Predicting response to pembrolizumab in metastatic melanoma by a new personalization algorithm

Neta Tsur, Yuri Kogan, Evgenia Avizov-Khodak, Désirée Vaeth, Nils Vogler, Jochen Utikal, Michal Lotem, Zvia Agur, Neta Tsur, Yuri Kogan, Evgenia Avizov-Khodak, Désirée Vaeth, Nils Vogler, Jochen Utikal, Michal Lotem, Zvia Agur

Abstract

Background: At present, immune checkpoint inhibitors, such as pembrolizumab, are widely used in the therapy of advanced non-resectable melanoma, as they induce more durable responses than other available treatments. However, the overall response rate does not exceed 50% and, considering the high costs and low life expectancy of nonresponding patients, there is a need to select potential responders before therapy. Our aim was to develop a new personalization algorithm which could be beneficial in the clinical setting for predicting time to disease progression under pembrolizumab treatment.

Methods: We developed a simple mathematical model for the interactions of an advanced melanoma tumor with both the immune system and the immunotherapy drug, pembrolizumab. We implemented the model in an algorithm which, in conjunction with clinical pretreatment data, enables prediction of the personal patient response to the drug. To develop the algorithm, we retrospectively collected clinical data of 54 patients with advanced melanoma, who had been treated by pembrolizumab, and correlated personal pretreatment measurements to the mathematical model parameters. Using the algorithm together with the longitudinal tumor burden of each patient, we identified the personal mathematical models, and simulated them to predict the patient's time to progression. We validated the prediction capacity of the algorithm by the Leave-One-Out cross-validation methodology.

Results: Among the analyzed clinical parameters, the baseline tumor load, the Breslow tumor thickness, and the status of nodular melanoma were significantly correlated with the activation rate of CD8+ T cells and the net tumor growth rate. Using the measurements of these correlates to personalize the mathematical model, we predicted the time to progression of individual patients (Cohen's κ = 0.489). Comparison of the predicted and the clinical time to progression in patients progressing during the follow-up period showed moderate accuracy (R2 = 0.505).

Conclusions: Our results show for the first time that a relatively simple mathematical mechanistic model, implemented in a personalization algorithm, can be personalized by clinical data, evaluated before immunotherapy onset. The algorithm, currently yielding moderately accurate predictions of individual patients' response to pembrolizumab, can be improved by training on a larger number of patients. Algorithm validation by an independent clinical dataset will enable its use as a tool for treatment personalization.

Trial registration: ClinicalTrials.gov NCT02581228.

Keywords: Advanced melanoma; Effector CD8+ T Lymphocytes; Immune checkpoint blocker; Immunotherapy; Mathematical model; PD-1; Pembrolizumab; Personalized treatment; Prediction algorithm; T cell exhaustion.

Conflict of interest statement

ZA holds 15% shares in Optimata. Other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
A schematic representation of the model for the main interactions between the melanoma cancer, the cellular immune system, and the immune checkpoint blocker pembrolizumab. The model is based on the following assumptions: tumor cells stimulate antigen-presenting cells, APCs, depending on the tumor immunogenicity; functional APCs activate effector CD8+ T cells, which may eliminate tumor cells; tumor infiltrating lymphocytes, TILs, become exhausted, independently of the tumor cells elimination; tumor growth is determined by its net growth rate and by the rate of its destruction by Effector TILs; immunotherapy extends the activation of effector TILs, and reduces their exhaustion. Annotated ellipses represent the dynamic variables of the model, while arrows represent the interaction between them (see legends in the box)
Fig. 2
Fig. 2
Representative fitting results of patients, whose target lesions completely shrunk under treatment with pembrolizumab (a), shrunk by more than 30% from baseline size (b), increased by over 20%, relative to the nadir measurement (c), was stabilized, as determined when the conditions for disease progression, partial response, and complete response were not met (d). The ranges of the personalization parameters used for the simulation are specified in Table 3. SOD sum of diameters
Fig. 3
Fig. 3
Fitting results of the model-simulated tumor size in the patients’ cohort (N = 54), with the clinically observed tumor sizes. a Each point shows the fitted versus the clinically measured sum of diameters (SOD) of a patient, at the time an imaging assessment took place in the clinic. The observed SOD on the reference line equals to the fitted values. The personalization parameter ranges used for the simulation are specified in Table 3, and the values of the other model parameters are summarized in Table 1. Numerical analyses and simulations were performed using the ode15s Runge–Kutta ODE solver of Matlab R2016a (The Mathsworks, UK). From the initial time of the simulation (t = 0) to the time of treatment initiation (t = t1), the model in Tsur et al. [39], was simulated, and from t1 until the end of the simulation period, the model in Eq. (1) was simulated. The effect of pembrolizumab on the immune system and tumor was implemented here by the parameters apem and bpem. b Fitted versus observed SOD on a log scale. Values of 0 were excluded from the dataset for calculation of R-squared
Fig. 4
Fig. 4
Histogram of apem values, obtained from fitting of the mathematical model to the clinically observed tumor size. The initial range of apem for the fit is defined in Table 3. a Absolute values of apem. b Transformed values of lnapem
Fig. 5
Fig. 5
Patient-specific values of lnapem, as obtained from fitting the mathematical model to the data of each patient in the training set, versus the estimated values of lnapem by a Leave-One-Out cross-validation (COO CV) of the k-NN algorithm. Each point represents the parameter values of one patient and the reference line satisfies equality between the fitted and regression-derived parameter values (see “Methods” section)
Fig. 6
Fig. 6
Comparison between the sum of diameters (SOD), derived by the personalization algorithm, and the value measured from imaging assessments, at each clinically measured time point, for all patients, presented on a normal scale (a), and on a log scale (b). The reference line marks equality between the fitted and predicted SOD values. Values of 0 were excluded from the dataset for calculation of R-squared
Fig. 7
Fig. 7
Comparison between the predicted time to progression (TTP) and the measured clinical TTP, including only the cases in which disease progression was determined clinically, as well as by the personalization algorithm. Points on the reference line satisfy equality between the observed and computationally derived TTP

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30. doi: 10.3322/caac.21442.
    1. Friedman RJ, Rigel DS, Kopf AW. Early detection of malignant melanoma: the role of physician examination and self-examination of the skin. CA Cancer J Clin. 1985;35:130–151. doi: 10.3322/canjclin.35.3.130.
    1. Terushkin V, Halpern AC. Melanoma early detection. Hematol/Oncol Clin. 2009;23:481–500. doi: 10.1016/j.hoc.2009.03.001.
    1. Schadendorf D, van Akkooi AC, Berking C, Griewank KG, Gutzmer R, Hauschild A, Stang A, Roesch A, Ugurel S. Melanoma. Lancet. 2018;392:971–984. doi: 10.1016/S0140-6736(18)31559-9.
    1. Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19:5300–5309. doi: 10.1158/1078-0432.CCR-13-0143.
    1. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–264. doi: 10.1038/nrc3239.
    1. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723. doi: 10.1056/NEJMoa1003466.
    1. Wolchok JD, Neyns B, Linette G, Negrier S, Lutzky J, Thomas L, Waterfield W, Schadendorf D, Smylie M, Guthrie T. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010;11:155–164. doi: 10.1016/S1470-2045(09)70334-1.
    1. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–2532. doi: 10.1056/NEJMoa1503093.
    1. Schachter J, Ribas A, Long GV, Arance A, Grob J-J, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006) Lancet. 2017;390:1853–1862. doi: 10.1016/S0140-6736(17)31601-X.
    1. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34. doi: 10.1056/NEJMoa1504030.
    1. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377:1345–1356. doi: 10.1056/NEJMoa1709684.
    1. Robert C, Ribas A, Hamid O, Daud A, Wolchok JD, Joshua AM, Hwu W-J, Weber JS, Gangadhar TC, Joseph RW. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J Clin Oncol. 2017;36(17):1668–1674. doi: 10.1200/JCO.2017.75.6270.
    1. Wang Q, Gao J, Wu X. Pseudoprogression and hyperprogression after checkpoint blockade. Int Immunopharmacol. 2018;58:125–135. doi: 10.1016/j.intimp.2018.03.018.
    1. Fusi A, Festino L, Botti G, Masucci G, Melero I, Lorigan P, Ascierto PA. PD-L1 expression as a potential predictive biomarker. Lancet Oncol. 2015;16:1285–1287. doi: 10.1016/S1470-2045(15)00307-1.
    1. Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 2015;23:32–38. doi: 10.1016/j.coph.2015.05.011.
    1. Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, Simeone E, Mangana J, Schilling B, Di Giacomo A-M. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res. 2016;22(22):5487–5496. doi: 10.1158/1078-0432.CCR-16-0127.
    1. Nosrati A, Tsai KK, Goldinger SM, Tumeh P, Grimes B, Loo K, Algazi AP, Nguyen-Kim TDL, Levesque M, Dummer R. Evaluation of clinicopathological factors in PD-1 response: derivation and validation of a prediction scale for response to PD-1 monotherapy. Br J Cancer. 2017;116:1141. doi: 10.1038/bjc.2017.70.
    1. Dronca RS, Liu X, Harrington SM, Chen L, Cao S, Kottschade LA, McWilliams RR, Block MS, Nevala WK, Thompson MA. T cell Bim levels reflect responses to anti-PD-1 cancer therapy. JCI Insight. 2016;1:e86014. doi: 10.1172/jci.insight.86014.
    1. Chen P-L, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6:827–837. doi: 10.1158/-15-1545.
    1. Jacquelot N, Roberti M, Enot D, Rusakiewicz S, Ternès N, Jegou S, Woods D, Sodré A, Hansen M, Meirow Y. Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat Commun. 2017;8:592. doi: 10.1038/s41467-017-00608-2.
    1. Agur Z, Halevi-Tobias K, Kogan Y, Shlagman O. Employing dynamical computational models for personalizing cancer immunotherapy. Expert Opin Biol Ther. 2016;16:1373–1385. doi: 10.1080/14712598.2016.1223622.
    1. Kogan Y, Halevi-Tobias K, Elishmereni M, Vuk-Pavlović S, Agur Z. Reconsidering the paradigm of cancer immunotherapy by computationally aided real-time personalization. Cancer Res. 2012;72:2218–2227. doi: 10.1158/0008-5472.CAN-11-4166.
    1. Elishmereni M, Kheifetz Y, Shukrun I, Bevan GH, Nandy D, McKenzie KM, Kohli M, Agur Z. Predicting time to castration resistance in hormone sensitive prostate cancer by a personalization algorithm based on a mechanistic model integrating patient data. Prostate. 2016;76:48–57. doi: 10.1002/pros.23099.
    1. Agur Z, Vuk-Pavlovic S. Mathematical modeling in immunotherapy of cancer: personalizing clinical trials. Mol Ther. 2012;20:1–2. doi: 10.1038/mt.2011.272.
    1. Agur Z, Vuk-Pavlovic S. Personalizing immunotherapy: balancing predictability and precision. Oncoimmunology. 2012;1:1169–1171. doi: 10.4161/onci.20955.
    1. Barrio MM, Abes R, Colombo M, Pizzurro G, Boix C, Roberti MP, Gelize E, Rodriguez-Zubieta M, Mordoh J, Teillaud J-L. Human macrophages and dendritic cells can equally present MART-1 antigen to CD8+ T cells after phagocytosis of gamma-irradiated melanoma cells. PLoS ONE. 2012;7:e40311. doi: 10.1371/journal.pone.0040311.
    1. Von Euw EM, Barrio MM, Furman D, Bianchini M, Levy EM, Yee C, Li Y, Wainstok R, Mordoh J. Monocyte-derived dendritic cells loaded with a mixture of apoptotic/necrotic melanoma cells efficiently cross-present gp100 and MART-1 antigens to specific CD8+ T lymphocytes. J Transl Med. 2007;5:19. doi: 10.1186/1479-5876-5-19.
    1. Lee T-H, Cho Y-H, Lee M-G. Larger numbers of immature dendritic cells augment an anti-tumor effect against established murine melanoma cells. Biotechnol Lett. 2007;29:351–357. doi: 10.1007/s10529-006-9260-y.
    1. de Pillis L, Gallegos A, Radunskaya A. A model of dendritic cell therapy for melanoma. Front Oncol. 2013;3:56.
    1. Ludewig B, Krebs P, Junt T, Metters H, Ford NJ, Anderson RM, Bocharov G. Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction. Eur J Immunol. 2004;34:2407–2418. doi: 10.1002/eji.200425085.
    1. Bossi G, Gerry AB, Paston SJ, Sutton DH, Hassan NJ, Jakobsen BK. Examining the presentation of tumor-associated antigens on peptide-pulsed T2 cells. Oncoimmunology. 2013;2:e26840. doi: 10.4161/onci.26840.
    1. Taylor GP, Hall SE, Navarrete S, Michie CA, Davis R, Witkover AD, Rossor M, Nowak MA, Rudge P, Matutes E, et al. Effect of lamivudine on human T-cell leukemia virus type 1 (HTLV-1) DNA copy number, T-cell phenotype, and anti-tax cytotoxic T-cell frequency in patients with HTLV-1-associated myelopathy. J Virol. 1999;73:10289–10295.
    1. Carlson JA. Tumor doubling time of cutaneous melanoma and its metastasis. Am J Dermatopathol. 2003;25:291–299. doi: 10.1097/00000372-200308000-00003.
    1. Kuznetsov VA. A mathematical model for the interaction between cytotoxic T lymphocytes and tumour cells. Analysis of the growth, stabilization, and regression of a B-cell lymphoma in mice chimeric with respect to the major histocompatibility complex. Biomed Sci. 1991;2:465–476.
    1. Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol. 1994;56:295–321. doi: 10.1007/BF02460644.
    1. Kuznetsov VA, Zhivoglyadov VP, Stepanova LA. Kinetic approach and estimation of the parameters of cellular interaction between the immunity system and a tumor. Arch Immunol Ther Exp (Warsz) 1993;41:21–31.
    1. Kronik N, Kogan Y, Elishmereni M, Halevi-Tobias K, Vuk-Pavlovic S, Agur Z. Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models. PLoS ONE. 2010;5:e15482. doi: 10.1371/journal.pone.0015482.
    1. Tsur N, Kogan Y, Rehm M, Agur Z. Response of patients with melanoma to immune checkpoint blockade – insights gleaned from analysis of a new mathematical mechanistic model. J Theor Biol. 2019 doi: 10.1016/j.jtbi.2019.110033.
    1. Eisenhauer E, Therasse P, Bogaerts J, Schwartz L, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Joseph WL, Morton DL, Adkins PC. Variation in tumor doubling time in patients with pulmonary metastatic disease. J Surg Oncol. 1971;3:143–149. doi: 10.1002/jso.2930030207.
    1. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545(7652):60. doi: 10.1038/nature22079.
    1. Warrens MJ. A comparison of Cohen’s kappa and agreement coefficients by Corrado Gini. Int J. 2013;16:7.
    1. Fujii T, Naing A, Rolfo C, Hajjar J. Biomarkers of response to immune checkpoint blockade in cancer treatment. Crit Rev Oncol/Hematol. 2018;130:108–120. doi: 10.1016/j.critrevonc.2018.07.010.
    1. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi: 10.1126/science.aaa8172.
    1. Garrido MJ, Berraondo P, Trocóniz IF. Commentary on pharmacometrics for immunotherapy. CPT: Pharmacomet Syst Pharmacol; 2016.
    1. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;14:655. doi: 10.1038/nrclinonc.2017.88.
    1. Kohn CG, Zeichner SB, Chen Q, Montero AJ, Goldstein DA, Flowers CR. Cost-effectiveness of immune checkpoint inhibition in BRAF wild-type advanced melanoma. J Clin Oncol. 2017;35:1194. doi: 10.1200/JCO.2016.69.6336.
    1. Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, Patnaik A, Hwu W-J, Weber JS. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016;315:1600–1609. doi: 10.1001/jama.2016.4059.
    1. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu W-J, Gangadhar TC. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–1117. doi: 10.1016/S0140-6736(14)60958-2.
    1. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, Hodi FS, Schachter J, Pavlick AC, Lewis KD. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–918. doi: 10.1016/S1470-2045(15)00083-2.
    1. Kitano S, Nakayama T, Yamashita M. Biomarkers for immune checkpoint inhibitors in malignant melanoma. Front Oncol. 2018;8:270. doi: 10.3389/fonc.2018.00270.
    1. Diem S, Kasenda B, Spain L, Martin-Liberal J, Marconcini R, Gore M, Larkin J. Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma. Br J Cancer. 2016;114:256. doi: 10.1038/bjc.2015.467.
    1. Nishino M, Giobbie-Hurder A, Manos MP, Bailey N, Buchbinder EI, Ott PA, Ramaiya NH, Hodi FS. Immune-related tumor response dynamics in melanoma patients treated with pembrolizumab: identifying markers for clinical outcome and treatment decisions. Clin Cancer Res. 2017;23(16):4671–4679. doi: 10.1158/1078-0432.CCR-17-0114.
    1. Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg. 1970;172:902. doi: 10.1097/00000658-197011000-00017.
    1. Morton DL, Davtyan DG, Wanek LA, Foshag LJ, Cochran AJ. Multivariate analysis of the relationship between survival and the microstage of primary melanoma by Clark level and Breslow thickness. Cancer. 1993;71:3737–3743. doi: 10.1002/1097-0142(19930601)71:11<3737::AID-CNCR2820711143>;2-7.
    1. Joseph RW, Elassaiss-Schaap J, Kefford R, Hwu WJ, Wolchok JD, Joshua AM, Ribas A, Hodi FS, Hamid O, Robert C, Daud A, Dronca R, Hersey P, Weber JS, Patnaik A, de Alwis DP, Perrone A, Zhang J, Kang SP, Ebbinghaus S, Anderson KM, Gangadhar TC. Baseline tumor size is an independent prognostic factor for overall survival in patients with melanoma treated with pembrolizumab. Clin Cancer Res. 2018;24(20):4960–4967.
    1. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, Maio M, Binder M, Bohnsack O, Nichol G. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–7420. doi: 10.1158/1078-0432.CCR-09-1624.
    1. Hodi FS, Hwu W-J, Kefford R, Weber JS, Daud A, Hamid O, Patnaik A, Ribas A, Robert C, Gangadhar TC. Evaluation of immune-related response criteria and RECIST v1. 1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol. 2016;34:1510–1517. doi: 10.1200/JCO.2015.64.0391.

Source: PubMed

3
Tilaa