Pitavastatin and Atorvastatin double-blind randomized comPArative study among hiGh-risk patients, including thOse with Type 2 diabetes mellitus, in Taiwan (PAPAGO-T Study)

Ping-Yen Liu, Liang-Yu Lin, Hung-Ju Lin, Chien-Hsun Hsia, Yi-Ren Hung, Hung-I Yeh, Tao-Cheng Wu, Ju-Yi Chen, Kuo-Liong Chien, Jaw-Wen Chen, Ping-Yen Liu, Liang-Yu Lin, Hung-Ju Lin, Chien-Hsun Hsia, Yi-Ren Hung, Hung-I Yeh, Tao-Cheng Wu, Ju-Yi Chen, Kuo-Liong Chien, Jaw-Wen Chen

Abstract

Background: Evidence about the efficacy and safety of statin treatment in high-risk patients with hypercholesterolemia is available for some populations, but not for ethnic Chinese. To test the hypothesis that treatment with pitavastatin (2 mg/day) is not inferior to treatment with atorvastatin (10 mg/day) for reducing low-density lipoprotein cholesterol (LDL-C), a 12-week multicenter collaborative randomized parallel-group comparative study of high-risk ethnic Chinese patients with hypercholesterolemia was conducted in Taiwan. In addition, the effects on other lipid parameters, inflammatory markers, insulin-resistance-associated biomarkers and safety were evaluated.

Methods and results: Between July 2011 and April 2012, 251 patients were screened, 225 (mean age: 58.7 ± 8.6; women 38.2% [86/225]) were randomized and treated with pitavastatin (n = 112) or atorvastatin (n = 113) for 12 weeks. Baseline characteristics in both groups were similar, but after 12 weeks of treatment, LDL-C levels were significantly lower: pitavastatin group = -35.0 ± 14.1% and atorvastatin group = -38.4 ± 12.8% (both: p < 0.001). For the subgroup with diabetes mellitus (DM) (n = 125), LDL-C levels (-37.1 ± 12.9% vs. -38.0 ± 13.1%, p = 0.62) were similarly lowered after either pitavastatin (n = 63) or atorvastatin (n = 62) treatment. Triglycerides, non-high density lipoprotein cholesterol, and apoprotein B were similarly and significantly lower in both treatment groups. In non-lipid profiles, HOMA-IR and insulin levels were higher to a similar degree in both statin groups. Hemoglobin A1C was significantly (p = 0.001) higher in the atorvastatin group but not in the pitavastatin group. Both statins were well tolerated, and both groups had a similar low incidence of treatment-emergent adverse events.

Conclusion: Both pitavastatin (2 mg/day) and atorvastatin (10 mg/day) were well tolerated, lowered LDL-C, and improved the lipid profile to a comparable degree in high-risk Taiwanese patients with hypercholesterolemia.

Trial registration: ClinicalTrials.gov NCT01386853 https://ichgcp.net/clinical-trials-registry/NCT01386853?term=NCT01386853&rank=1.

Conflict of interest statement

Competing Interests: During study period, the Kowa company from Japan funded the medicine for the clinical trial. The authors did not belong to any employment, consultancy, patents, products in development or marketed products, etc. This medicine support did not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Figure 1. Enrollment and consort of study…
Figure 1. Enrollment and consort of study participants treated with pitavastatin or atorvastatin.
Figure 2. Changes in lipid profiles before…
Figure 2. Changes in lipid profiles before and after 12 weeks of treatment with pitavastatin (PTV) (2 mg) or atorvastatin (ATV) (10 mg).
There is no significant difference in the percentage change of low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), triglyceride (TG), non-HDL-C, apolipoprotein A1 (Apo A1), or apolipoprotein B (Apo B) levels from baseline, between the PTV and ATV groups. Both statins similarly but significantly reduced LDL-C levels after 12 weeks of treatment. PTV and ATV significantly reduced TG, non-HDL-C, and Apo B; the percentage changes were not significantly different.
Figure 3. Subgroup analysis comparing the percentage…
Figure 3. Subgroup analysis comparing the percentage of participants with final LDL-C level
Continuous variables are means ± SD. ADMA = asymmetric dimethylarginine; ALT = alanine aminotransferase; Apo A1 = apolipoprotein A1; Apo B = apolipoprotein B; AST = aspartate transaminase; BMI = body mass index; BUN = blood urea nitrogen; CPK = creatine phosphokinase; CRP = C-reactive protein; DM = Diabetes mellitus; Gamma GT = gamma-glutamyl transpeptidase; HDL-C = high-density lipoprotein cholesterol; HOMA-IR = homeostatic model assessment-insulin resistance; LDH = lactate dehydrogenase; LDL-C = low-density lipoprotein cholesterol; TG = triglyceride.

References

    1. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR et al. (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 333: 1301-1307. doi:. PubMed: .
    1. (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344: 1383-1389. PubMed: .
    1. Lu W, Resnick HE, Jablonski KA, Jones KL, Jain AK et al. (2003) Non-HDL cholesterol as a predictor of cardiovascular disease in type 2 diabetes: the strong heart study. Diabetes Care 26: 16-23. doi:. PubMed: .
    1. Panel Expert Detection on, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285: 2486-2497. doi:. PubMed: .
    1. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA et al. (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364: 685-696. doi:. PubMed: .
    1. Sever PS, Dahlöf B, Poulter NR, Wedel H, Beevers G et al. (2003) Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 361: 1149-1158. doi:. PubMed: .
    1. Saito Y, Yamada N, Teramoto T, Itakura H, Hata Y et al. (2002) Clinical efficacy of pitavastatin, a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, in patients with hyperlipidemia. Dose-finding study using the double-blind, three-group parallel comparison. Arzneimittelforschung 52: 251-255. PubMed: .
    1. Sone H, Takahashi A, Shimano H, Ishibashi S, Yoshino G et al. (2002) HMG-CoA reductase inhibitor decreases small dense low-density lipoprotein and remnant-like particle cholesterol in patients with type-2 diabetes. Life Sci 71: 2403-2412. doi:. PubMed: .
    1. Fujino H, Yamada I, Shimada S, Nagao T, Yoneda M (2002) Metabolic fate of pitavastatin (NK-104), a new inhibitor of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Effects on drug-metabolizing systems in rats and humans. Arzneimittelforschung 52: 745-753. PubMed: .
    1. Yokote K, Bujo H, Hanaoka H, Shinomiya M, Mikami K et al. (2008) Multicenter collaborative randomized parallel group comparative study of pitavastatin and atorvastatin in Japanese hypercholesterolemic patients: collaborative study on hypercholesterolemia drug intervention and their benefits for atherosclerosis prevention (CHIBA study). Atherosclerosis 201: 345-352. doi:. PubMed: .
    1. Chen JW (2011) 12-week, randomized, multicenter, double-blind, active-controlled, non-inferiority study to compare the efficacy and safety of pitavastatin and atorvastatin (High risk hypercholesterolemic patients as efficacy and safety study of pitavastatin and atorvastatin in high risk hypercholesterolemic patients, NCT01386853). Available: . Accessed 2013 September 26.
    1. Fujino H, Nakai D, Nakagomi R, Saito M, Tokui T et al. (2004) Metabolic stability and uptake by human hepatocytes of pitavastatin, a new inhibitor of HMG-CoA reductase. Arzneimittelforschung 54: 382-388. PubMed: .
    1. Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y et al. (2002) Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract 55: 65-85. doi:. PubMed: .
    1. Teramoto T, Saito Y, Yamada N et al. (2001) Clinical safety and efficacy of NK-104 (Pitavastatin), a new synthetic HMG-CoA reductase inhibitor, in the long-term treatment of hyperlipidemia—results of a multicenter long-term study. Clin Ther Med 17: 885-913 [in Japanese].
    1. Japan Cholesterol Lowering Atorvastatin Study (J-CLAS) Group (1999) Clinical effect of the novel HMG-CoA reductase inhibitor CI-981 (atorvastatin) in long-term treatment. Prog Med 19: 2123-60 [in Japanese].
    1. Poolsup N, Suksomboon N, Wongyaowarat K, Rungkanchananon B, Niyomrat P et al. (2012) Meta-analysis of the comparative efficacy and safety of pitavastatin and atorvastatin in patients with dyslipidaemia. J Clin Pharm Ther 37: 166-172. doi:. PubMed: .
    1. Maejima T, Yamazaki H, Aoki T, Tamaki T, Sato F et al. (2004) Effect of pitavastatin on apolipoprotein A-I production in HepG2 cell. Biochem Biophys Res Commun 324: 835-839. doi:. PubMed: .
    1. Saiki A, Murano T, Watanabe F, Oyama T, Miyashita Y et al. (2005) Pitavastatin enhanced lipoprotein lipase expression in 3T3-L1 preadipocytes. J Atheroscler Thromb 12: 163-168. doi:. PubMed: .
    1. Maruyama T, Takada M, Nishibori Y, Fujita K, Miki K et al. (2011) Comparison of preventive effect on cardiovascular events with different statins. − The CIRCLE study. Circ J 75: 1951-1959. doi:. PubMed: .
    1. Li CY, Wang HF, Chen SY, Chen YT, Chiang YY et al. (2012) High risk for future events in acute stroke patients with an ankle-brachial index less than 0.9. Acta Cardiol Sin 28:17-24.
    1. Hsu HP, Jou YL, Lin SJ, Charng MJ, Chen YH et al. (2011) Comparison of in-hospital outcome of acute ST elevation myocardial infarction in patients with versus without diabetes mellitus. Acta Cardiol Sin 27: 145-151.
    1. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM et al. (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359: 2195-2207. doi:. PubMed: .
    1. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM et al. (2010) Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375: 735-742. doi:. PubMed: .
    1. Hanyu O, Miida T, Obayashi K, Ikarashi T, Soda S et al. (2004) Lipoprotein lipase (LPL) mass in preheparin serum reflects insulin sensitivity. Atherosclerosis 174: 385-390. doi:. PubMed: .
    1. Ando H, Tsuruoka S, Yanagihara H, Sugimoto K, Miyata M et al. (2005) Effects of grapefruit juice on the pharmacokinetics of pitavastatin and atorvastatin. Br J Clin Pharmacol 60: 494-497. doi:. PubMed: .
    1. Morikawa S, Umetani M, Nakagawa S, Yamazaki H, Suganami H et al. (2000) Relative induction of mRNA for HMG CoA reductase and LDL receptor by five different HMG-CoA reductase inhibitors in cultured human cells. J Atheroscler Thromb 7: 138-144. PubMed: .
    1. Egawa T, Toda K, Nemoto Y, Ono M, Akisaw N et al. (2003) Pitavastatin ameliorates severe hepatic steatosis in aromatase-deficient (Ar-/-) mice. Lipids 38: 519-523. doi:. PubMed: .

Source: PubMed

3
Tilaa