Arterial Stiffness in Nonhypertensive Type 2 Diabetes Patients in Ghana

Kwame Yeboah, Daniel A Antwi, Ben Gyan, Kwame Yeboah, Daniel A Antwi, Ben Gyan

Abstract

Background. Increased arterial stiffness is an independent cardiovascular risk factor in diabetes patients and general population. However, the contribution of diabetes to arterial stiffness is often masked by coexistent obesity and hypertension. In this study, we assessed arterial stiffness in nonhypertensive, nonobese type 2 diabetes (T2DM) patients in Ghana. Methods. In case-control design, 166 nonhypertensive, nonobese participants, comprising 96 T2DM patients and 70 nondiabetes controls, were recruited. Peripheral and central blood pressure (BP) indices were measured, and arterial stiffness was assessed as aortic pulse wave velocity (PWVao), augmentation index (AIx), cardioankle vascular index (CAVI), and heart-ankle pulse wave velocity (haPWV). Results. With similar peripheral and central BP indices, T2DM patients had higher PWVao (8.3 ± 1 versus 7.8 ± 1.3, p = 0.044) and CAVI (7.9 ± 1.2 versus 6.9 ± 0.7, p = 0.021) than nondiabetic control. AIx and haPWV were similar between T2DM and nondiabetic controls. Multiple regression models showed that, in the entire study participants, the major determinants of PWVao were diabetes status, age, gender, systolic BP, and previous smoking status (β = 0.22, 0.36, 0.48, 0.21, and 0.25, resp.; all p < 0.05); the determinants of CAVI were diabetes status, age, BMI, heart rate, HbA1c, total cholesterol, HDL cholesterol, and previous smoking status (β = 0.21, 0.38, 0.2, 0.18, 0.24. 0.2, -0.19, and 0.2, resp.; all p < 0.05). Conclusion. Our findings suggest that nonhypertensive, nonobese T2DM patients have increased arterial stiffness without appreciable increase in peripheral and central pressure indices.

Figures

Figure 1
Figure 1
Comparison of arterial stiffness indices between normal and overweight participants.
Figure 2
Figure 2
Comparison of arterial stiffness indices between nonhypertensive and prehypertensive participants.

References

    1. Morrish N. J., Wang S.-L., Stevens L. K., et al. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 2001;44(2):S14–S21. doi: 10.1007/pl00002934.
    1. Kengne A. P., Njamnshi A. K. Cardiovascular risk reduction in diabetes in sub-saharan Africa: what should the priorities be in the absence of global risk evaluation tools? Clinical Medicine Insights: Cardiology. 2008;2:p. 25.
    1. Yeboah K., Puplampu P., Ainuson J., Akpalu J., Gyan B., Amoah A. G. B. Peripheral artery disease and exertional leg symptoms in diabetes patients in Ghana. BMC Cardiovascular Disorders. 2016;16(1, article 68):9. doi: 10.1186/s12872-016-0247-x.
    1. De Angelis L., Millasseau S. C., Smith A., et al. Sex differences in age-related stiffening of the aorta in subjects with type 2 diabetes. Hypertension. 2004;44(1):67–71. doi: 10.1161/01.HYP.0000130482.81883.fd.
    1. Lacy P. S., O'Brien D. G., Stanley A. G., Dewar M. M., Swales P. P. R., Williams B. Increased pulse wave velocity is not associated with elevated augmentation index in patients with diabetes. Journal of Hypertension. 2004;22(10):1937–1944. doi: 10.1097/00004872-200410000-00016.
    1. Kimoto E., Shoji T., Shinohara K., et al. Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes. 2003;52(2):448–452. doi: 10.2337/diabetes.52.2.448.
    1. Yeboah K., Puplampu P., Yorke E., Antwi D. A., Gyan B., Amoah A. G. B. Body composition and ankle-brachial index in Ghanaians with asymptomatic peripheral arterial disease in a tertiary hospital. BMC Obesity. 2016;3(1):1–7. doi: 10.1186/s40608-016-0107-3.
    1. Cruickshank K., Riste L., Anderson S. G., Wright J. S., Dunn G., Gosling R. G. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002;106(16):2085–2090. doi: 10.1161/01.cir.0000033824.02722.f7.
    1. Schutte A. E., Huisman H. W., Schutte R., et al. Arterial stiffness profiles: investigating various sections of the arterial tree of African and Caucasian people. Clinical and Experimental Hypertension. 2011;33(8):511–517. doi: 10.3109/10641963.2011.561897.
    1. Shirai K., Song M., Suzuki J., et al. Contradictory effects of β1- and α1- aderenergic receptor blockers on cardio-ankle vascular stiffness Index (CAVI)—CAVI is independent of blood pressure. Journal of Atherosclerosis and Thrombosis. 2011;18(1):49–55. doi: 10.5551/jat.3582.
    1. Sun C.-K. Cardio-ankle vascular index (CAVI) as an indicator of arterial stiffness. Integrated Blood Pressure Control. 2013;6:27–38. doi: 10.2147/IBPC.S34423.
    1. World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Geneva, Switzerland: WHO Document Production Services; 2011.
    1. Friedewald W. T., Levy R. I., Fredrickson D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry. 1972;18(6):499–502.
    1. Horváth I. G., Németh Á., Lenkey Z., et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. Journal of Hypertension. 2010;28(10):2068–2075. doi: 10.1097/hjh.0b013e32833c8a1a.
    1. Sugawara J., Hayashi K., Yokoi T., Tanaka H. Age-associated elongation of the ascending aorta in adults. JACC: Cardiovascular Imaging. 2008;1(6):739–748. doi: 10.1016/j.jcmg.2008.06.010.
    1. Sugawara J., Hayashi K., Yokoi T., Tanaka H. Carotid-femoral pulse wave velocity: impact of different arterial path length measurements. Artery Research. 2010;4(1):27–31. doi: 10.1016/j.artres.2009.11.001.
    1. Shirai K., Utino J., Saiki A., et al. Evaluation of blood pressure control using a new arterial stiffness parameter, cardio-ankle vascular index (CAVI) Current Hypertension Reviews. 2013;9(1):66–75. doi: 10.2174/1573402111309010010.
    1. Nilsson P. M., Boutouyrie P., Cunha P., et al. Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular prevention. Journal of Hypertension. 2013;31(8):1517–1526. doi: 10.1097/hjh.0b013e328361e4bd.
    1. Schram M. T., Henry R. M. A., van Dijk R. A. J. M., et al. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn study. Hypertension. 2004;43(2):176–181. doi: 10.1161/01.hyp.0000111829.46090.92.
    1. Tedesco M. A., Natale F., Di Salvo G., Caputo S., Capasso M., Calabró R. Effects of coexisting hypertension and type II diabetes mellitus on arterial stiffness. Journal of Human Hypertension. 2004;18(7):469–473. doi: 10.1038/sj.jhh.1001690.
    1. de Oliveira Alvim R., Santos P. C. J. L., Musso M. M., et al. Impact of diabetes mellitus on arterial stiffness in a representative sample of an urban Brazilian population. Diabetology & Metabolic Syndrome. 2013;5(1, article 45) doi: 10.1186/1758-5996-5-45.
    1. Kaess B. M., Rong J., Larson M. G., et al. Aortic stiffness, blood pressure progression, and incident hypertension. The Journal of the American Medical Association. 2012;308(9):875–881. doi: 10.1001/2012.jama.10503.
    1. Mitchell G. F. Arterial stiffness and wave reflection: biomarkers of cardiovascular risk. Artery Research. 2009;3(2):56–64. doi: 10.1016/j.artres.2009.02.002.
    1. De Ciuceis C., Rizzoni D., Porteri E., et al. Effects of insulin on endothelial and contractile function of subcutaneous small resistance arteries of hypertensive and diabetic patients. Journal of Vascular Research. 2008;45(6):512–520. doi: 10.1159/000128604.
    1. Goh S.-Y., Cooper M. E. The role of advanced glycation end products in progression and complications of diabetes. The Journal of Clinical Endocrinology & Metabolism. 2008;93(4):1143–1152. doi: 10.1210/jc.2007-1817.
    1. Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circulation Research. 2010;107(9):1058–1070. doi: 10.1161/circresaha.110.223545.
    1. Basha B., Samuel S. M., Triggle C. R., Ding H. Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Experimental Diabetes Research. 2012;2012:14. doi: 10.1155/2012/481840.481840
    1. Kim W. J., Park C.-Y., Park S. E., et al. The association between regional arterial stiffness and diabetic retinopathy in type 2 diabetes. Atherosclerosis. 2012;225(1):237–241. doi: 10.1016/j.atherosclerosis.2012.08.034.
    1. Zhang M., Bai Y., Ye P., et al. Type 2 diabetes is associated with increased pulse wave velocity measured at different sites of the arterial system but not augmentation index in a Chinese population. Clinical Cardiology. 2011;34(10):622–627. doi: 10.1002/clc.20956.
    1. Climie R. E. D., Nikolic S. B., Otahal P., Keith L. J., Sharman J. E. Augmentation index and arterial stiffness in patients with type 2 diabetes mellitus. Artery Research. 2013;7(3-4):194–200. doi: 10.1016/j.artres.2013.09.002.
    1. Schram M. T., Henry R. M. A., van Dijk R. A. J. M., et al. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the hoorn study. Hypertension. 2004;43(2):176–181. doi: 10.1161/01.hyp.0000111829.46090.92.
    1. Scott J. A., Coombes J. S., Prins J. B., Leano R. L., Marwick T. H., Sharman J. E. Patients with type 2 diabetes have exaggerated brachial and central exercise blood pressure: relation to left ventricular relative wall thickness. American Journal of Hypertension. 2008;21(6):715–721. doi: 10.1038/ajh.2008.166.
    1. Kannam J. P., Levy D., Larson M., Wilson P. W. F. Short stature and risk for mortality and cardiovascular disease events. The Framingham Heart Study. Circulation. 1994;90(5):2241–2247. doi: 10.1161/01.cir.90.5.2241.
    1. Forsén T., Eriksson J., Qiao Q., Tervahauta M., Nissinen A., Tuomilehto J. Short stature and coronary heart disease: a 35-year follow-up of the Finnish cohorts of the Seven Countries Study. Journal of Internal Medicine. 2000;248(4):326–332. doi: 10.1046/j.1365-2796.2000.00747.x.
    1. Paajanen T. A., Oksala N. K. J., Kuukasjärvi P., Karhunen P. J. Short stature is associated with coronary heart disease: a systematic review of the literature and a meta-analysis. European Heart Journal. 2010;31(14):1802–1809. doi: 10.1093/eurheartj/ehq155.
    1. Rossen N. B., Laugesen E., Peters C. D., et al. Invasive validation of arteriograph estimates of central blood pressure in patients with type 2 diabetes. American Journal of Hypertension. 2014;27(5):674–679. doi: 10.1093/ajh/hpt162.
    1. Horváth I. G., Németh Á., Lenkey Z., et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. Journal of Hypertension. 2010;28(10):2068–2075. doi: 10.1097/HJH.0b013e32833c8a1a.
    1. Horinaka S., Yabe A., Yagi H., et al. Cardio-ankle vascular index could reflect plaque burden in the coronary artery. Angiology. 2011;62(5):401–408. doi: 10.1177/0003319710395561.
    1. Mineoka Y., Fukui M., Tanaka M., et al. Relationship between cardio-ankle vascular index (CAVI) and coronary artery calcification (CAC) in patients with type 2 diabetes mellitus. Heart and Vessels. 2012;27(2):160–165. doi: 10.1007/s00380-011-0138-0.
    1. Hatsuda S., Shoji T., Shinohara K., et al. Regional arterial stiffness associated with ischemic heart disease in type 2 diabetes mellitus. Journal of Atherosclerosis and Thrombosis. 2006;13(2):114–121. doi: 10.5551/jat.13.114.
    1. Kimoto E., Shoji T., Shinohara K., et al. Regional arterial stiffness in patients with type 2 diabetes and chronic kidney disease. Journal of the American Society of Nephrology. 2006;17(8):2245–2252. doi: 10.1681/asn.2005101038.
    1. Tsuchikura S., Shoji T., Kimoto E., et al. Brachial-ankle pulse wave velocity as an index of central arterial stiffness. Journal of Atherosclerosis and Thrombosis. 2010;17(6):658–665. doi: 10.5551/jat.3616.
    1. Yu W.-C., Chuang S.-Y., Lin Y.-P., Chen C.-H. Brachial-ankle vs carotid-femoral pulse wave velocity as a determinant of cardiovascular structure and function. Journal of Human Hypertension. 2008;22(1):24–31. doi: 10.1038/sj.jhh.1002259.
    1. Corona G., Mannucci E., Forti G., Maggi M. Hypogonadism, ED, metabolic syndrome and obesity: a pathological link supporting cardiovascular diseases. International Journal of Andrology. 2009;32(6):587–598. doi: 10.1111/j.1365-2605.2008.00951.x.
    1. Vignozzi L., Morelli A., Filippi S., et al. Testosterone regulates RhoA/Rho-kinase signaling in two distinct animal models of chemical diabetes. The Journal of Sexual Medicine. 2007;4(3):620–632. doi: 10.1111/j.1743-6109.2007.00440.x.
    1. Vlachopoulos C., Ioakeimidis N., Miner M., et al. Testosterone deficiency: a determinant of aortic stiffness in men. Atherosclerosis. 2014;233(1):278–283. doi: 10.1016/j.atherosclerosis.2013.12.010.
    1. Adji A., O'Rourke M. F., Namasivayam M. Arterial stiffness, its assessment, prognostic value, and implications for treatment. American Journal of Hypertension. 2011;24(1):5–17. doi: 10.1038/ajh.2010.192.
    1. Morgentaler A., Miner M. M., Caliber M., Guay A. T., Khera M., Traish A. M. Testosterone therapy and cardiovascular risk: advances and controversies. Mayo Clinic Proceedings. 2015;90(2):224–251. doi: 10.1016/j.mayocp.2014.10.011.

Source: PubMed

3
Tilaa