for MTHFR C677T or A1298C polymorphism: A randomized, double-blind, placebo-controlled study. J. Clin. Psychiatry. 2016;77:668–671. doi: 10.4088/JCP.15m10166.
    1. Coppen A., Bailey J. Enhancement of the antidepressant action of fluoxetine by folic acid: A randomised, placebo controlled trial. J. Affect. Disord. 2000;60:121–130. doi: 10.1016/S0165-0327(00)00153-1.
    1. Papakostas G.I., Shelton R.C., Zajecka J.M., Etemad B., Rickels K., Clain A., Baer L., Dalton E.D., Sacco G.R., Schoenfeld D., et al. L-methylfolate as adjunctive therapy for SSRI-resistant major depression: Results of two randomized, double-blind, parallel-sequential trials. Am. J. Psychiatry. 2012;169:1267–1274. doi: 10.1176/appi.ajp.2012.11071114.
    1. Resler G., Lavie R., Campos J., Mata S., Urbina M., García A., Apitz R., Lima L. Effect of folic acid combined with fluoxetine in patients with major depression on plasma homocysteine and vitamin B12, and serotonin levels in lymphocytes. Neuroimmunomodulation. 2008;15:145–152. doi: 10.1159/000151527.
    1. Bedson E., Bell D., Carr D., Carter B., Hughes D., Jorgensen A., Lewis H., Lloyd K., Mccaddon A., Moat S., et al. Folate Augmentation of Treatment--Evaluation for Depression (FolATED): Randomised trial and economic evaluation. Health Technol. Assess. 2014;18:1–159. doi: 10.3310/hta18480.
    1. Almeida O.P., Ford A.H., Hirani V., Singh V., vanBockxmeer F.M., McCaul K., Flicker L. B vitamins to enhance treatment response to antidepressants in middle-aged and older adults: Results from the B-VITAGE randomised, double-blind, placebo-controlled trial. Br. J. Psychiatry. 2014;205:450–457. doi: 10.1192/bjp.bp.114.145177.
    1. Papakostas G.I., Shelton R.C., Zajecka J.M., Bottiglieri T., Roffman J., Cassiello C., Stahl S.M., Fava M. Effect of adjunctive L-methylfolate 15 mg among inadequate responders to SSRIs in depressed patients who were stratified by biomarker levels and genotype: Results from a randomized clinical trial. J. Clin. Psychiatry. 2014;75:855–863. doi: 10.4088/JCP.13m08947.
    1. Khosravi M., Sotoudeh G., Amini M., Raisi F., Mansoori A., Hosseinzadeh M. The relationship between dietary patterns and depression mediated by serum levels of Folate and vitamin B12. BMC Psychiatry. 2020;20:63. doi: 10.1186/s12888-020-2455-2.
    1. Assies J., Mocking R.J.T., Lok A., Koeter M.W.J., Bockting C.L.H., Visser I., Pouwer F., Ruhé H.G., Schene A.H. Erythrocyte fatty acid profiles and plasma homocysteine, folate and vitamin B6 and B12 in recurrent depression: Implications for co-morbidity with cardiovascular disease. Psychiatry Res. 2015;229:992–998. doi: 10.1016/j.psychres.2015.06.025.
    1. Moorthy D., Peter I., Scott T.M., Parnell L.D., Lai C.-Q., Crott J.W., Ordovás J.M., Selhub J., Griffith J., Rosenberg I.H., et al. Status of vitamins B-12 and B-6 but not of folate, homocysteine, and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults. J. Nutr. 2012;143:1554–1560. doi: 10.3945/jn.112.161828.
    1. Beydoun M.A., Shroff M.R., Beydoun H.A., Zonderman A.B. Serum folate, vitamin B-12, and homocysteine and their association with depressive symptoms among U.S. adults. Psychosom. Med. 2010;72:862–873. doi: 10.1097/PSY.0b013e3181f61863.
    1. Penninx B.W., Guralnik J.M., Ferrucci L., Fried L.P., Allen R.H., Stabler S.P. Vitamin B(12) deficiency and depression in physically disabled older women: Epidemiological evidence from the Women’s Health and Aging Study. Am. J. Psychiatry. 2000;157:715–721. doi: 10.1176/appi.ajp.157.5.715.
    1. Elstgeest L.E., Brouwer I.A., Penninx B.W., van Schoor N.M., Visser M. Vitamin B(12), homocysteine and depressive symptoms: A longitudinal study among older adults. Eur. J. Clin. Nutr. 2017;71:468–475. doi: 10.1038/ejcn.2016.224.
    1. Shivappa N., Schoenaker D.A., Hebert J.R., Mishra G.D. Association between inflammatory potential of diet and risk of depression in middle-aged women: The Australian Longitudinal Study on Women’s Health. Br. J. Nutr. 2016;116:1077–1086. doi: 10.1017/S0007114516002853.
    1. Akbaraly T., Kerlau C., Wyart M., Chevallier N., Ndiaye L., Shivappa N., Hebert J.R., Kivimaki M. Dietary inflammatory index and recurrence of depressive symptoms: Results from the Whitehall II Study. Clin. Psychol. Sci. 2016;4:1125–1134. doi: 10.1177/2167702616645777.
    1. Sanchez-Villegas A., Ruiz-Canela M., de la Fuente-Arrillaga C., Gea A., Shivappa N., Hebert J.R., Martinez-Gonzalez M.A. Dietary inflammatory index, cardiometabolic conditions and depression in the Seguimiento Universidad de Navarra cohort study. Br. J. Nutr. 2015;114:1471–1479. doi: 10.1017/S0007114515003074.
    1. Haghighatdoost F., Feizi A., Esmaillzadeh A., Feinle-Bisset C., Keshteli A.H., Afshar H., Adibi P. Association between the dietary inflammatory index and common mental health disorders profile scores. Clin. Nutr. 2019;38:1643–1650. doi: 10.1016/j.clnu.2018.08.016.
    1. Imayama I., Alfano C.M., Kong A., Foster-Schubert K.E., Bain C.E., Xiao L., Duggan C., Wang C.-Y., Campbell K.L., Blackburn G.L., et al. Dietary weight loss and exercise interventions effects on quality of life in overweight/obese postmenopausal women: A randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2011;8:118. doi: 10.1186/1479-5868-8-118.
    1. Molendijk M.L., Fried E.I., Van der Does W. The SMILES trial: Do undisclosed recruitment practices explain the remarkably large effect? BMC Med. 2018;16:243. doi: 10.1186/s12916-018-1221-5.
    1. Horton R. Expression of concern: Indo-Mediterranean Diet Heart Study. Lancet. 2005;366:354–356. doi: 10.1016/S0140-6736(05)67006-7.
    1. Bloch M.H., Hannestad J. Omega-3 fatty acids for the treatment of depression: Systematic review and meta-analysis. Mol. Psychiatry. 2012;17:1272–1282. doi: 10.1038/mp.2011.100.
    1. Vermetten E., Bremner J.D. Circuits and systems in stress. I. Preclinical studies. Depress. Anxiety. 2002;15:126–147. doi: 10.1002/da.10016.
    1. Charney D.S., Bremner J.D. The neurobiology of anxiety disorders. In: Charney D.S., Nestler E.J., Bunney S.S., editors. Neurobiology of Mental Illness. Oxford University Press; Oxford, UK: 1999. pp. 494–517.
    1. Inoue T., Tsuchiya K., Koyama T. Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol. Biochem. Behav. 1994;49:911–920. doi: 10.1016/0091-3057(94)90243-7.
    1. Petty F., Kramer G.L., Wu J. Serotonergic modulation of learned helplessness. Ann. N. Y. Acad. Sci. 1997;821:538–541. doi: 10.1111/j.1749-6632.1997.tb48324.x.
    1. Vermetten E., Bremner J.D. Circuits and systems in stress. II. Applications to neurobiology and treatment of PTSD. Depress. Anxiety. 2002;16:14–38. doi: 10.1002/da.10017.
    1. Southwick S.M., Krystal J.H., Bremner J.D., Morgan C.A., Nicolaou A., Nagy L.M., Johnson D.R., Heninger G.R., Charney D.S. Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry. 1997;54:749–758. doi: 10.1001/archpsyc.1997.01830200083012.
    1. Yehuda R. Post-traumatic stress disorder. N. Engl. J. Med. 2002;346:108–114. doi: 10.1056/NEJMra012941.
    1. Bremner J.D., Krystal J.H., Southwick S.M., Charney D.S. Noradrenergic mechanisms in stress and anxiety: I. Preclinical studies. Synapse. 1996;23:28–38. doi: 10.1002/(SICI)1098-2396(199605)23:1<28::AID-SYN4>;2-J.
    1. Bremner J.D., Krystal J.H., Southwick S.M., Charney D.S. Noradrenergic mechanisms in stress and anxiety: II. Clinical studies. Synapse. 1996;23:39–51. doi: 10.1002/(SICI)1098-2396(199605)23:1<39::AID-SYN5>;2-I.
    1. Abercrombie E.D., Jacobs B.L. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and non-stressful stimuli. J. Neurosci. 1987;7:2837–2847. doi: 10.1523/JNEUROSCI.07-09-02837.1987.
    1. Abercrombie E.D., Jacobs B.L. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. II. Adaptation to chronically presented stressful stimuli. J. Neurosci. 1987;7:2844–2848. doi: 10.1523/JNEUROSCI.07-09-02844.1987.
    1. Foote S.L., Bloom F.E., Aston-Jones G. Nucleus locus coeruleus: New evidence of anatomical and physiological specificity. Physiol. Behav. 1983;63:844–914.
    1. Levine E.S., Litto W.J., Jacobs B.L. Activity of cat locus coeruleus noradrenergic neurons during the defense reaction. Brain Res. 1990;531:189–195. doi: 10.1016/0006-8993(90)90773-5.
    1. Redmond D., Huang Y. New evidence for a locus coeruleus-norepinephrine connection with anxiety. Life Sci. 1979;25:2149–2162. doi: 10.1016/0024-3205(79)90087-0.
    1. Jedema H.P., Finlay J.M., Sved A.F., Grace A.A. Chronic cold exposure potentiates CRH-evoked increases in electrophysiologic activity of locus coeruleus neurons. Biol. Psychiatry. 2001;49:351–359. doi: 10.1016/S0006-3223(00)01057-X.
    1. Nisenbaum L.K., Abercrombie E.D. Presynaptic alterations associated with enhancement of evoked release and synthesis of NE in hippocampus of chemically cold stressed rats. Brain Res. 1993;608:280–287. doi: 10.1016/0006-8993(93)91469-9.
    1. Aston-Jones G., Shipley M.T., Chouvet G., Ennis M., VanBockstaele E.J., Pieribone V., Shiekhattar R. Afferent regulation of locus coeruleus neurons: Anatomy, physiology and pharmacology. Prog. Brain Res. 1991;88:47–75.
    1. Southwick S.M., Krystal J.H., Morgan C.A., Johnson D., Nagy L.M., Nicolaou A., Heninger G.R., Charney D.S. Abnormal noradrenergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry. 1993;50:266–274. doi: 10.1001/archpsyc.1993.01820160036003.
    1. Bremner J.D., Innis R.B., Ng C.K., Staib L., Duncan J., Bronen R., Zubal G., Rich D., Krystal J.H., Dey H., et al. PET measurement of cerebral metabolic correlates of yohimbine administration in posttraumatic stress disorder. Arch. Gen. Psychiatry. 1997;54:246–256. doi: 10.1001/archpsyc.1997.01830150070011.
    1. Rossi J., Zolovick A.J., Davies R.F., Panksepp J. The role of norepinephrine in feeding behavior. Neurosci. Biobehav. Rev. 1982;6:195–204. doi: 10.1016/0149-7634(82)90055-0.
    1. Wise R.A. Role of brain dopamine in food reward and reinforcement. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2006;361:1149–1158. doi: 10.1098/rstb.2006.1854.
    1. Bremner J.D., Pearce B. Neurotransmitter, neurohormonal, and neuropeptidal function in stress and PTSD. In: Bremner J.D., editor. Posttraumatic Stress Disorder: From Neurobiology to Treatment. Wiley-Blackwell; Hoboken, NJ, USA: 2016. pp. 181–232.
    1. Kalivas P.W., Abhold R. Enkephalin release in to the ventral tegmental area in response to stress: Modulation of mesocortical dopamine. Biol. Psychiatry. 1987;414:339–348. doi: 10.1016/0006-8993(87)90015-1.
    1. Krisch B. Somatostatin-immunoreactive fiber projections into the brain stem and the spinal cord of the rat. Cell Tissue Res. 1981;217:531–552. doi: 10.1007/BF00219362.
    1. Vecsei L., Kiraly C., Bollok I., Nagy A., Varga J., Penke B., Telegdy G. Comparative studies with somatostatin and cysteamine in different behavioral tests on rats. Pharmacol. Biochem. Behav. 1984;21:833–837. doi: 10.1016/S0091-3057(84)80061-1.
    1. Benyassi A., Gavalda A., Armario A., Arancibia S. Role of somatostatin in the acute immobilization stress-induced GH decrease in rat. Life Sci. 1993;52:361–370. doi: 10.1016/0024-3205(93)90149-W.
    1. Bremner J.D., Licinio J., Darnell A., Krystal J.H., Owens M., Southwick S.M., Nemeroff C.B., Charney D.S. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatry. 1997;154:624–629.
    1. Weiss J.M., Bonsall R.W., Demetrikopoulos M.K., Emery M.S., West C.H.K. Galanin: A significant role in depression? Ann. N. Y. Acad. Sci. 1998;863:364–384. doi: 10.1111/j.1749-6632.1998.tb10707.x.
    1. Karlsson R.M., Holmes A. Galanin as a modulator of anxiety and depression and a therapeutic target for affective disease. Amino Acids. 2006;31:231–239. doi: 10.1007/s00726-006-0336-8.
    1. Yildiz B.O., Suchard M.A., Wong M.L., McCann S.M., Licinio J. Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc. Natl. Acad. Sci. USA. 2004;101:10434–10439. doi: 10.1073/pnas.0403465101.
    1. Stengel A., Wang L., Tache Y. Stress-related alterations of acyl and desacyl ghrelin circulating levels: Mechanisms and functional implications. Peptides. 2011;32:2208–2217. doi: 10.1016/j.peptides.2011.07.002.
    1. Spencer S.J., Xu L., Clarke M.A., Lemus M., Reichenbach A., Geenen B., Kozicz T., Andrews Z.B. Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress. Biol. Psychiatry. 2012;72:457–465. doi: 10.1016/j.biopsych.2012.03.010.
    1. Chuang J.C., Perello M., Sakata I., Osborne-Lawrence S., Savitt J.M., Lutter M., Zigman J.M. Ghrelin mediates stress-induced food-reward behavior in mice. J. Clin. Investig. 2011;121:2684–2692. doi: 10.1172/JCI57660.
    1. Meyer R.M., Burgos-Robles A., Liu E., Correia S.S., Goosens K.A. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear. Mol. Psychiatry. 2014;19:1284–1294. doi: 10.1038/mp.2013.135.
    1. Bailey M.T., Dowd S.E., Galley J.D., Hufnagle A.R., Allen R.G., Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain. Behav. Immun. 2011;25:397–407. doi: 10.1016/j.bbi.2010.10.023.
    1. Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., Deng Y., Blennerhassett P., Macri J., McCoy K.D., et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609. doi: 10.1053/j.gastro.2011.04.052.
    1. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011;108:16050–16055. doi: 10.1073/pnas.1102999108.
    1. Cani P.D., Everard A. Talking microbes: When gut bacteria interact with diet and host organs. Mol. Nutr. Food Res. 2016;60:58–66. doi: 10.1002/mnfr.201500406.
    1. Collins S.M., Surette M., Bercik P. The interplay between the intestinal microbes and the brain. Nat. Rev. Microbiol. 2012;10:735–742. doi: 10.1038/nrmicro2876.
    1. De Lartigue G., Barbier de La Serre C., Raybould H.E. Vagal afferents in high gat diet-induced obesity: Intestinal microflora, gut inflammation and cholecystokinin. Physiol. Behav. 2011;105:100–105. doi: 10.1016/j.physbeh.2011.02.040.
    1. Dinan T.G., Cryan J.F. Melancholic microbes: A link between gut microbiota and depression? Neurogastroenterol. Motil. 2013;25:713–719. doi: 10.1111/nmo.12198.
    1. Dinan T.G., Stanton C., Cryan J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry. 2013;74:720–726. doi: 10.1016/j.biopsych.2013.05.001.
    1. Valles-Colomer M., Falony G., Darzi Y., Tigchelaar E.F., Wang J., Tito R.Y., Schiweck C., Kurilshikov A., Joossens M., Wijmenga C., et al. The neuroactive potential of the gut microbiota in quality of life and depression. Nat. Microbiol. 2019;4:623–632. doi: 10.1038/s41564-018-0337-x.
    1. Tillisch K., Labus J., Kilpatrick L., Jiang Z., Stains J., Ebrat B., Guyonnet D., Legrain-Raspaud S., Trotin B., Naliboff B., et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144:1394–1401. doi: 10.1053/j.gastro.2013.02.043.
    1. Blumenthal J.A., Bayak M.A., Moore K.A. Effects of exercise training on older patients with major depression. Arch. Intern. Med. 1999;159:2349–2356. doi: 10.1001/archinte.159.19.2349.

Source: PubMed

3
Tilaa