The Psychological and Biological Impact of "In-Person" vs. "Virtual" Choir Singing in Children and Adolescents: A Pilot Study Before and After the Acute Phase of the COVID-19 Outbreak in Austria

Katarzyna Grebosz-Haring, Anna K Schuchter-Wiegand, Anja C Feneberg, Nadine Skoluda, Urs M Nater, Sebastian Schütz, Leonhard Thun-Hohenstein, Katarzyna Grebosz-Haring, Anna K Schuchter-Wiegand, Anja C Feneberg, Nadine Skoluda, Urs M Nater, Sebastian Schütz, Leonhard Thun-Hohenstein

Abstract

Psychobiological responses to music have been examined previously in various naturalistic settings in adults. Choir singing seems to be associated with positive psychobiological outcomes in adults. However, evidence on the effectiveness of singing in children and adolescents is sparse. The COVID-19 outbreak is significantly affecting society now and in the future, including how individuals engage with music. The COVID-19 pandemic is occurring at a time when virtual participation in musical experiences such as singing in a virtual choir has become more prevalent. However, it remains unclear whether virtual singing leads to different responses in comparison with in-person singing. We evaluated the psychobiological effects of in-person choral singing (7 weeks, from January to March 2020, before the COVID-19 outbreak) in comparison with the effects of virtual choral singing (7 weeks, from May to July 2020, after schools partly re-opened in Austria) in a naturalistic pilot within-subject study. A group of children and young adolescents (N = 5, age range 10-13, female = 2) from a school in Salzburg, Austria were recruited to take part in the study. Subjective measures (momentary mood, stress) were taken pre- and post-singing sessions once a week. Additionally, salivary biomarkers (cortisol and alpha-amylase) and quantity of social contacts were assessed pre- and post-singing sessions every second week. Psychological stability, self-esteem, emotional competences, and chronic stress levels were measured at the beginning of in-person singing as well as at the beginning and the end of the virtual singing. We observed a positive impact on mood after both in-person and virtual singing. Over time, in-person singing showed a pre-post decrease in salivary cortisol, while virtual singing showed a moderate increase. Moreover, a greater reduction in stress, positive change in calmness, and higher values of social contacts could be observed for the in-person setting compared to the virtual one. In addition, we observed positive changes in psychological stability, maladaptive emotional competences, chronic stress levels, hair cortisol, self-contingency and quality of life. Our preliminary findings suggest that group singing may provide benefits for children and adolescents. In-person singing in particular seems to have a stronger psychobiological effect.

Keywords: COVID-19; adolescents; children; cortisol; in-person choral singing; music; virtual choral singing.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Grebosz-Haring, Schuchter-Wiegand, Feneberg, Skoluda, Nater, Schütz and Thun-Hohenstein.

Figures

FIGURE 1
FIGURE 1
Study flow.
FIGURE 2
FIGURE 2
Score values of singing activity perception (median and range): in-person singing vs. virtual singing (n = 165 data points for all categories).
FIGURE 3
FIGURE 3
Absolute score values (pre-post) of current stress experience (median and range) on the Visual Analog Scale: in-person singing vs. virtual singing (n = 111 data points).
FIGURE 4
FIGURE 4
Changes (pre-post) in the MDMQ subscales (median and range): in-person singing vs. virtual singing (n = 330 data points).
FIGURE 5
FIGURE 5
Number of social contacts in Social Network Map by session: in-person singing vs. virtual singing.
FIGURE 6
FIGURE 6
Changes (pre-post) in sCort (median and range) by session: in-person singing vs. virtual singing (n = 55 data points).
FIGURE 7
FIGURE 7
Changes (pre-post) in sAA (median and range) by session: in-person singing vs. virtual singing (n = 55 data points).
FIGURE 8
FIGURE 8
Score value on Child Behavior Checklist by timepoints of measurement (median and range) (n = 11 data points).
FIGURE 9
FIGURE 9
Score value on SEKJ scales by timepoints of measurement (median and range) (n = 35 data points).
FIGURE 10
FIGURE 10
Score value on FEEL-KJ scales (adaptive emotions, maladaptive emotions) by timepoints of measurement (median and range) (n = 23 data points).
FIGURE 11
FIGURE 11
Score value on CSIK scales: school overload/pressure to perform (SUE), worries/social overload (S), social pressure (SD), discontent with school (US), social tension (SP), social isolation in the family (SI), conflicts with siblings (G), temporal overload (ZUE), social isolation among peers (SG), excessive demands/pressure to perform training/choir (S1), dissatisfaction with training/choir sessions (S4), social isolation in the training group/choir community (S9) by timepoints of measurement (median and range) (n = 132 data points).
FIGURE 12
FIGURE 12
Score value on PedsQL scales: physical functioning (PhF), emotional functioning (EmF), social functioning (SoF), school functioning (SchF), psychosocial health summary score (PsySo), physical health summary score (Phy), total score (Total) by timepoints of measurement (median and range).
FIGURE 13
FIGURE 13
Score value of hair cortisol by timepoints of measurement (median and range) (n = 88 data points).

References

    1. Abell J. G., Stalder T., Ferrie J. E., Shipley M. J., Kirschbaum C., Kivimäki M., et al. (2016). Assessing cortisol from hair samples in a large observational cohort: the Whitehall II study. Psychoneuroendocrinology 73 148–156. 10.1016/j.psyneuen.2016.07.214
    1. Altenmüller E., Schlaug G. (2012). “Music, brain, and health: exploring biological foundations of music’s health effects,” in Music, Health, and Wellbeing, eds MacDonald R., Kreutz G., Mitchell L. (Oxford: Oxford University Press; ), 12–24.
    1. Beck R. J., Cesario T. C., Yousefi A., Enamoto H. (2000). Choral singing, performance perception, and immune system changes in salivary immunoglobulin A and cortisol. Music Percept.Interdiscip. J. 18 87–106. 10.2307/40285902
    1. Berg J. M., Tymoczko J. L., Gatto G. J., Stryer L. (2018). Biochemie. Berlin: Springer.
    1. Bernatzky G., Kreutz G. (2015). Musik und Medizin. Chancen für Therapie, Prävention und Bildung. Wien: Springer-Verlag.
    1. Bernatzky G., Grebosz-Haring K., Wendtner F., Kreutz G. (2015). “Musikhören bei Depression und Demenz: von der Hirnforschung zur klinischen Anwendung,” in Musik und Medizin. Chancen für Therapie, Prävention und Bildung, eds Bernatzky G., Kreutz G. (Berlin: Springer-Verlag; ), 85–98. 10.1007/978-3-7091-1599-2_7
    1. Blackburn C. (2020). Family members’ perceptions of a Singing Medicine project in a children’s hospital. Nurs. Child. Young People 32 23–29. 10.7748/ncyp.2019.e1241
    1. Blood A. J., Zatorre R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. U. S. A. 98 11818–11823. 10.1073/pnas.191355898
    1. Braig S., Grabher F., Ntomchukwu C., Reister F., Stalder T., Kirschbaum C., et al. (2015). Determinants of maternal hair cortisol concentrations at delivery reflecting the last trimester of pregnancy. Psychoneuroendocrinology 52 289–296. 10.1016/j.psyneuen.2014.12.006
    1. Brown S., Martinez M. J., Parsons L. M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport 15 2033–2037. 10.1097/00001756-200409150-00008
    1. Bullack A., Gass C., Urs M. N., Kreutz G. (2018). Psychobiological effects of choral singing on affective state, social connectedness, and stress: influences of singing activity and time course. Front. Behav. Neurosci. 12:223. 10.3389/fnbeh.2018.00223
    1. Cabedo-Mas A., Arriaga-Sanz C., Moliner-Miravet L. (2021). Uses and perceptions of music in times of COVID-19: a Spanish population survey. Front. Psychol. 11:606180. 10.3389/fpsyg.2020.606180
    1. Chanda M. L., Levitin D. J. (2013). The neurochemistry of music. Trends Cogn Sci. 17 179–193. 10.1016/j.tics.2013.02.007
    1. Chiu R. (2020). Functions of music making under lockdown: a trans-historical perspective across two pandemics. Front. Psychol. 11:616499. 10.3389/fpsyg.2020.616499
    1. Daffern H., Balmer K., Brereton J. (2021). Singing together, yet apart: the experience of UK choir members and facilitators during the Covid-19 pandemic. Front. Psychol. 12:624474. 10.3389/fpsyg.2021.624474
    1. Daykin N., Mansfield L., Victor C. R. (2020). “Singing and Wellbeing Across the Lifecourse. Evidence from Recent Research,” in The Routledge Companion to Interdisciplinary Studies in Singing, eds Heydon R., Fancourt D., Cohen A. J. (New York: Routledge; ), 30–41.
    1. de Figueiredo C. S., Sandre P. C., Portugal L. C. L., Mázala-de-Oliveira T., da Silva Chagas L., Raony Í, et al. (2021). COVID-19 pandemic impact on children and adolescents’ mental health: biological, environmental, and social factors. Prog. Neuropsychopharmacol. Biol Psychiatry 106:110171. 10.1016/j.pnpbp.2020.110171
    1. Döpfner M., Plück J., Kinnen C., and für die Arbeitsgruppe Deutsche Child Behavior Checklist (2014). Manual deutsche Schulalter-Formen der Child Behavior Checklist von Thomas M. Achenbach. Elternfragebogen über das Verhalten von Kindern und Jugendlichen, (CBCL/6-18R), Lehrerfragebogen über das Verhalten von Kindern und Jugendlichen (TRF/6-18R), Fragebogen für Jugendliche (YSR/11-18R). Göttingen: Hogrefe.
    1. Elo A. L., Leppanen A., Jahkola A. (2003). Validity of a single-item measure of stress symptoms. Scand. J. Work Environ. Health 29 444–451. 10.5271/sjweh.752
    1. Fancourt D. (2017). Arts in Health. Designing and Researching Interventions. Oxford: Oxford University Press.
    1. Fancourt D., Ockelford A., Belai A. (2014). The psychoneuroimmunological effects of music: a systematic review and a new model. Brain Behav. Immun. 36 15–26. 10.1016/j.bbi.2013.10.014
    1. Fancourt D., Steptoe A. (2019). Present in body or just in mind: differences in social presence and emotion regulation in live vs. virtual singing experiences. Front. Psychol. 10:778. 10.3389/fpsyg.2019.00778
    1. Fancourt D., Steptoe A., Wright L. (2020). The Cummings effect: politics, trust, and behaviours during the COVID-19 pandemic. Lancet 396 464–465. 10.1016/S0140-6736(20)31690-1
    1. Fancourt D., Williamon A., Carvalho L. A., Steptoe A., Dow R., Lewis I. (2016). Singing modulates mood, stress, cortisol, cytokine and neuropeptide activity in cancer patients and carers. Ecancermedicalscience 10:631. 10.3332/ecancer.2016.631
    1. Fink L., Warrenburg L. A., Howlin C., Randall W. M., Hansen N. C., Wald-Fuhrmann M. (2021). Viral Tunes: changes in musical behaviours and interest in coronamusic predict socio-emotional coping during COVID-19 lockdown. PsyArXiv [Preprint]. 10.31234/
    1. Fischer S., Duncko R., Hatch S. L., Papadopoulos A., Goodwin L., Frissa S., et al. (2017). Sociodemographic, lifestyle, and psychosocial determinants of hair cortisol in a South London community sample. Psychoneuroendocrinology 76 144–153. 10.1016/j.psyneuen.2016.11.011
    1. Foley J. E., Weinraub M. (2017). Sleep, affect, and social competence from preschool to preadolescence: distinct pathways to emotional and social adjustment for boys and for girls. Front. Psychol. 8:711. 10.3389/fpsyg.2017.00711
    1. Glew S. G., Simonds L. M., Williams E. I. (2020). The effects of group singing on the wellbeing and psychosocial outcomes of children and young people: a systematic integrative review. Arts Health 13 240–262. 10.1080/17533015.2020.1802604
    1. Granot R., Spitz D., Cherki B., Loui P., Timmers R., Schaefer R., et al. (2021). “Help! I Need Somebody”: music as a global resource for obtaining wellbeing goals in times of crisis. Front. Psychol. 12:648013. 10.3389/fpsyg.2021.648013
    1. Grebosz-Haring K., Thun-Hohenstein L. (2018). Effects of group singing versus group music listening on hospitalized children and adolescents with mental disorders: a pilot study. Heliyon 4:e01014. 10.1016/j.heliyon.2018.e01014
    1. Grebosz-Haring K., Thun-Hohenstein L. (2020). “Singing for health and wellbeing in children and adolescents with mental disorders,” in The Routledge Companion to Interdisciplinary Studies in Singing, Volume III: Wellbeing, eds Heydon R., Fancourt D., Cohen A. J. (New York: Routledge; ), 61–73. 10.4324/9781315162546
    1. Grob A., Smolenski C. (2009). FEEL- KJ: Fragebogen zur Erhebung der Emotionsregulation bei Kindern und Jugendlichen. Bern: Huber.
    1. Hadlow N. C., Brown S., Wardrop R., Henley D. (2014). The effects of season, daylight saving and time of sunrise on serum cortisol in a large population. Chronobiol. Int. 31 243–251. 10.3109/07420528.2013.844162
    1. Jones E. J., Rohleder N., Schreier H. M. C. (2020). Neuroendocrine coordination and youth behavior problems: a review of studies assessing sympathetic nervous system and hypothalamic-pituitary adrenal axis activity using salivary alpha amylase and salivary cortisol. Horm. Behav. 122:104750. 10.1016/j.yhbeh.2020.104750
    1. Juslin P. N., Västfjäll D. (2008). Emotional responses to music: the need to consider underlying mechanisms. Behav. Brain Sci. 31 559–575. 10.1017/S0140525X08005293
    1. Kirschbaum C., Hellhammer D. H. (1994). Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology 19 313–333. 10.1016/0306-4530(94)90013-2
    1. Koelsch S. (2013). From Social Contact to Social Cohesion—The 7 Cs. Music Med. 5 204–209. 10.1177/1943862113508588
    1. Koelsch S. (2014). Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 15 170–180. 10.1038/nrn3666
    1. Koelsch S. (2018). Investigating the neural encoding of emotion with music. Neuron 98 1075–1079. 10.1016/j.neuron.2018.04.029
    1. Koelsch S., Offermanns K., Franzke P. (2010). Music in the treatment of affective disorders: an exploratory investigation of a new method for music-therapeutic research. Music Percept.Interdiscip. J. 27 307–316. 10.1525/mp.2010.27.4.307
    1. Koelsch S., Stegemann T. (2012). “The brain and positive biological effects in healthy and clinical populations,” in Music, Health, and Wellbeing, eds MacDonald R., Kreutz G., Mitchell L. (Oxford: Oxford University Press; ), 436–456.
    1. Kreutz G., Bongard S., Rohrmann S., Hodapp V., Grebe D. (2004). Effects of choir singing or listening on secretory immunoglobulin A, cortisol, and emotional state. J. Behav. Med. 27 623–635. 10.1007/s10865-004-0006-9
    1. Kreutz G., Nater U. (2017). Editorial: Music, Health, and Wellbeing. Musicae Sci. 21 135–136. 10.1177/1029864917699084
    1. Linnemann A., Ditzen B., Strahler J., Doerr J. M., Nater U. M. (2015). Music listening as a means of stress reduction in daily life. Psychoneuroendocrinology 60 82–90. 10.1016/j.psyneuen.2015.06.008
    1. Linnemann A., Schnersch A., Nater U. M. (2017). Testing the beneficial effects of singing in a choir on mood and stress in a longitudinal study: the role of social contacts. Musicae Sci. 21 195–212. 10.1177/1029864917693295
    1. MacDonald R., Kreutz G., Mitchell L. (2012). Music, Health, and Wellbeing. Oxford: Oxford University Press.
    1. Maimon L., Milo T., Moyal R. S., Mayo A., Danon T., Bren A., et al. (2020). Timescales of human hair cortisol dynamics. Iscience 23:101501. 10.1016/j.isci.2020.101501
    1. Martiìn J. C., Ortega-Saìnchez D., Miguel I. N., Martiìn G. M. G. (2021). Music as a factor associated with emotional self-regulation: a study on its relationship to age during COVID-19 lockdown in Spain. Heliyon 7:e06274. 10.1016/j.heliyon.2021.e06274
    1. Mas-Herrero E., Singer N., Ferreri L., McPhee M., Zatorre R., Ripolles P. (2020). Rock ‘n’ Roll but not Sex or Drugs: music is negatively correlated to depressive symptoms during the COVID-19 pandemic via reward-related mechanisms. PsyArXiv [Preprint]. 10.31234/
    1. Miller R., Stalder T., Jarczok M., Almeida D. M., Badrick E., Bartels M., et al. (2016). The CIRCORT database: reference ranges and seasonal changes in diurnal salivary cortisol derived from a meta-dataset comprised of 15 field studies. Psychoneuroendocrinology 73 16–23. 10.1016/j.psyneuen.2016.07.201
    1. Moss H., Lynch J., O’Donoghue J. (2018). Exploring the perceived health benefits of singing in a choir: an international cross-sectional mixed-methods study. Perspect. Public Health 138 160–168. 10.1177/1757913917739652
    1. Nater (2003). Music Preference Questionnaire (MPQ-R).
    1. Nater U. M., Abbruzzese E., Krebs M., Ehlert U. (2006). Sex differences in emotional and psychophysiological responses to musical stimuli. Int. J. Psychophysiol. 62 300–308. 10.1016/j.ijpsycho.2006.05.011
    1. Noguchi K., Gel Y. R., Brunner E., Konietschke F. (2012). nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Softw. 50 1–23. 10.18637/jss.v050.i12
    1. Olff M., Frijling J. L., Kubzansky L. D., Bradley B., Ellenbogen M. A., Cardoso C., et al. (2013). The role of oxytocin in social bonding, stress regulation and mental health: an update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology 38 1883–94. 10.1016/j.psyneuen.2013.06.019
    1. Panksepp J., Bernatzky G. (2002). Emotional sounds and the brain: the neuro-affective foundations of musical appreciation. Behav. Process 60 133–155. 10.1016/S0376-6357(02)00080-3
    1. Pelletier C. L. (2004). The effect of music on decreasing arousal due to stress: a meta-analysis. J. Music Ther. 41 192–214. 10.1093/jmt/41.3.192
    1. Ravens-Sieberer U., Kaman A., Erhart M., Devine J., Schlack R., Otto C. (2021). Impact of the COVID-19 pandemic on quality of life and mental health in children and adolescents in Germany. Eur. Child. Adolesc. Psychiatry 10.1007/s00787-021-01726-5 [Epub Online ahead of print].
    1. Ravens-Sieberer U., Kaman A., Otto C., Adedeji A., Devine J., Erhart M., et al. (2020). Mental health and quality of life in children and adolescents during the COVID-19 pandemic – results of the COPSY study. Dtsch. Arztebl. Int. 117 828–829. 10.3238/arztebl.2020.0828
    1. Richartz A., Hoffmann K., Sallen J. (2009). Kinder im Leistungssport. Chronische Belastungen und protektive Ressourcen. Schorndorf: Hofmann.
    1. Roberts A. G., Lopez-Duran N. L. (2019). Developmental influences on stress response systems: implications for psychopathology vulnerability in adolescence. Compr. Psychiatry 88 9–21. 10.1016/j.comppsych.2018.10.008
    1. Rohleder N., Nater U. M. (2009). Determinants of salivary alpha-amylase in humans and methodological considerations. Psychoneuroendocrinology 34 469–485. 10.1016/j.psyneuen.2008.12.004
    1. Salimpoor V. N., Benovoy M., Larcher K., Dagher A., Zatorre R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14 257–62.
    1. Schabus M., Eigl E.-S. (2021). “Jetzt Sprichst Du!“-Belastungen und psychosoziale Folgen der Corona-Pandemie für österreichische Kinder und Jugendliche. OSF [Preprint]. 10.31219/
    1. Schladt T. M., Nordmann G. C., Emilius R., Kudielka B. M., de Jong T. R., Neumann I. D. (2017). Choir versus solo singing: effects on mood, and salivary oxytocin and cortisol concentrations. Front. Hum. Neurosci. 11:430. 10.3389/fnhum.2017.00430
    1. Schlotz W. (2019). Investigating associations between momentary stress and cortisol in daily life: what have we learned so far? Psychoneuroendocrinology 105 105–116. 10.1016/j.psyneuen.2018.11.038
    1. Schöne C., Stiensmeier-Pelster J. (2016). SEKJ: Selbstinventar für Kinder und Jugendliche. Göttingen: Hoegrefe.
    1. Schultz P., Schlotz W., Becker P. (2004). Trier Inventory for Chronic Stress (TICS). Göttigen: Hogrefe.
    1. Seiffge-Krenke I., Aunola K., Nurmi J. E. (2009). Changes in stress perception and coping during adolescence: the role of situational and personal factors. Child. Dev. 80 259–279. 10.1111/j.1467-8624.2008.01258.x
    1. Skoluda N., Piroth I., Gao W., Nater U. M. (2021). HOME vs. LAB hair samples for the determination of long-term steroid concentrations: A comparison between hair samples collected by laypersons and trained research staff. J. Neural. Transm. 128 1371–1380.
    1. Spear L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 24 417–463. 10.1016/S0149-7634(00)00014-2
    1. Stalder T., Kirschbaum C. (2012). Analysis of cortisol in hair-state of the art and future directions. Brain Behav. Immun. 26 1019–1029. 10.1016/j.bbi.2012.02.002
    1. Steyer R., Schwenkmetzger P., Notz P., Eid M. (1997). MDBF: Der Mehrdimensonale Befindlichkeits Fragebogen. Göttingen: Hoegrefe.
    1. Strahler J., Skoluda N., Kappert M. B., Nater U. M. (2017). Simultaneous measurement of salivary cortisol and alpha-amylase: application and recommendations. Neurosci. Biobehav. Rev. 83 657–677. 10.1016/j.neubiorev.2017.08.015
    1. Tarr B., Launay J., Dunbar R. I. M. (2014). Music and social bonding: “Self-other” merging and neurohormonal mechanisms. Front. Psychol. 5:1096. 10.3389/fpsyg.2014.01096
    1. Tendler A., Bar A., Mendelsohn-Cohen N., Karin O., Korem Kohanim Y, Maimon L., et al. (2021). Hormone seasonality in medical records suggests circannual endocrine circuits. Proc. Natl. Acad. Sci. U. S. A. 118:e2003926118.
    1. Theorell T., Kowalski J., Theorell A. M. L., Horwitz E. B. (2020). Choir singers without rehearsals and concerts? A questionnaire study on perceived losses from restricting choral singing during the Covid-19 Pandemic. J. Voice. 10.1016/j.jvoice.2020.11.006 [Epub Online ahead of print].
    1. Thoma M. V., Scholz U., Ehlert U., Nater U. M. (2012). Listening to music and physiological and psychological functioning: the mediating role of emotion regulation and stress reactivity. Psychol. Health 27 227–241. 10.1080/08870446.2011.575225
    1. Tracy E., Whittaker J. (1990). The social network map: assesing social support in clinical practice. Fam. Soc. J. Contemp. Hum. Serv. 71 461–470. 10.1177/104438949007100802
    1. van den Heuvel L. L., Acker D., du Plessis S., Stalder T., Suliman S., Thorne M. Y., et al. (2020). Hair cortisol as a biomarker of stress and resilience in South African mixed ancestry females. Psychoneuroendocrinology 113:104543. 10.1016/j.psyneuen.2019.104543
    1. Varni J. W., Seid M., Kurtin P. S. (2001). PedsQL 4.0: reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Med. Care 39 800–812. 10.1097/00005650-200108000-00006
    1. Wennig R. (2000). Potential problems with the interpretation of hair analysis results. Forensic Sci. Int. 107 5–12. 10.1016/s0379-0738(99)00146-2

Source: PubMed

3
Tilaa