" Bridging the Gap" Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era

Donato Gemmati, Katia Varani, Barbara Bramanti, Roberta Piva, Gloria Bonaccorsi, Alessandro Trentini, Maria Cristina Manfrinato, Veronica Tisato, Alessandra Carè, Tiziana Bellini, Donato Gemmati, Katia Varani, Barbara Bramanti, Roberta Piva, Gloria Bonaccorsi, Alessandro Trentini, Maria Cristina Manfrinato, Veronica Tisato, Alessandra Carè, Tiziana Bellini

Abstract

. Gender medicine is the first step of personalized medicine and patient-centred care, an essential development to achieve the standard goal of a holistic approach to patients and diseases. By addressing the interrelation and integration of biological markers (i.e., sex) with indicators of psychological/cultural behaviour (i.e., gender), gender medicine represents the crucial assumption for achieving the personalized health-care required in the third millennium. However, 'sex' and 'gender' are often misused as synonyms, leading to frequent misunderstandings in those who are not deeply involved in the field. Overall, we have to face the evidence that biological, genetic, epigenetic, psycho-social, cultural, and environmental factors mutually interact in defining sex/gender differences, and at the same time in establishing potential unwanted sex/gender disparities. Prioritizing the role of sex/gender in physiological and pathological processes is crucial in terms of efficient prevention, clinical signs' identification, prognosis definition, and therapy optimization. In this regard, the omics-approach has become a powerful tool to identify sex/gender-specific disease markers, with potential benefits also in terms of socio-psychological wellbeing for each individual, and cost-effectiveness for National Healthcare systems. "Being a male or being a female" is indeed important from a health point of view and it is no longer possible to avoid "sex and gender lens" when approaching patients. Accordingly, personalized healthcare must be based on evidence from targeted research studies aimed at understanding how sex and gender influence health across the entire life span. The rapid development of genetic tools in the molecular medicine approaches and their impact in healthcare is an example of highly specialized applications that have moved from specialists to primary care providers (e.g., pharmacogenetic and pharmacogenomic applications in routine medical practice). Gender medicine needs to follow the same path and become an established medical approach. To face the genetic, molecular and pharmacological bases of the existing sex/gender gap by means of omics approaches will pave the way to the discovery and identification of novel drug-targets/therapeutic protocols, personalized laboratory tests and diagnostic procedures (sex/gender-omics). In this scenario, the aim of the present review is not to simply resume the state-of-the-art in the field, rather an opportunity to gain insights into gender medicine, spanning from molecular up to social and psychological stances. The description and critical discussion of some key selected multidisciplinary topics considered as paradigmatic of sex/gender differences and sex/gender inequalities will allow to draft and design strategies useful to fill the existing gap and move forward.

Keywords: OMICs; complex diseases; gender medicine; genetics/molecular biomarkers; personalized medicine; pharmacogenetics; sex disparities; sexomics and genderomics; tailored drug therapy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Modified from Global Health Estimated 2016 (www.who.int/healthinfo/global_burden_disease/en/). d.: disease; PD: Parkinson’s disease; Haemorr.: Haemorrhagic; CVD: Cardiovascular Disease; def.: deficiency; circ.: circulatory; neurol.: neurological; MS: Multiple Sclerosis; AD: Alzheimer’s Disease; Musculosk.: musculoskeletal.
Figure 2
Figure 2
Extreme clinical phenotypes and prognosis in male and female AMI patients. The increased AMI risk in males is balanced by a better prognosis, resulting in enhanced AMI outcome. Conversely, the reduced AMI risk in females is characterized by a worst prognosis, resulting in a poor AMI outcome.
Figure 3
Figure 3
Schematic picture showing key examples of sex and gender disparities in cancer.
Figure 4
Figure 4
Factors concurring to different MS risk in females with respect to males. Genetics (e.g., HLA-DRB1*1501 allele), epigenetics (e.g., TLR7, CD40L, FoxP3), environment (e.g., smoking and Vitamin D deficiency) and sex hormones (e.g., oestradiol, progesterone, oestradiol and testosterone).
Figure 5
Figure 5
Snapshot of key risk factors for the development of AD and other types of dementia.
Figure 6
Figure 6
Different actors and effects on bone formation/resorption balance according to different sexes. BMU: Basic Multicellular Unit; OPG: Osteoprotegerin; MHT: Menopausal Hormone Therapy; RANKL: Receptor activator of nuclear factor kappa-Β ligand; RANK: Receptor activator of nuclear factor kappa-Β.
Figure 7
Figure 7
Hypothesis of various cellular mechanisms involving pain transmission in females and males.
Figure 8
Figure 8
Proposed sex-omics/gender-omics strategy for research and clinical approach to diseases.

References

    1. Clayton J.A., Collins F.S. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509:282–283. doi: 10.1038/509282a.
    1. Vlassoff C. Gender differences in determinants and consequences of health and illness. J. Health Popul. Nutr. 2007;25:47–61.
    1. Kimmel M. The Gendered Society. 6th ed. Oxford University Press; Oxford, UK: 2016.
    1. Lips H.M. The Gender Gap in Possible Selves: Divergence of Academic Self-Views Among High School and University Students. Sex Roles. 2004;50:357–371. doi: 10.1023/B:SERS.0000018891.88889.c9.
    1. Prakash V.S., Mansukhani N.A., Helenowski I.B., Woodruff T.K., Kibbe M.R. Sex Bias in Interventional Clinical Trials. J. Womens Health. 2018;27:1342–1348. doi: 10.1089/jwh.2017.6873.
    1. Kim A.M., Tingen C.M., Woodruff T.K. Sex bias in trials and treatment must end. Nature. 2010;465:688–689. doi: 10.1038/465688a.
    1. Harris D.J., Douglas P.S. Enrollment of women in cardiovascular clinical trials funded by the National Heart, Lung, and Blood Institute. N. Engl. J. Med. 2000;343:475–480. doi: 10.1056/NEJM200008173430706.
    1. Kim E.S., Carrigan T.P., Menon V. Enrollment of women in National Heart, Lung, and Blood Institute-funded cardiovascular randomized controlled trials fails to meet current federal mandates for inclusion. J. Am. Coll. Cardiol. 2008;52:672–673. doi: 10.1016/j.jacc.2008.05.025.
    1. Mehta L.S., Beckie T.M., DeVon H.A., Grines C.L., Krumholz H.M., Johnson M.N., Lindley K.J., Vaccarino V., Wang T.Y., Watson K.E., et al. Acute Myocardial Infarction in Women: A Scientific Statement From the American Heart Association. Circulation. 2016;133:916–947. doi: 10.1161/CIR.0000000000000351.
    1. Mostertz W., Stevenson M., Acharya C., Chan I., Walters K., Lamlertthon W., Barry W., Crawford J., Nevins J., Potti A. Age- and sex-specific genomic profiles in non-small cell lung cancer. JAMA. 2010;303:535–543. doi: 10.1001/jama.2010.80.
    1. Franconi F., Rosano G., Campesi I. Need for gender-specific pre-analytical testing: The dark side of the moon in laboratory testing. Int. J. Cardiol. 2015;179:514–535. doi: 10.1016/j.ijcard.2014.11.019.
    1. McCullough L.D., de Vries G.J., Miller V.M., Becker J.B., Sandberg K., McCarthy M.M. NIH initiative to balance sex of animals in preclinical studies: Generative questions to guide policy, implementation, and metrics. Biol. Sex Differ. 2014;5:15. doi: 10.1186/s13293-014-0015-5.
    1. Zucker I., Beery A.K. Males still dominate animal studies. Nature. 2010;465:690. doi: 10.1038/465690a.
    1. Veliskova J. Estrogens and epilepsy: Why are we so excited? Neuroscientist. 2007;13:77–88. doi: 10.1177/1073858406295827.
    1. Gold S.M., Voskuhl R.R. Estrogen treatment in multiple sclerosis. J. Neurol. Sci. 2009;286:99–103. doi: 10.1016/j.jns.2009.05.028.
    1. Rosvall K.A., Bentz A.B., George E.M. How research on female vertebrates contributes to an expanded challenge hypothesis. Horm. Behav. 2019:104565. doi: 10.1016/j.yhbeh.2019.104565.
    1. Legato M.J., Johnson P.A., Manson J.E. Consideration of Sex Differences in Medicine to Improve Health Care and Patient Outcomes. JAMA. 2016;316:1865–1866. doi: 10.1001/jama.2016.13995.
    1. Putting gender on the agenda. Nature. 2010;465:665. doi: 10.1038/465665a.
    1. Blaustein J.D. Animals have a sex, and so should titles and methods sections of articles in Endocrinology. Endocrinology. 2012;153:2539–2540. doi: 10.1210/en.2012-1365.
    1. Yang X., Schadt E.E., Wang S., Wang H., Arnold A.P., Ingram-Drake L., Drake T.A., Lusis A.J. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16:995–1004. doi: 10.1101/gr.5217506.
    1. Oertelt-Prigione S., Dalibert L., Verdonk P., Stutz E.Z., Klinge I. Implementation Strategies for Gender-Sensitive Public Health Practice: A European Workshop. J. Womens Health. 2017;26:1255–1261. doi: 10.1089/jwh.2017.6592.
    1. Kaminsky Z., Wang S.C., Petronis A. Complex disease, gender and epigenetics. Ann. Med. 2006;38:530–544. doi: 10.1080/07853890600989211.
    1. Sioud M., Melien O. Treatment options and individualized medicine. Methods Mol. Biol. 2007;361:327–340. doi: 10.1385/1-59745-208-4:327.
    1. Franconi F., Raparelli V., Regitz-Zagrosek V. Sex and gender landscape in pharmacology. Pharmacol. Res. 2017;123:93–94. doi: 10.1016/j.phrs.2017.07.001.
    1. Rodriquez M., Aquino R.P., D’Ursi A.M. Is it time to integrate sex and gender into drug design and development? Future Med. Chem. 2015;7:557–559. doi: 10.4155/fmc.15.17.
    1. Franconi F., Campesi I. Sex and gender influences on pharmacological response: An overview. Expert Rev. Clin. Pharmacol. 2014;7:469–485. doi: 10.1586/17512433.2014.922866.
    1. Basili S., Raparelli V., Proietti M., Tanzilli G., Franconi F. Impact of sex and gender on the efficacy of antiplatelet therapy: The female perspective. J. Atheroscler. Thromb. 2015;22:109–125. doi: 10.5551/jat.24935.
    1. Di Giosia P., Passacquale G., Petrarca M., Giorgini P., Marra A.M., Ferro A. Gender differences in cardiovascular prophylaxis: Focus on antiplatelet treatment. Pharmacol. Res. 2017;119:36–47. doi: 10.1016/j.phrs.2017.01.025.
    1. Pucci G., Alcidi R., Tap L., Battista F., Mattace-Raso F., Schillaci G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res. 2017;120:34–42. doi: 10.1016/j.phrs.2017.03.008.
    1. Campesi I., Franconi F., Seghieri G., Meloni M. Sex-gender-related therapeutic approaches for cardiovascular complications associated with diabetes. Pharmacol. Res. 2017;119:195–207. doi: 10.1016/j.phrs.2017.01.023.
    1. Franconi F., Campesi I., Colombo D., Antonini P. Sex-Gender Variable: Methodological Recommendations for Increasing Scientific Value of Clinical Studies. Cells. 2019;8:476. doi: 10.3390/cells8050476.
    1. Chen R., Snyder M. Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013;5:73–82. doi: 10.1002/wsbm.1198.
    1. Baetta R., Pontremoli M., Fernandez A.M., Spickett C.M., Banfi C. Reprint of: Proteomics in cardiovascular diseases: Unveiling sex and gender differences in the era of precision medicine. J. Proteom. 2018;178:57–72. doi: 10.1016/j.jprot.2018.03.017.
    1. Legato M.J. Gender-specific medicine in the genomic era. Clin. Sci. 2016;130:1–7. doi: 10.1042/CS20150551.
    1. Miller V.M. Why are sex and gender important to basic physiology and translational and individualized medicine? Am. J. Physiol. Heart Circ. Physiol. 2014;306:H781–H788. doi: 10.1152/ajpheart.00994.2013.
    1. Legato M.J. The “Biological Sex”. [(accessed on 13 December 2019)]; Available online:
    1. Legato M.J. The “ biological sex or gender?” debate: “Everything flows, nothing stands still. Nothing endures but change”. Gend. Med. 2011;8:161–163. doi: 10.1016/j.genm.2011.02.004.
    1. Klinge I. Gender perspectives in European research. Pharmacol. Res. 2008;58:183–189. doi: 10.1016/j.phrs.2008.07.011.
    1. [(accessed on 13 December 2019)]; Available online: .
    1. [(accessed on 13 December 2019)]; Available online: .
    1. [(accessed on 13 December 2019)]; Available online: .
    1. Cardiovascular Clinical Study Group. Regitz-Zagrosek V., Oertelt-Prigione S., Prescott E., Franconi F., Gerdts E., Foryst-Ludwig A., Maas A.H., Kautzky-Willer A., Knappe-Wegner D., et al. Gender in cardiovascular diseases: Impact on clinical manifestations, management, and outcomes. Eur. Heart J. 2016;37:24–34. doi: 10.1093/eurheartj/ehv598.
    1. Ventura-Clapier R., Dworatzek E., Seeland U., Kararigas G., Arnal J.F., Brunelleschi S., Carpenter T.C., Erdmann J., Franconi F., Giannetta E., et al. Sex in basic research: Concepts in the cardiovascular field. Cardiovasc. Res. 2017;113:711–724. doi: 10.1093/cvr/cvx066.
    1. [(accessed on 13 December 2019)]; Available online: .
    1. [(accessed on 24 October 2019)]; Available online: .
    1. [(accessed on 24 October 2019)]; Available online: .
    1. Davis E., Gorog D.A., Rihal C., Prasad A., Srinivasan M. “Mind the gap” acute coronary syndrome in women: A contemporary review of current clinical evidence. Int. J. Cardiol. 2017;227:840–849. doi: 10.1016/j.ijcard.2016.10.020.
    1. Oertelt-Prigione S. Gender and cardiovascular disease in the workplace—It’s not just about pay gaps. Int. J. Cardiol. 2018;262:108–109. doi: 10.1016/j.ijcard.2018.03.106.
    1. Myocardial Infarction Genetics Consortium. Kathiresan S., Voight B.F., Purcell S., Musunuru K., Ardissino D., Mannucci P.M., Anand S., Engert J.C., Samani N.J., et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 2009;41:334–341. doi: 10.1038/ng.327.
    1. Nakatochi M., Ichihara S., Yamamoto K., Naruse K., Yokota S., Asano H., Matsubara T., Yokota M. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clin. Epigenet. 2017;9:54. doi: 10.1186/s13148-017-0353-3.
    1. Webb T.R., Erdmann J., Stirrups K.E., Stitziel N.O., Masca N.G., Jansen H., Kanoni S., Nelson C.P., Ferrario P.G., Konig I.R., et al. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease. J. Am. Coll. Cardiol. 2017;69:823–836. doi: 10.1016/j.jacc.2016.11.056.
    1. Chaudhary R., Sukhi A., Chaudhary R., Jindal M., Vyas A., Rout A., Bliden K., Tantry U., Gurbel P. Gender differences in thrombogenicity among patients with angina and non-obstructive coronary artery disease. J. Thromb. Thrombolysis. 2019 doi: 10.1007/s11239-019-01901-1.
    1. Patel R., Tragante V., Schmidt A.F., McCubrey R.O., Holmes M.V., Howe L.J., Direk K., Akerblom A., Leander K., Virani S.S., et al. Subsequent Event Risk in Individuals with Established Coronary Heart Disease: Design and Rationale of the GENIUS-CHD Consortium. Circ. Genom. Precis. Med. 2019 doi: 10.1161/CIRCGEN.119.002470.
    1. Gemmati D., Serino M.L., Trivellato C., Fiorini S., Scapoli G.L. C677T substitution in the methylenetetrahydrofolate reductase gene as a risk factor for venous thrombosis and arterial disease in selected patients. Haematologica. 1999;84:824–828.
    1. Gemmati D., Serino M.L., Ongaro A., Tognazzo S., Moratelli S., Resca R., Moretti M., Scapoli G.L. A common mutation in the gene for coagulation factor XIII-A (VAL34Leu): A risk factor for primary intracerebral hemorrhage is protective against atherothrombotic diseases. Am. J. Hematol. 2001;67:183–188. doi: 10.1002/ajh.1104.
    1. Campo G., Valgimigli M., Ferraresi P., Malagutti P., Baroni M., Arcozzi C., Gemmati D., Percoco G., Parrinello G., Ferrari R., et al. Tissue factor and coagulation factor VII levels during acute myocardial infarction: Association with genotype and adverse events. Arterioscler. Thromb. Vasc. Biol. 2006;26:2800–2806. doi: 10.1161/01.ATV.0000247249.82030.94.
    1. Gemmati D., Federici F., Campo G., Tognazzo S., Serino M.L., De Mattei M., Valgimigli M., Malagutti P., Guardigli G., Ferraresi P., et al. Factor XIIIA-V34L and factor XIIIB-H95R gene variants: Effects on survival in myocardial infarction patients. Mol. Med. 2007;13:112–120. doi: 10.2119/2006-00049.Gemmati.
    1. Gemmati D., Zeri G., Orioli E., Mari R., Moratelli S., Vigliano M., Marchesini J., Grossi M.E., Pecoraro A., Cuneo A., et al. Factor XIII-A dynamics in acute myocardial infarction: A novel prognostic biomarker? Thromb. Haemost. 2015;114:123–132. doi: 10.1160/TH14-11-0952.
    1. Gemmati D., Vigliano M., Burini F., Mari R., El Mohsein H.H., Parmeggiani F., Serino M.L. Coagulation Factor XIIIA (F13A1): Novel Perspectives in Treatment and Pharmacogenetics. Curr. Pharm. Des. 2016;22:1449–1459. doi: 10.2174/1381612822666151210122954.
    1. Ansani L., Marchesini J., Pestelli G., Luisi G.A., Scillitani G., Longo G., Milani D., Serino M.L., Tisato V., Gemmati D. F13A1 Gene Variant (V34L) and Residual Circulating FXIIIA Levels Predict Short- and Long-Term Mortality in Acute Myocardial Infarction after Coronary Angioplasty. Int. J. Mol. Sci. 2018;19:2766. doi: 10.3390/ijms19092766.
    1. De Luca L., Marini M., Gonzini L., Boccanelli A., Casella G., Chiarella F., De Servi S., Di Chiara A., Di Pasquale G., Olivari Z., et al. Contemporary Trends and Age-Specific Sex Differences in Management and Outcome for Patients With ST-Segment Elevation Myocardial Infarction. J. Am. Heart Assoc. 2016;5 doi: 10.1161/JAHA.116.004202.
    1. Dreyer R.P., Ranasinghe I., Wang Y., Dharmarajan K., Murugiah K., Nuti S.V., Hsieh A.F., Spertus J.A., Krumholz H.M. Sex Differences in the Rate, Timing, and Principal Diagnoses of 30-Day Readmissions in Younger Patients with Acute Myocardial Infarction. Circulation. 2015;132:158–166. doi: 10.1161/CIRCULATIONAHA.114.014776.
    1. Dreyer R.P., Dharmarajan K., Kennedy K.F., Jones P.G., Vaccarino V., Murugiah K., Nuti S.V., Smolderen K.G., Buchanan D.M., Spertus J.A., et al. Sex Differences in 1-Year All-Cause Rehospitalization in Patients After Acute Myocardial Infarction: A Prospective Observational Study. Circulation. 2017;135:521–531. doi: 10.1161/CIRCULATIONAHA.116.024993.
    1. Writing Group M., Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., Das S.R., de Ferranti S., Despres J.P., et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2016;133:e38–e48. doi: 10.1161/CIR.0000000000000350.
    1. Wells G.L. Cardiovascular Risk Factors: Does Sex Matter? Curr. Vasc. Pharmacol. 2016;14:452–457. doi: 10.2174/1570161114666160722113116.
    1. Dunlay S.M., Roger V.L. Gender differences in the pathophysiology, clinical presentation, and outcomes of ischemic heart failure. Curr. Heart Fail. Rep. 2012;9:267–276. doi: 10.1007/s11897-012-0107-7.
    1. Seeland U., Regitz-Zagrosek V. Sex and gender differences in cardiovascular drug therapy. Handb. Exp. Pharmacol. 2012:211–236. doi: 10.1007/978-3-642-30726-3_11.
    1. Ranasinghe I., Wang Y., Dharmarajan K., Hsieh A.F., Bernheim S.M., Krumholz H.M. Readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia among young and middle-aged adults: A retrospective observational cohort study. PLoS Med. 2014;11:e1001737. doi: 10.1371/journal.pmed.1001737.
    1. Bauters C., Dubois E., Porouchani S., Saloux E., Fertin M., de Groote P., Lamblin N., Pinet F. Long-term prognostic impact of left ventricular remodeling after a first myocardial infarction in modern clinical practice. PLoS ONE. 2017;12:e0188884. doi: 10.1371/journal.pone.0188884.
    1. Subramanya V., Zhao D., Ouyang P., Lima J.A., Vaidya D., Ndumele C.E., Bluemke D.A., Shah S.J., Guallar E., Nwabuo C.C., et al. Sex hormone levels and change in left ventricular structure among men and post-menopausal women: The Multi-Ethnic Study of Atherosclerosis (MESA) Maturitas. 2018;108:37–44. doi: 10.1016/j.maturitas.2017.11.006.
    1. Ter Horst E.N., Hakimzadeh N., van der Laan A.M., Krijnen P.A., Niessen H.W., Piek J.J. Modulators of Macrophage Polarization Influence Healing of the Infarcted Myocardium. Int. J. Mol. Sci. 2015;16:29583–29591. doi: 10.3390/ijms161226187.
    1. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Cardiac Extracellular Vesicles in Normal and Infarcted Heart. Int. J. Mol. Sci. 2016;17:63. doi: 10.3390/ijms17010063.
    1. Musial-Wysocka A., Kot M., Sulkowski M., Majka M. Regenerative Potential of the Product “CardioCell” Derived from the Wharton’s Jelly Mesenchymal Stem Cells for Treating Hindlimb Ischemia. Int. J. Mol. Sci. 2019;20:4632. doi: 10.3390/ijms20184632.
    1. Sun T., Dong Y.H., Du W., Shi C.Y., Wang K., Tariq M.A., Wang J.X., Li P.F. The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. Int. J. Mol. Sci. 2017;18:745. doi: 10.3390/ijms18040745.
    1. Singh A.V., Subhashree L., Milani P., Gemmati D., Zamboni P. Interplay of iron metallobiology, metalloproteinases, and FXIII, and role of their gene variants in venous leg ulcer. Int. J. Low Extrem. Wounds. 2010;9:166–179. doi: 10.1177/1534734610384653.
    1. Zamboni P., Gemmati D. Clinical implications of gene polymorphisms in venous leg ulcer: A model in tissue injury and reparative process. Thromb. Haemost. 2007;98:131–137.
    1. Zamboni P., De Mattei M., Ongaro A., Fogato L., Carandina S., De Palma M., Tognazzo S., Scapoli G.L., Serino M.L., Caruso A., et al. Factor XIII contrasts the effects of metalloproteinases in human dermal fibroblast cultured cells. Vasc. Endovasc. Surg. 2004;38:431–438. doi: 10.1177/153857440403800506.
    1. Tognazzo S., Gemmati D., Palazzo A., Catozzi L., Carandina S., Legnaro A., Tacconi G., Scapoli G.L., Zamboni P. Prognostic role of factor XIII gene variants in nonhealing venous leg ulcers. J. Vasc. Surg. 2006;44:815–819. doi: 10.1016/j.jvs.2006.06.006.
    1. Gemmati D., Tognazzo S., Catozzi L., Federici F., De Palma M., Gianesini S., Scapoli G.L., De Mattei M., Liboni A., Zamboni P. Influence of gene polymorphisms in ulcer healing process after superficial venous surgery. J. Vasc. Surg. 2006;44:554–562. doi: 10.1016/j.jvs.2006.05.011.
    1. Gemmati D., Tognazzo S., Serino M.L., Fogato L., Carandina S., De Palma M., Izzo M., De Mattei M., Ongaro A., Scapoli G.L., et al. Factor XIII V34L polymorphism modulates the risk of chronic venous leg ulcer progression and extension. Wound Repair Regen. 2004;12:512–517. doi: 10.1111/j.1067-1927.2004.012503.x.
    1. Gemmati D., Occhionorelli S., Tisato V., Vigliano M., Longo G., Gonelli A., Sibilla M.G., Serino M.L., Zamboni P. Inherited genetic predispositions in F13A1 and F13B genes predict abdominal adhesion formation: Identification of gender prognostic indicators. Sci. Rep. 2018;8:16916. doi: 10.1038/s41598-018-35185-x.
    1. Greiten L.E., Holditch S.J., Arunachalam S.P., Miller V.M. Should there be sex-specific criteria for the diagnosis and treatment of heart failure? J. Cardiovasc. Transl. Res. 2014;7:139–155. doi: 10.1007/s12265-013-9514-8.
    1. Falzone L., Salomone S., Libra M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front. Pharmacol. 2018;9:1300. doi: 10.3389/fphar.2018.01300.
    1. [(accessed on 24 October 2019)]; Available online: .
    1. Clocchiatti A., Cora E., Zhang Y., Dotto G.P. Sexual dimorphism in cancer. Nat. Rev. Cancer. 2016;16:330–339. doi: 10.1038/nrc.2016.30.
    1. Straface E., Gambardella L., Brandani M., Malorni W. Sex differences at cellular level: “Cells have a sex”. Handb. Exp. Pharmacol. 2012:49–65. doi: 10.1007/978-3-642-30726-3_3.
    1. Carrel L., Willard H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:400–404. doi: 10.1038/nature03479.
    1. Pinheiro I., Dejager L., Libert C. X-chromosome-located microRNAs in immunity: Might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signalling, thereby contributing to the enhanced immune response of females. Bioessays. 2011;33:791–802. doi: 10.1002/bies.201100047.
    1. Capone I., Marchetti P., Ascierto P.A., Malorni W., Gabriele L. Sexual Dimorphism of Immune Responses: A New Perspective in Cancer Immunotherapy. Front. Immunol. 2018;9:552. doi: 10.3389/fimmu.2018.00552.
    1. Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016;16:626–638. doi: 10.1038/nri.2016.90.
    1. Gabriele L., Buoncervello M., Ascione B., Bellenghi M., Matarrese P., Care A. The gender perspective in cancer research and therapy: Novel insights and on-going hypotheses. Ann. Ist. Super. Sanita. 2016;52:213–222. doi: 10.4415/ANN_16_02_13.
    1. Kim S.E., Paik H.Y., Yoon H., Lee J.E., Kim N., Sung M.K. Sex- and gender-specific disparities in colorectal cancer risk. World J. Gastroenterol. 2015;21:5167–5175. doi: 10.3748/wjg.v21.i17.5167.
    1. Salem M.E., Weinberg B.A., Xiu J., El-Deiry W.S., Hwang J.J., Gatalica Z., Philip P.A., Shields A.F., Lenz H.J., Marshall J.L. Comparative molecular analyses of left-sided colon, right-sided colon, and rectal cancers. Oncotarget. 2017;8:86356–86368. doi: 10.18632/oncotarget.21169.
    1. Marks P., Soave A., Shariat S.F., Fajkovic H., Fisch M., Rink M. Female with bladder cancer: What and why is there a difference? Transl. Androl. Urol. 2016;5:668–682. doi: 10.21037/tau.2016.03.22.
    1. Gupta S., Artomov M., Goggins W., Daly M., Tsao H. Gender Disparity and Mutation Burden in Metastatic Melanoma. J. Natl. Cancer Inst. 2015;107 doi: 10.1093/jnci/djv221.
    1. Roh M.R., Eliades P., Gupta S., Grant-Kels J.M., Tsao H. Cutaneous melanoma in women. Int. J. Womens Dermatol. 2017;3:S11–S15. doi: 10.1016/j.ijwd.2017.02.003.
    1. Faramarzi S., Ghafouri-Fard S. Melanoma: A prototype of cancer-testis antigen-expressing malignancies. Immunotherapy. 2017;9:1103–1113. doi: 10.2217/imt-2017-0091.
    1. Botticelli A., Onesti C.E., Zizzari I., Cerbelli B., Sciattella P., Occhipinti M., Roberto M., Di Pietro F., Bonifacino A., Ghidini M., et al. The sexist behaviour of immune checkpoint inhibitors in cancer therapy? Oncotarget. 2017;8:99336–99346. doi: 10.18632/oncotarget.22242.
    1. Conforti F., Pala L., Bagnardi V., De Pas T., Martinetti M., Viale G., Gelber R.D., Goldhirsch A. Cancer immunotherapy efficacy and patients’ sex: A systematic review and meta-analysis. Lancet Oncol. 2018;19:737–746. doi: 10.1016/S1470-2045(18)30261-4.
    1. Grassadonia A., Sperduti I., Vici P., Iezzi L., Brocco D., Gamucci T., Pizzuti L., Maugeri-Sacca M., Marchetti P., Cognetti G., et al. Effect of Gender on the Outcome of Patients Receiving Immune Checkpoint Inhibitors for Advanced Cancer: A Systematic Review and Meta-Analysis of Phase III Randomized Clinical Trials. J. Clin. Med. 2018;7:542. doi: 10.3390/jcm7120542.
    1. Care A., Bellenghi M., Matarrese P., Gabriele L., Salvioli S., Malorni W. Sex disparity in cancer: Roles of microRNAs and related functional players. Cell Death Differ. 2018;25:477–485. doi: 10.1038/s41418-017-0051-x.
    1. Weng Y.M., Peng M., Hu M.X., Yao Y., Song Q.B. Clinical and molecular characteristics associated with the efficacy of PD-1/PD-L1 inhibitors for solid tumors: A meta-analysis. OncoTargets Ther. 2018;11:7529–7542. doi: 10.2147/OTT.S167865.
    1. Hanamsagar R., Bilbo S.D. Sex differences in neurodevelopmental and neurodegenerative disorders: Focus on microglial function and neuroinflammation during development. J. Steroid Biochem. Mol. Biol. 2016;160:127–133. doi: 10.1016/j.jsbmb.2015.09.039.
    1. Ullah M.F., Ahmad A., Bhat S.H., Abu-Duhier F.M., Barreto G.E., Ashraf G.M. Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neurosci. Biobehav. Rev. 2019;102:95–105. doi: 10.1016/j.neubiorev.2019.04.003.
    1. Harbo H.F., Gold R., Tintore M. Sex and gender issues in multiple sclerosis. Ther. Adv. Neurol. Disord. 2013;6:237–248. doi: 10.1177/1756285613488434.
    1. Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Karussis D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: A critical review. J. Autoimmun. 2014;48-49:134–142. doi: 10.1016/j.jaut.2014.01.022.
    1. Airas L., Kaaja R. Pregnancy and multiple sclerosis. Obstet. Med. 2012;5:94–97. doi: 10.1258/om.2012.110014.
    1. Fainardi E., Castellazzi M., Tamborino C., Trentini A., Manfrinato M.C., Baldi E., Tola M.R., Dallocchio F., Granieri E., Bellini T. Potential relevance of cerebrospinal fluid and serum levels and intrathecal synthesis of active matrix metalloproteinase-2 (MMP-2) as markers of disease remission in patients with multiple sclerosis. Mult. Scler. 2009;15:547–554. doi: 10.1177/1352458509102372.
    1. Trentini A., Manfrinato M.C., Castellazzi M., Tamborino C., Roversi G., Volta C.A., Baldi E., Tola M.R., Granieri E., Dallocchio F., et al. TIMP-1 resistant matrix metalloproteinase-9 is the predominant serum active isoform associated with MRI activity in patients with multiple sclerosis. Mult. Scler. 2015;21:1121–1130. doi: 10.1177/1352458514560925.
    1. Trentini A., Castellazzi M., Cervellati C., Manfrinato M.C., Tamborino C., Hanau S., Volta C.A., Baldi E., Kostic V., Drulovic J., et al. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients. Dis. Markers. 2016;2016:3672353. doi: 10.1155/2016/3672353.
    1. Kallaur A.P., Oliveira S.R., Colado Simao A.N., Delicato de Almeida E.R., Kaminami Morimoto H., Lopes J., de Carvalho Jennings Pereira W.L., Marques Andrade R., Muliterno Pelegrino L., Donizete Borelli S., et al. Cytokine profile in relapsingremitting multiple sclerosis patients and the association between progression and activity of the disease. Mol. Med. Rep. 2013;7:1010–1020. doi: 10.3892/mmr.2013.1256.
    1. Khaibullin T., Ivanova V., Martynova E., Cherepnev G., Khabirov F., Granatov E., Rizvanov A., Khaiboullina S. Elevated Levels of Proinflammatory Cytokines in Cerebrospinal Fluid of Multiple Sclerosis Patients. Front. Immunol. 2017;8:531. doi: 10.3389/fimmu.2017.00531.
    1. Trentini A., Comabella M., Tintore M., Koel-Simmelink M.J., Killestein J., Roos B., Rovira A., Korth C., Ottis P., Blankenstein M.A., et al. N-acetylaspartate and neurofilaments as biomarkers of axonal damage in patients with progressive forms of multiple sclerosis. J. Neurol. 2014;261:2338–2343. doi: 10.1007/s00415-014-7507-4.
    1. Khalil M., Enzinger C., Langkammer C., Ropele S., Mader A., Trentini A., Vane M.L., Wallner-Blazek M., Bachmaier G., Archelos J.J., et al. CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome. Mult. Scler. 2013;19:436–442. doi: 10.1177/1352458512458010.
    1. Bridel C., van Wieringen W.N., Zetterberg H., Tijms B.M., Teunissen C.E., Alvarez-Cermeno J.C., Andreasson U., Axelsson M., Backstrom D.C., Bartos A., et al. Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis. JAMA Neurol. 2019 doi: 10.1001/jamaneurol.2019.1534.
    1. Hamedani S.Y., Taheri M., Sajjadi E., Omrani M.D., Mazdeh M., Arsang-Jang S., Panah A.S., Sayad A. Up regulation of MMP9 gene expression in female patients with multiple sclerosis. Hum. Antibodies. 2016;24:59–64. doi: 10.3233/HAB-160292.
    1. Gold S.M., Sasidhar M.V., Morales L.B., Du S., Sicotte N.L., Tiwari-Woodruff S.K., Voskuhl R.R. Estrogen treatment decreases matrix metalloproteinase (MMP)-9 in autoimmune demyelinating disease through estrogen receptor alpha (ERalpha) Lab. Invest. 2009;89:1076–1083. doi: 10.1038/labinvest.2009.79.
    1. Castellazzi M., Ligi D., Contaldi E., Quartana D., Fonderico M., Borgatti L., Bellini T., Trentini A., Granieri E., Fainardi E., et al. Multiplex Matrix Metalloproteinases Analysis in the Cerebrospinal Fluid Reveals Potential Specific Patterns in Multiple Sclerosis Patients. Front. Neurol. 2018;9:1080. doi: 10.3389/fneur.2018.01080.
    1. Powell B.S., Dhaher Y.Y., Szleifer I.G. Review of the Multiscale Effects of Female Sex Hormones on Matrix Metalloproteinase-Mediated Collagen Degradation. Crit. Rev. Biomed. Eng. 2015;43:401–428. doi: 10.1615/CritRevBiomedEng.2016016590.
    1. Ramien C., Taenzer A., Lupu A., Heckmann N., Engler J.B., Patas K., Friese M.A., Gold S.M. Sex effects on inflammatory and neurodegenerative processes in multiple sclerosis. Neurosci. Biobehav. Rev. 2016;67:137–146. doi: 10.1016/j.neubiorev.2015.12.015.
    1. Kovats S. Estrogen receptors regulate innate immune cells and signalling pathways. Cell Immunol. 2015;294:63–69. doi: 10.1016/j.cellimm.2015.01.018.
    1. Lai J.J., Lai K.P., Zeng W., Chuang K.H., Altuwaijri S., Chang C. Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: Lessons from conditional AR knockout mice. Am. J. Pathol. 2012;181:1504–1512. doi: 10.1016/j.ajpath.2012.07.008.
    1. Soldan S.S., Alvarez Retuerto A.I., Sicotte N.L., Voskuhl R.R. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J. Immunol. 2003;171:6267–6274. doi: 10.4049/jimmunol.171.11.6267.
    1. Pelfrey C.M., Cotleur A.C., Lee J.C., Rudick R.A. Sex differences in cytokine responses to myelin peptides in multiple sclerosis. J. Neuroimmunol. 2002;130:211–223. doi: 10.1016/S0165-5728(02)00224-2.
    1. Eikelenboom M.J., Killestein J., Uitdehaag B.M., Polman C.H. Sex differences in proinflammatory cytokine profiles of progressive patients in multiple sclerosis. Mult. Scler. 2005;11:520–523. doi: 10.1191/1352458505ms1195oa.
    1. Nguyen L.T., Ramanathan M., Weinstock-Guttman B., Baier M., Brownscheidle C., Jacobs L.D. Sex differences in in vitro pro-inflammatory cytokine production from peripheral blood of multiple sclerosis patients. J. Neurol. Sci. 2003;209:93–99. doi: 10.1016/S0022-510X(03)00004-2.
    1. Eikelenboom M.J., Killestein J., Kragt J.J., Uitdehaag B.M., Polman C.H. Gender differences in multiple sclerosis: Cytokines and vitamin D. J. Neurol. Sci. 2009;286:40–42. doi: 10.1016/j.jns.2009.06.025.
    1. Lin Y.S., Lee W.J., Wang S.J., Fuh J.L. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Sci. Rep. 2018;8:17368. doi: 10.1038/s41598-018-35766-w.
    1. Pawlitzki M., Schreiber S., Bittner D., Kreipe J., Leypoldt F., Rupprecht K., Carare R.O., Meuth S.G., Vielhaber S., Kortvelyessy P. CSF Neurofilament Light Chain Levels in Primary Progressive MS: Signs of Axonal Neurodegeneration. Front. Neurol. 2018;9:1037. doi: 10.3389/fneur.2018.01037.
    1. Kuhle J., Kropshofer H., Haering D.A., Kundu U., Meinert R., Barro C., Dahlke F., Tomic D., Leppert D., Kappos L. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology. 2019;92:e1007–e1015. doi: 10.1212/WNL.0000000000007032.
    1. Bergman J., Dring A., Zetterberg H., Blennow K., Norgren N., Gilthorpe J., Bergenheim T., Svenningsson A. Neurofilament light in CSF and serum is a sensitive marker for axonal white matter injury in MS. Neurol. Neuroimmunol. Neuroinflamm. 2016;3:e271. doi: 10.1212/NXI.0000000000000271.
    1. Gemmati D., Zeri G., Orioli E., De Gaetano F.E., Salvi F., Bartolomei I., D’Alfonso S., Dall’osso C., Leone M.A., Singh A.V., et al. Polymorphisms in the genes coding for iron binding and transporting proteins are associated with disability, severity, and early progression in multiple sclerosis. BMC Med. Genet. 2012;13:70. doi: 10.1186/1471-2350-13-70.
    1. Sheykhansari S., Kozielski K., Bill J., Sitti M., Gemmati D., Zamboni P., Singh A.V. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: A review. Cell Death Dis. 2018;9:348. doi: 10.1038/s41419-018-0379-2.
    1. Ziliotto N., Marchetti G., Scapoli C., Bovolenta M., Meneghetti S., Benazzo A., Lunghi B., Balestra D., Laino L.A., Bozzini N., et al. C6orf10 Low-Frequency and Rare Variants in Italian Multiple Sclerosis Patients. Front. Genet. 2019;10:573. doi: 10.3389/fgene.2019.00573.
    1. Ferlini A., Bovolenta M., Neri M., Gualandi F., Balboni A., Yuryev A., Salvi F., Gemmati D., Liboni A., Zamboni P. Custom CGH array profiling of copy number variations (CNVs) on chromosome 6p21.32 (HLA locus) in patients with venous malformations associated with multiple sclerosis. BMC Med. Genet. 2010;11:64. doi: 10.1186/1471-2350-11-64.
    1. Paraboschi E.M., Solda G., Gemmati D., Orioli E., Zeri G., Benedetti M.D., Salviati A., Barizzone N., Leone M., Duga S., et al. Genetic association and altered gene expression of mir-155 in multiple sclerosis patients. Int. J. Mol. Sci. 2011;12:8695–8712. doi: 10.3390/ijms12128695.
    1. Paraboschi E.M., Rimoldi V., Solda G., Tabaglio T., Dall’Osso C., Saba E., Vigliano M., Salviati A., Leone M., Benedetti M.D., et al. Functional variations modulating PRKCA expression and alternative splicing predispose to multiple sclerosis. Hum. Mol. Genet. 2014;23:6746–6761. doi: 10.1093/hmg/ddu392.
    1. Paraboschi E.M., Cardamone G., Rimoldi V., Gemmati D., Spreafico M., Duga S., Solda G., Asselta R. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes. Int. J. Mol. Sci. 2015;16:23463–23481. doi: 10.3390/ijms161023463.
    1. [(accessed on 8 December 2019)]; Available online:
    1. Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 2013;9:63–75. doi: 10.1016/j.jalz.2012.11.007.
    1. Van Cauwenberghe C., Van Broeckhoven C., Sleegers K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet. Med. 2016;18:421–430. doi: 10.1038/gim.2015.117.
    1. Wang Y., Du Y., Li J., Qiu C. Lifespan Intellectual Factors, Genetic Susceptibility, and Cognitive Phenotypes in Aging: Implications for Interventions. Front. Aging Neurosci. 2019;11:129. doi: 10.3389/fnagi.2019.00129.
    1. Podcasy J.L., Epperson C.N. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin. Neurosci. 2016;18:437–446.
    1. Mielke M.M. Sex and Gender Differences in Alzheimer’s Disease Dementia. Psychiatr. Times. 2018;35:14–17.
    1. Laws K.R., Irvine K., Gale T.M. Sex differences in Alzheimer’s disease. Curr. Opin. Psychiatry. 2018;31:133–139. doi: 10.1097/YCO.0000000000000401.
    1. Wolters F.J., Ikram M.A. Epidemiology of Vascular Dementia. Arterioscler. Thromb. Vasc. Biol. 2019;39:1542–1549. doi: 10.1161/ATVBAHA.119.311908.
    1. Robison L.S., Gannon O.J., Salinero A.E., Zuloaga K.L. Contributions of sex to cerebrovascular function and pathology. Brain Res. 2019;1710:43–60. doi: 10.1016/j.brainres.2018.12.030.
    1. Eid A., Mhatre I., Richardson J.R. Gene-environment interactions in Alzheimer’s disease: A potential path to precision medicine. Pharmacol. Ther. 2019;199:173–187. doi: 10.1016/j.pharmthera.2019.03.005.
    1. Belloy M.E., Napolioni V., Greicius M.D. A Quarter Century of APOE and Alzheimer’s Disease: Progress to Date and the Path Forward. Neuron. 2019;101:820–838. doi: 10.1016/j.neuron.2019.01.056.
    1. Rasmussen K.L., Tybjaerg-Hansen A., Nordestgaard B.G., Frikke-Schmidt R. Absolute 10-year risk of dementia by age, sex and APOE genotype: A population-based cohort study. CMAJ. 2018;190:E1033–E1041. doi: 10.1503/cmaj.180066.
    1. Hansen D., Ling H., Lashley T., Holton J.L., Warner T.T. Review: Clinical, neuropathological and genetic features of Lewy body dementias. Neuropathol. Appl. Neurobiol. 2019 doi: 10.1111/nan.12554.
    1. Pang S., Li J., Zhang Y., Chen J. Meta-Analysis of the Relationship between the APOE Gene and the Onset of Parkinson’s Disease Dementia. Parkinsons Dis. 2018;2018:9497147. doi: 10.1155/2018/9497147.
    1. Reinvang I., Espeseth T., Westlye L.T. APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer’s disease. Neurosci. Biobehav. Rev. 2013;37:1322–1335. doi: 10.1016/j.neubiorev.2013.05.006.
    1. Farrer L.A., Cupples L.A., Haines J.L., Hyman B., Kukull W.A., Mayeux R., Myers R.H., Pericak-Vance M.A., Risch N., van Duijn C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278:1349–1356. doi: 10.1001/jama.1997.03550160069041.
    1. Beydoun M.A., Boueiz A., Abougergi M.S., Kitner-Triolo M.H., Beydoun H.A., Resnick S.M., O’Brien R., Zonderman A.B. Sex differences in the association of the apolipoprotein E epsilon 4 allele with incidence of dementia, cognitive impairment, and decline. Neurobiol. Aging. 2012;33:720–731. doi: 10.1016/j.neurobiolaging.2010.05.017.
    1. Janicki S.C., Park N., Cheng R., Clark L.N., Lee J.H., Schupf N. Estrogen receptor alpha variants affect age at onset of Alzheimer’s disease in a multiethnic female cohort. Dement. Geriatr. Cogn. Disord. 2014;38:200–213. doi: 10.1159/000355559.
    1. Tisato V., Zuliani G., Vigliano M., Longo G., Franchini E., Secchiero P., Zauli G., Paraboschi E.M., Vikram Singh A., Serino M.L., et al. Gene-gene interactions among coding genes of iron-homeostasis proteins and APOE-alleles in cognitive impairment diseases. PLoS ONE. 2018;13:e0193867. doi: 10.1371/journal.pone.0193867.
    1. Peters D.G., Connor J.R., Meadowcroft M.D. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: Two sides of the same coin. Neurobiol. Dis. 2015;81:49–65. doi: 10.1016/j.nbd.2015.08.007.
    1. Hardy J.A., Higgins G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science. 1992;256:184–185. doi: 10.1126/science.1566067.
    1. Tanzi R.E., Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell. 2005;120:545–555. doi: 10.1016/j.cell.2005.02.008.
    1. Bush A.I., Tanzi R.E. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics. 2008;5:421–432. doi: 10.1016/j.nurt.2008.05.001.
    1. Ali-Rahmani F., Schengrund C.L., Connor J.R. HFE gene variants, iron, and lipids: A novel connection in Alzheimer’s disease. Front. Pharmacol. 2014;5:165. doi: 10.3389/fphar.2014.00165.
    1. Riedel B.C., Thompson P.M., Brinton R.D. Age, APOE and sex: Triad of risk of Alzheimer’s disease. J. Steroid Biochem. Mol. Biol. 2016;160:134–147. doi: 10.1016/j.jsbmb.2016.03.012.
    1. Burger H.G., Dudley E.C., Robertson D.M., Dennerstein L. Hormonal changes in the menopause transition. Recent Prog. Horm. Res. 2002;57:257–275. doi: 10.1210/rp.57.1.257.
    1. Li R., Cui J., Shen Y. Brain sex matters: Estrogen in cognition and Alzheimer’s disease. Mol. Cell. Endocrinol. 2014;389:13–21. doi: 10.1016/j.mce.2013.12.018.
    1. Toro C.A., Zhang L., Cao J., Cai D. Sex differences in Alzheimer’s disease: Understanding the molecular impact. Brain Res. 2019;1719:194–207. doi: 10.1016/j.brainres.2019.05.031.
    1. Webers A., Heneka M.T., Gleeson P.A. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol. Cell Biol. 2019 doi: 10.1111/imcb.12301.
    1. Cervellati C., Wood P.L., Romani A., Valacchi G., Squerzanti M., Sanz J.M., Ortolani B., Zuliani G. Oxidative challenge in Alzheimer’s disease: State of knowledge and future needs. J. Investig. Med. 2016;64:21–32. doi: 10.1136/jim-2015-000017.
    1. Cervellati C., Valacchi G., Tisato V., Zuliani G., Marsillach J. Evaluating the link between Paraoxonase-1 levels and Alzheimer’s disease development. Minerva Med. 2019;110:238–250. doi: 10.23736/S0026-4806.18.05875-5.
    1. Brombo G., Bonetti F., Ortolani B., Morieri M.L., Bosi C., Passaro A., Vigna G.B., Borgna C., Arcidicono M.V., Tisato V., et al. Lower Plasma Klotho Concentrations Are Associated with Vascular Dementia but Not Late-Onset Alzheimer’s Disease. Gerontology. 2018;64:414–421. doi: 10.1159/000488318.
    1. Tisato V., Rimondi E., Brombo G., Volpato S., Zurlo A., Zauli G., Secchiero P., Zuliani G. Serum Soluble Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Levels in Older Subjects with Dementia and Mild Cognitive Impairment. Dement. Geriatr. Cogn. Disord. 2016;41:273–280. doi: 10.1159/000446275.
    1. Bundy J.L., Vied C., Badger C., Nowakowski R.S. Sex-biased hippocampal pathology in the 5XFAD mouse model of Alzheimer’s disease: A multi-omic analysis. J. Comp. Neurol. 2019;527:462–475. doi: 10.1002/cne.24551.
    1. Strafella C., Caputo V., Galota M.R., Zampatti S., Marella G., Mauriello S., Cascella R., Giardina E. Application of Precision Medicine in Neurodegenerative Diseases. Front. Neurol. 2018;9:701. doi: 10.3389/fneur.2018.00701.
    1. Hosp F., Mann M. A Primer on Concepts and Applications of Proteomics in Neuroscience. Neuron. 2017;96:558–571. doi: 10.1016/j.neuron.2017.09.025.
    1. Avramouli A., Vlamos P.M. Integrating Omic Technologies in Alzheimer’s Disease. Adv. Exp. Med. Biol. 2017;987:177–184. doi: 10.1007/978-3-319-57379-3_16.
    1. Bundy J.L., Vied C., Nowakowski R.S. Sex differences in the molecular signature of the developing mouse hippocampus. BMC Genom. 2017;18:237. doi: 10.1186/s12864-017-3608-7.
    1. Zaidi M., Yuen T., Sun L., Rosen C.J. Regulation of Skeletal Homeostasis. Endocr. Rev. 2018;39:701–718. doi: 10.1210/er.2018-00050.
    1. Siddiqui J.A., Partridge N.C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology. 2016;31:233–245. doi: 10.1152/physiol.00061.2014.
    1. Kenkre J.S., Bassett J. The bone remodelling cycle. Ann. Clin. Biochem. 2018;55:308–327. doi: 10.1177/0004563218759371.
    1. Feng X., McDonald J.M. Disorders of bone remodeling. Annu. Rev. Pathol. 2011;6:121–145. doi: 10.1146/annurev-pathol-011110-130203.
    1. Stapleton M., Sawamoto K., Almeciga-Diaz C.J., Mackenzie W.G., Mason R.W., Orii T., Tomatsu S. Development of Bone Targeting Drugs. Int. J. Mol. Sci. 2017;18:1345. doi: 10.3390/ijms18071345.
    1. Loeffler J., Duda G.N., Sass F.A., Dienelt A. The Metabolic Microenvironment Steers Bone Tissue Regeneration. Trends Endocrinol. Metab. 2018;29:99–110. doi: 10.1016/j.tem.2017.11.008.
    1. Kassem M., Bianco P. Skeletal stem cells in space and time. Cell. 2015;160:17–19. doi: 10.1016/j.cell.2014.12.034.
    1. Tsai T.L., Li W.J. Identification of Bone Marrow-Derived Soluble Factors Regulating Human Mesenchymal Stem Cells for Bone Regeneration. Stem Cell Rep. 2017;8:387–400. doi: 10.1016/j.stemcr.2017.01.004.
    1. Han Y., You X., Xing W., Zhang Z., Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16. doi: 10.1038/s41413-018-0019-6.
    1. Szulc P. Bone turnover: Biology and assessment tools. Best Pract. Res. Clin. Endocrinol. Metab. 2018;32:725–738. doi: 10.1016/j.beem.2018.05.003.
    1. Lopes D., Martins-Cruz C., Oliveira M.B., Mano J.F. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018;185:240–275. doi: 10.1016/j.biomaterials.2018.09.028.
    1. Yellowley C.E., Genetos D.C. Hypoxia Signalling in the Skeleton: Implications for Bone Health. Curr. Osteoporos. Rep. 2019;17:26–35. doi: 10.1007/s11914-019-00500-6.
    1. Spyropoulou A., Karamesinis K., Basdra E.K. Mechanotransduction pathways in bone pathobiology. Biochim. Biophys. Acta. 2015;1852:1700–1708. doi: 10.1016/j.bbadis.2015.05.010.
    1. Compston J.E., McClung M.R., Leslie W.D. Osteoporosis. Lancet. 2019;393:364–376. doi: 10.1016/S0140-6736(18)32112-3.
    1. Fuggle N.R., Curtis E.M., Ward K.A., Harvey N.C., Dennison E.M., Cooper C. Fracture prediction, imaging and screening in osteoporosis. Nat. Rev. Endocrinol. 2019;15:535–547. doi: 10.1038/s41574-019-0220-8.
    1. Richards J.B., Zheng H.F., Spector T.D. Genetics of osteoporosis from genome-wide association studies: Advances and challenges. Nat. Rev. Genet. 2012;13:576–588. doi: 10.1038/nrg3228.
    1. Sobacchi C., Schulz A., Coxon F.P., Villa A., Helfrich M.H. Osteopetrosis: Genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 2013;9:522–536. doi: 10.1038/nrendo.2013.137.
    1. Alonso N., Calero-Paniagua I., Del Pino-Montes J. Clinical and Genetic Advances in Paget’s Disease of Bone: A Review. Clin. Rev. Bone Miner. Metab. 2017;15:37–48. doi: 10.1007/s12018-016-9226-0.
    1. Lee W.C., Guntur A.R., Long F., Rosen C.J. Energy Metabolism of the Osteoblast: Implications for Osteoporosis. Endocr. Rev. 2017;38:255–266. doi: 10.1210/er.2017-00064.
    1. Raterman H.G., Bultink I.E.M., Lems W.F. Current Treatments and New Developments in the Management of Glucocorticoid-induced Osteoporosis. Drugs. 2019;79:1065–1087. doi: 10.1007/s40265-019-01145-6.
    1. Adler R.A. Update on osteoporosis in men. Best Pract. Res. Clin. Endocrinol. Metab. 2018;32:759–772. doi: 10.1016/j.beem.2018.05.007.
    1. Zuo H., Wan Y. Nuclear Receptors in Skeletal Homeostasis. Curr. Top. Dev. Biol. 2017;125:71–107. doi: 10.1016/bs.ctdb.2017.01.002.
    1. Khosla S., Monroe D.G. Regulation of Bone Metabolism by Sex Steroids. Cold Spring Harb. Perspect. Med. 2018;8 doi: 10.1101/cshperspect.a031211.
    1. Yakar S., Werner H., Rosen C.J. Insulin-like growth factors: Actions on the skeleton. J. Mol. Endocrinol. 2018;61:T115–T137. doi: 10.1530/JME-17-0298.
    1. Locatelli V., Bianchi V.E. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis. Int. J. Endocrinol. 2014;2014:235060. doi: 10.1155/2014/235060.
    1. Ukon Y., Makino T., Kodama J., Tsukazaki H., Tateiwa D., Yoshikawa H., Kaito T. Molecular-Based Treatment Strategies for Osteoporosis: A Literature Review. Int. J. Mol. Sci. 2019;20:2557. doi: 10.3390/ijms20102557.
    1. Van Caenegem E., Taes Y., Wierckx K., Vandewalle S., Toye K., Kaufman J.M., Schreiner T., Haraldsen I., T’Sjoen G. Low bone mass is prevalent in male-to-female transsexual persons before the start of cross-sex hormonal therapy and gonadectomy. Bone. 2013;54:92–97. doi: 10.1016/j.bone.2013.01.039.
    1. Van Caenegem E., Wierckx K., Taes Y., Dedecker D., Van de Peer F., Toye K., Kaufman J.M., T’Sjoen G. Bone mass, bone geometry, and body composition in female-to-male transsexual persons after long-term cross-sex hormonal therapy. J. Clin. Endocrinol. Metab. 2012;97:2503–2511. doi: 10.1210/jc.2012-1187.
    1. Reppe S., Datta H.K., Gautvik K.M. Omics analysis of human bone to identify genes and molecular networks regulating skeletal remodeling in health and disease. Bone. 2017;101:88–95. doi: 10.1016/j.bone.2017.04.012.
    1. Lv H., Jiang F., Guan D., Lu C., Guo B., Chan C., Peng S., Liu B., Guo W., Zhu H., et al. Metabolomics and Its Application in the Development of Discovering Biomarkers for Osteoporosis Research. Int. J. Mol. Sci. 2016;17:2018. doi: 10.3390/ijms17122018.
    1. Bjornerem A., Wang X., Bui M., Ghasem-Zadeh A., Hopper J.L., Zebaze R., Seeman E. Menopause-Related Appendicular Bone Loss is Mainly Cortical and Results in Increased Cortical Porosity. J. Bone Miner. Res. 2018;33:598–605. doi: 10.1002/jbmr.3333.
    1. Almeida M., Laurent M.R., Dubois V., Claessens F., O’Brien C.A., Bouillon R., Vanderschueren D., Manolagas S.C. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol. Rev. 2017;97:135–187. doi: 10.1152/physrev.00033.2015.
    1. Manolagas S.C., O’Brien C.A., Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat. Rev. Endocrinol. 2013;9:699–712. doi: 10.1038/nrendo.2013.179.
    1. Vignozzi L., Malavolta N., Villa P., Mangili G., Migliaccio S., Lello S. Consensus statement on the use of HRT in postmenopausal women in the management of osteoporosis by SIE, SIOMMMS and SIGO. J. Endocrinol. Invest. 2019;42:609–618. doi: 10.1007/s40618-018-0978-x.
    1. Vanderschueren D., Laurent M.R., Claessens F., Gielen E., Lagerquist M.K., Vandenput L., Borjesson A.E., Ohlsson C. Sex steroid actions in male bone. Endocr. Rev. 2014;35:906–960. doi: 10.1210/er.2014-1024.
    1. Levin V.A., Jiang X., Kagan R. Estrogen therapy for osteoporosis in the modern era. Osteoporos. Int. 2018;29:1049–1055. doi: 10.1007/s00198-018-4414-z.
    1. Jin J. Hormone Therapy for Primary Prevention of Chronic Conditions in Postmenopausal Women. JAMA. 2017;318:2265. doi: 10.1001/jama.2017.18440.
    1. Ramchand S.K., Seeman E. Advances and Unmet Needs in the Therapeutics of Bone Fragility. Front. Endocrinol. 2018;9:505. doi: 10.3389/fendo.2018.00505.
    1. Gurney E.P., Nachtigall M.J., Nachtigall L.E., Naftolin F. The Women’s Health Initiative trial and related studies: 10 years later: A clinician’s view. J. Steroid Biochem. Mol. Biol. 2014;142:4–11. doi: 10.1016/j.jsbmb.2013.10.009.
    1. Mikkola T.S., Tuomikoski P., Lyytinen H., Korhonen P., Hoti F., Vattulainen P., Gissler M., Ylikorkala O. Estradiol-based postmenopausal hormone therapy and risk of cardiovascular and all-cause mortality. Menopause. 2015;22:976–983. doi: 10.1097/GME.0000000000000450.
    1. Barrett-Connor E. Hormones and heart disease in women: The timing hypothesis. Am. J. Epidemiol. 2007;166:506–510. doi: 10.1093/aje/kwm214.
    1. Gambacciani M., Cagnacci A., Lello S. Hormone replacement therapy and prevention of chronic conditions. Climacteric. 2019;22:303–306. doi: 10.1080/13697137.2018.1551347.
    1. Davis S.R., Baber R., Panay N., Bitzer J., Perez S.C., Islam R.M., Kaunitz A.M., Kingsberg S.A., Lambrinoudaki I., Liu J., et al. Global Consensus Position Statement on the Use of Testosterone Therapy for Women. J. Clin. Endocrinol. Metab. 2019;104:4660–4666. doi: 10.1210/jc.2019-01603.
    1. Collaborative Group on Hormonal Factors in Breast Cancer Type and timing of menopausal hormone therapy and breast cancer risk: Individual participant meta-analysis of the worldwide epidemiological evidence. Lancet. 2019;394:1159–1168. doi: 10.1016/S0140-6736(19)31709-X.
    1. Baber R.J., Panay N., Fenton A., A. Fenton the IMS Writing Group 2016 IMS Recommendations on women’s midlife health and menopause hormone therapy. Climacteric. 2016;19:109–150. doi: 10.3109/13697137.2015.1129166.
    1. Jared D. Guns, Germs, and Steel: The Fates of Human Societies. Volume 14 W. W. Norton & Company; New York, NY, USA: 1997.
    1. Kay G.L., Sergeant M.J., Giuffra V., Bandiera P., Milanese M., Bramanti B., Bianucci R., Pallen M.J. Recovery of a medieval Brucella melitensis genome using shotgun metagenomics. MBio. 2014;5:e01337-14. doi: 10.1128/mBio.01337-14.
    1. Guellil M., Kersten O., Namouchi A., Bauer E.L., Derrick M., Jensen A.Ø., Stenseth N.C., Bramanti B. Genomic blueprint of a relapsing fever pathogen in 15th century Scandinavia. Proc. Natl. Acad. Sci. USA. 2018;115:10422–10427. doi: 10.1073/pnas.1807266115.
    1. Rascovan N., Sjögren K.-G., Kristiansen K., Nielsen R., Willerslev E., Desnues C., Rasmussen S. Emergence and spread of basal lineages of Yersinia pestis during the Neolithic decline. Cell. 2019;176:295–305. doi: 10.1016/j.cell.2018.11.005.
    1. Hall M.D., Mideo N. Linking sex differences to the evolution of infectious disease life-histories. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:20170431. doi: 10.1098/rstb.2017.0431.
    1. Bramanti B., Hummel S., Chiarelli A.B., Herrmann B. Ancient DNA analysis of the delta F508 mutation. Hum. Biol. 2003;75:105–115. doi: 10.1353/hub.2003.0017.
    1. Hughes J.F., Page D.C. The biology and evolution of mammalian Y chromosomes. Annu. Rev. Genet. 2015;49:507–527. doi: 10.1146/annurev-genet-112414-055311.
    1. Washburn T.C., Medearis D.N., Childs B. Sex differences in susceptibility to infections. Pediatrics. 1965;35:57–64.
    1. World Health Organization . Addressing Sex and Gender in Epidemic-Prone Infectious Diseases. World Health Organization; Geneva, Switzerland: 2007.
    1. Bramanti B., Dean K.R., Walløe L., Chr. Stenseth N. The Third Plague Pandemic in Europe. Proc. R. Soc. B. 2019;286:20182429. doi: 10.1098/rspb.2018.2429.
    1. Pandey A., Sengupta P.G., Mondal S.K., Gupta D.N., Manna B., Ghosh S., Sur D., Bhattacharya S.K. Gender differences in healthcare-seeking during common illnesses in a rural community of West Bengal, India. J. Health Popul. Nutr. 2002;20:306–311.
    1. Mitra A.K., Rahman M.M., Fuchs G.J. Risk factors and gender differentials for death among children hospitalized with diarrhoea in Bangladesh. J. Health Popul. Nutr. 2000;18:151–156.
    1. Markle J.G., Fish E.N. SeXX matters in immunity. Trends Immunol. 2014;35:97–104. doi: 10.1016/j.it.2013.10.006.
    1. Reardon S. Infections reveal inequality between the sexes. Nat. News. 2016;534:447. doi: 10.1038/534447a.
    1. Fish E.N. The X-files in immunity: Sex-based differences predispose immune responses. Nat. Rev. Immunol. 2008;8:737. doi: 10.1038/nri2394.
    1. Vom Steeg L.G., Klein S.L. SeXX matters in infectious disease pathogenesis. PLoS Pathog. 2016;12:e1005374. doi: 10.1371/journal.ppat.1005374.
    1. Klein S.L. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. Bioessays. 2012;34:1050–1059. doi: 10.1002/bies.201200099.
    1. Úbeda F., Jansen V.A.A. The evolution of sex-specific virulence in infectious diseases. Nat. Commun. 2016;7:13849. doi: 10.1038/ncomms13849.
    1. Klein S.L., Marriott I., Fish E.N. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 2015;109:9–15. doi: 10.1093/trstmh/tru167.
    1. Marriott I., Huet-Hudson Y.M. Sexual dimorphism in innate immune responses to infectious organisms. Immunol. Res. 2006;34:177–192. doi: 10.1385/IR:34:3:177.
    1. Schurz H., Salie M., Tromp G., Hoal E.G., Kinnear C.J., Möller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum. Genom. 2019;13:2. doi: 10.1186/s40246-018-0185-z.
    1. Jaillon S., Berthenet K., Garlanda C. Sexual Dimorphism in Innate Immunity. Clin. Rev. Allergy Immunol. 2019;56:308–321. doi: 10.1007/s12016-017-8648-x.
    1. Guerra-Silveira F., Abad-Franch F. Sex bias in infectious disease epidemiology: Patterns and processes. PLoS ONE. 2013;8:e62390. doi: 10.1371/journal.pone.0062390.
    1. Klein S.L. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol. 2004;26:247–264. doi: 10.1111/j.0141-9838.2004.00710.x.
    1. Roberts C.W., Walker W., Alexander J. Sex-associated hormones and immunity to protozoan parasites. Clin. Microbiol. Rev. 2001;14:476–488. doi: 10.1128/CMR.14.3.476-488.2001.
    1. Borgdorff M.W., Veen J., Kalisvaart N.A., Nagelkerke N. Mortality among tuberculosis patients in The Netherlands in the period 1993–1995. Eur. Respir. J. 1998;11:816–820. doi: 10.1183/09031936.98.11040816.
    1. Jimenez-Corona M.-E., Garcia-Garcia L., DeRiemer K., Ferreyra-Reyes L., Bobadilla-del-Valle M., Cano-Arellano B., Canizales-Quintero S., Martinez-Gamboa A., Small P.M., Sifuentes-Osornio J. Gender differentials of pulmonary tuberculosis transmission and reactivation in an endemic area. Thorax. 2006;61:348–353. doi: 10.1136/thx.2005.049452.
    1. Zumla A., George A., Sharma V., Herbert R.H.N., Oxley A., Oliver M. The WHO 2014 global tuberculosis report—Further to go. Lancet Glob. Health. 2015;3:e10–e12. doi: 10.1016/S2214-109X(14)70361-4.
    1. Bellamy R., Beyers N., McAdam K.P.W.J., Ruwende C., Gie R., Samaai P., Bester D., Meyer M., Corrah T., Collin M. Genetic susceptibility to tuberculosis in Africans: A genome-wide scan. Proc. Natl. Acad. Sci. USA. 2000;97:8005–8009. doi: 10.1073/pnas.140201897.
    1. Bernin H., Lotter H. Sex bias in the outcome of human tropical infectious diseases: Influence of steroid hormones. J. Infect. Dis. 2014;209:S107–S113. doi: 10.1093/infdis/jit610.
    1. Pathak S., Rege M., Gogtay N.J., Aigal U., Sharma S.K., Valecha N., Bhanot G., Kshirsagar N.A., Sharma S. Age-dependent sex bias in clinical malarial disease in hypoendemic regions. PLoS ONE. 2012;7:e35592. doi: 10.1371/journal.pone.0035592.
    1. Karami M., Doudi M., Setorki M. Assessing epidemiology of cutaneous leishmaniasis in Isfahan, Iran. J. Vector Borne Dis. 2013;50:30.
    1. Marlow M.A., da Silva Mattos M., Makowiecky M.E., Eger I., Rossetto A.L., Grisard E.C., Steindel M. Divergent profile of emerging cutaneous leishmaniasis in subtropical Brazil: New endemic areas in the southern frontier. PLoS ONE. 2013;8:e56177. doi: 10.1371/journal.pone.0056177.
    1. Murback N.D.N., Hans Filho G., Nascimento R.A.F.d., Nakazato K.R.d.O., Dorval M.E.M.C. American cutaneous leishmaniasis: Clinical, epidemiological and laboratory studies conducted at a university teaching hospital in Campo Grande, Mato Grosso do Sul, Brazil. An. Bras. Dermatol. 2011;86:55–63. doi: 10.1590/S0365-05962011000100007.
    1. Sarkari B., Hatam G., Ghatee M.A. Epidemiological features of visceral leishmaniasis in Fars province, southern Iran. Iran. J. Public Health. 2012;41:94.
    1. McClelland E.E., Hobbs L.M., Rivera J., Casadevall A., Potts W.K., Smith J.M., Ory J.J. The role of host gender in the pathogenesis of Cryptococcus neoformans infections. PLoS ONE. 2013;8:e63632. doi: 10.1371/journal.pone.0063632.
    1. Aaby P., Samb B., Simondon F., Seck A.M.C., Knudsen K., Whittle H. Non-specific beneficial effect of measles immunisation: Analysis of mortality studies from developing countries. BMJ. 1995;311:481–485. doi: 10.1136/bmj.311.7003.481.
    1. Ingersoll M.A. Sex differences shape the response to infectious diseases. PLoS Pathog. 2017;13:e1006688. doi: 10.1371/journal.ppat.1006688.
    1. Harper M., Fowlis G. 3. Management of urinary tract infections in men. Trends Urol. Gynaecol. Sex. Health. 2007;12:30–35. doi: 10.1002/tre.8.
    1. Furman D., Hejblum B.P., Simon N., Jojic V., Dekker C.L., Thiébaut R., Tibshirani R.J., Davis M.M. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl. Acad. Sci. USA. 2014;111:869–874. doi: 10.1073/pnas.1321060111.
    1. Dance A. Why the sexes don’t feel pain the same way. Nature. 2019;567:448–450. doi: 10.1038/d41586-019-00895-3.
    1. Fillingim R.B., King C.D., Ribeiro-Dasilva M.C., Rahim-Williams B., Riley J.L., 3rd Sex, gender, and pain: A review of recent clinical and experimental findings. J. Pain. 2009;10:447–485. doi: 10.1016/j.jpain.2008.12.001.
    1. Bartley E.J., Fillingim R.B. Sex differences in pain: A brief review of clinical and experimental findings. Br. J. Anaesth. 2013;111:52–58. doi: 10.1093/bja/aet127.
    1. Darnall B.D., Stacey B.R., Chou R. Medical and psychological risks and consequences of long-term opioid therapy in women. Pain Med. 2012;13:1181–1211. doi: 10.1111/j.1526-4637.2012.01467.x.
    1. Christov-Moore L., Simpson E.A., Coude G., Grigaityte K., Iacoboni M., Ferrari P.F. Empathy: Gender effects in brain and behavior. Neurosci. Biobehav. Rev. 2014;46:604–627. doi: 10.1016/j.neubiorev.2014.09.001.
    1. Albert P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 2015;40:219–221. doi: 10.1503/jpn.150205.
    1. Packiasabapathy S., Sadhasivam S. Gender, genetics, and analgesia: Understanding the differences in response to pain relief. J. Pain Res. 2018;11:2729–2739. doi: 10.2147/JPR.S94650.
    1. Ray S.K., Samntaray S., Banik N.L. Future directions for using estrogen receptor agonists in the treatment of acute and chronic spinal cord injury. Neural Regen. Res. 2016;11:1418–1419. doi: 10.4103/1673-5374.191212.
    1. Bi R., Foy M.R., Thompson R.F., Baudry M. Effects of estrogen, age, and calpain on MAP kinase and NMDA receptors in female rat brain. Neurobiol. Aging. 2003;24:977–983. doi: 10.1016/S0197-4580(03)00012-5.
    1. Tang B., Ji Y., Traub R.J. Estrogen alters spinal NMDA receptor activity via a PKA signalling pathway in a visceral pain model in the rat. Pain. 2008;137:540–549. doi: 10.1016/j.pain.2007.10.017.
    1. Deng C., Gu Y.J., Zhang H., Zhang J. Estrogen affects neuropathic pain through upregulating N-methyl-D-aspartate acid receptor 1 expression in the dorsal root ganglion of rats. Neural Regen. Res. 2017;12:464–469. doi: 10.4103/1673-5374.202925.
    1. Ortiz-Renteria M., Juarez-Contreras R., Gonzalez-Ramirez R., Islas L.D., Sierra-Ramirez F., Llorente I., Simon S.A., Hiriart M., Rosenbaum T., Morales-Lazaro S.L. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain. Proc. Natl. Acad. Sci. USA. 2018;115:E1657–E1666. doi: 10.1073/pnas.1715972115.
    1. Clark J.D. Preclinical Pain Research: Can We Do Better? Anesthesiology. 2016;125:846–849. doi: 10.1097/ALN.0000000000001340.
    1. Travers A. Gender and pain is it an issue? SAJAA. 2009;15:7–10. doi: 10.1080/22201173.2009.10872580.
    1. Mazure C.M. Our evolving science: Studying the influence of sex in preclinical research. Biol. Sex Differ. 2016;7:15. doi: 10.1186/s13293-016-0068-8.
    1. Mazure C.M., Jones D.P. Twenty years and still counting: Including women as participants and studying sex and gender in biomedical research. BMC Womens Health. 2015;15:94. doi: 10.1186/s12905-015-0251-9.
    1. Sorge R.E., LaCroix-Fralish M.L., Tuttle A.H., Sotocinal S.G., Austin J.S., Ritchie J., Chanda M.L., Graham A.C., Topham L., Beggs S., et al. Spinal cord Toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J. Neurosci. 2011;31:15450–15454. doi: 10.1523/JNEUROSCI.3859-11.2011.
    1. Sorge R.E., Mapplebeck J.C., Rosen S., Beggs S., Taves S., Alexander J.K., Martin L.J., Austin J.S., Sotocinal S.G., Chen D., et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 2015;18:1081–1083. doi: 10.1038/nn.4053.
    1. Yamamotova A., Hrabak P., Hribek P., Rokyta R. Do multiple body modifications alter pain threshold? Physiol. Res. 2017;66:S493–S500.
    1. Belfer I. Pain in women. Agri. 2017;29:51–54. doi: 10.5505/agri.2017.87369.
    1. Aloisi A.M., Bachiocco V., Costantino A., Stefani R., Ceccarelli I., Bertaccini A., Meriggiola M.C. Cross-sex hormone administration changes pain in transsexual women and men. Pain. 2007;132:S60–S67. doi: 10.1016/j.pain.2007.02.006.
    1. Fisher J.A., Ronald L.M. Sex, gender, and pharmaceutical politics: From drug development to marketing. Gend. Med. 2010;7:357–370. doi: 10.1016/j.genm.2010.08.003.
    1. Doyle H.H., Eidson L.N., Sinkiewicz D.M., Murphy A.Z. Sex Differences in Microglia Activity within the Periaqueductal Gray of the Rat: A Potential Mechanism Driving the Dimorphic Effects of Morphine. J. Neurosci. 2017;37:3202–3214. doi: 10.1523/JNEUROSCI.2906-16.2017.
    1. Averitt D.L., Eidson L.N., Doyle H.H., Murphy A.Z. Neuronal and glial factors contributing to sex differences in opioid modulation of pain. Neuropsychopharmacology. 2019;44:155–165. doi: 10.1038/s41386-018-0127-4.
    1. Aubrun F., Salvi N., Coriat P., Riou B. Sex- and age-related differences in morphine requirements for postoperative pain relief. Anesthesiology. 2005;103:156–160. doi: 10.1097/00000542-200507000-00023.
    1. Els C., Jackson T.D., Kunyk D., Lappi V.G., Sonnenberg B., Hagtvedt R., Sharma S., Kolahdooz F., Straube S. Adverse events associated with medium- and long-term use of opioids for chronic non-cancer pain: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2017;10:CD012509. doi: 10.1002/14651858.CD012509.pub2.
    1. Legato M., Glezerman M. The International Society for Gender Medicine. 1st ed. Academic Press; Cambridge, MA, USA: 2017.
    1. Gianazza E., Miller I., Guerrini U., Palazzolo L., Parravicini C., Eberini I. Gender proteomics I. Which proteins in non-sexual organs. J. Proteom. 2018;178:7–17. doi: 10.1016/j.jprot.2017.10.002.
    1. Gianazza E., Miller I., Guerrini U., Palazzolo L., Parravicini C., Eberini I. Gender proteomics II. Which proteins in sexual organs. J. Proteom. 2018;178:18–30. doi: 10.1016/j.jprot.2017.10.001.
    1. Arnold A.P., Lusis A.J. Understanding the sexome: Measuring and reporting sex differences in gene systems. Endocrinology. 2012;153:2551–2555. doi: 10.1210/en.2011-2134.
    1. Arnold A.P. Promoting the understanding of sex differences to enhance equity and excellence in biomedical science. Biol. Sex Differ. 2010;1:1. doi: 10.1186/2042-6410-1-1.
    1. Arnold A.P. Sex chromosomes and brain gender. Nat. Rev. Neurosci. 2004;5:701–708. doi: 10.1038/nrn1494.
    1. Harvey R.E., Coffman K.E., Miller V.M. Women-specific factors to consider in risk, diagnosis and treatment of cardiovascular disease. Womens Health. 2015;11:239–257. doi: 10.2217/WHE.14.64.
    1. Dorak M.T., Karpuzoglu E. Gender differences in cancer susceptibility: An inadequately addressed issue. Front. Genet. 2012;3:268. doi: 10.3389/fgene.2012.00268.
    1. [(accessed on 13 December 2019)]; Available online: .
    1. Johnson P.A., Fitzgerald T., Glynn A., Salganicoff A., Wood S.F., Goldstein J.M. Precision Medicine: How Sex and Gender Drive Innovation. [(accessed on 13 December 2016)];2016 Available online: .
    1. Panagiotou G., Nielsen J. Nutritional systems biology: Definitions and approaches. Annu. Rev. Nutr. 2009;29:329–339. doi: 10.1146/annurev-nutr-080508-141138.
    1. Hamishehkar H., Ranjdoost F., Asgharian P., Mahmoodpoor A., Sanaie S. Vitamins, Are They Safe? Adv. Pharm. Bull. 2016;6:467–477. doi: 10.15171/apb.2016.061.
    1. Biesalski H.K., Tinz J. Multivitamin/mineral supplements: Rationale and safety—A systematic review. Nutrition. 2017;33:76–82. doi: 10.1016/j.nut.2016.02.013.
    1. Tisato V., Muggeo P., Lupiano T., Longo G., Serino M.L., Grassi M., Arcamone E., Secchiero P., Zauli G., Santoro N., et al. Maternal Haplotypes in DHFR Promoter and MTHFR Gene in Tuning Childhood Acute Lymphoblastic Leukemia Onset-Latency: Genetic/Epigenetic Mother/Child Dyad Study (GEMCDS) Genes. 2019;10:634. doi: 10.3390/genes10090634.

Source: PubMed

3
Tilaa