Immune-Checkpoint Inhibitors for Metastatic Colorectal Cancer: A Systematic Review of Clinical Outcomes

Dmitrii Shek, Liia Akhuba, Matteo S Carlino, Adnan Nagrial, Tania Moujaber, Scott A Read, Bo Gao, Golo Ahlenstiel, Dmitrii Shek, Liia Akhuba, Matteo S Carlino, Adnan Nagrial, Tania Moujaber, Scott A Read, Bo Gao, Golo Ahlenstiel

Abstract

Background: Colorectal cancer (CRC) is the fourth most deadly cancer worldwide. Unfortunately, a quarter of the patients are diagnosed at late stages, when surgical options are limited. Targeted therapies, particularly immune-checkpoint inhibitors (ICIs), are the latest addition and have been studied herein regarding their efficacy outcomes.

Methods: Clinical studies were identified through the PubMed, Scopus and Cochrane databases. Any trial that evaluated ICIs in patients with metastatic CRC (mCRC) and reported the objective response rate was deemed eligible. Data analysis was performed by employing the random-effects model in STATA v.17.

Results: A total of 461 articles were identified; 13 clinical trials were included, encompassing a total cohort of 1209 patients. Our study determined that a single PD-1/PD-L1 checkpoint blockade provides durable clinical response in mCRC patients with high microsatellite instability (MSI-H). The combinatorial therapy of CTLA-4 + PD-1 inhibitors also showed high response rates in pre-treated MSI-H patients. The single-arm REGONIVO trial reported durable clinical response in patients with microsatellite stable (MSS) status.

Conclusions: Our study surmises that PD-1/PD-L1 inhibitors as well as combination therapy with CTLA-4 and PD-1 inhibitors show encouraging response rates in mCRC patients, albeit exclusively in patients with cancer that are of MSI-H status. A single study suggests that nivolumab + regorafenib can reach a durable response rate in MSS patients; however, further studies in larger randomized settings are required.

Keywords: atezolizumab; colorectal cancer; immune-checkpoint inhibitors; ipilimumab; nivolumab; pembrolizumab; targeted therapy.

Conflict of interest statement

All authors declare that there are no competing interests that could have inappropriately influenced results of this study.

Figures

Figure 1
Figure 1
Colorectal cancer stages according to the American Joint Committee on Cancer (AJCC), 8th edition [8]. TNM staging is based on the size of the tumor, growth into lymph nodes and distant metastases to organs and/or tissues. Relative survival rate is an epidemiological characteristic comparing people with the specific histological type and stage of cancer to the overall population in a specific area/region of our country. 1-, 3- and 5-year relative survival rates reduce drastically as CRC progresses from stage 0 to 4.
Figure 2
Figure 2
Molecular mechanisms of targeted drugs approved by the Food and Drug Administration for the treatment of metastatic colorectal cancer. (1) Anti-EGFR (epidermal growth factor receptor) monoclonal antibodies (mAbs) cetuximab and panitumumab; (2) encorafenib, an inhibitor of the Raf protein as part of the MAPK/ERK signaling pathway; (3) VEGF-A (vascular endothelial growth factor-A) inhibitors aflibercept and bevacizumab; (4) VEGF receptor inhibitors regorafenib and ramucirumab; (5) anti-PD-1 (programmed cell death-1) mAbs nivolumab and pembrolizumab and anti-PD-L1 (programmed cell death ligand 1) mAbs atezolizumab, durvalumab and avelumab; (6) anti-CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) mAb ipilimumab. Current targeted therapies inhibit three major processes crucial for cancer growth: unrestricted proliferation, neo-angiogenesis and suppression of T cell immune responses.
Figure 3
Figure 3
PRISMA flow chart of the systematic review.
Figure 4
Figure 4
Forest plot visualizing the objective response rate across selected studies. The cumulative response rate is estimated to be 21.46% with non-significant differences in weight distribution across selected studies and study heterogeneity of 48.38% (deemed as moderate).

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. Dekker E., Tanis P.J., Vleugels J.L.A., Kasi P.M., Wallace M.B. Colorectal cancer. Lancet. 2019;394:1467–1480. doi: 10.1016/S0140-6736(19)32319-0.
    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551.
    1. Siegel R.L., Miller K.D., Goding Sauer A., Fedewa S.A., Butterly L.F., Anderson J.C., Cercek A., Smith R.A., Jemal A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020;70:145–164. doi: 10.3322/caac.21601.
    1. Wolf A.M.D., Fontham E.T.H., Church T.R., Flowers C.R., Guerra C.E., LaMonte S.J., Etzioni R., McKenna M.T., Oeffinger K.C., Shih Y.T., et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J. Clin. 2018;68:250–281. doi: 10.3322/caac.21457.
    1. Van der Stok E.P., Spaander M.C.W., Grunhagen D.J., Verhoef C., Kuipers E.J. Surveillance after curative treatment for colorectal cancer. Nat. Rev. Clin. Oncol. 2017;14:297–315. doi: 10.1038/nrclinonc.2016.199.
    1. Messersmith W.A. NCCN guidelines updates: Management of metastatic colorectal cancer. J. Natl. Compr. Cancer Netw. 2019;17:599–601.
    1. Amin M.B., Greene F.L., Edge S.B., Compton C.C., Gershenwald J.E., Brookland R.K., Meyer L., Gress D.M., Byrd D.R., Winchester D.P. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017;67:93–99. doi: 10.3322/caac.21388.
    1. Lee Y.T., Tan Y.J., Oon C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 2018;834:188–196. doi: 10.1016/j.ejphar.2018.07.034.
    1. Yarom N., Jonker D.J. The role of the epidermal growth factor receptor in the mechanism and treatment of colorectal cancer. Discov. Med. 2011;11:95–105.
    1. Vecchione L., Jacobs B., Normanno N., Ciardiello F., Tejpar S. EGFR-targeted therapy. Exp. Cell Res. 2011;317:2765–2771. doi: 10.1016/j.yexcr.2011.08.021.
    1. Mizukami T., Izawa N., Nakajima T.E., Sunakawa Y. Targeting EGFR and RAS/RAF signaling in the treatment of metastatic colorectal cancer: From current treatment strategies to future perspectives. Drugs. 2019;79:633–645. doi: 10.1007/s40265-019-01113-0.
    1. Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003;9:669–676. doi: 10.1038/nm0603-669.
    1. Folkman J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971;285:1182–1186.
    1. Goel H.L., Mercurio A.M. VEGF targets the tumour cell. Nat. Rev. Cancer. 2013;13:871–882. doi: 10.1038/nrc3627.
    1. Lopez A., Harada K., Vasilakopoulou M., Shanbhag N., Ajani J.A. Targeting angiogenesis in colorectal carcinoma. Drugs. 2019;79:63–74. doi: 10.1007/s40265-018-1037-9.
    1. Ganesh K., Stadler Z.K., Cercek A., Mendelsohn R.B., Shia J., Segal N.H., Diaz L.A., Jr. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 2019;16:361–375. doi: 10.1038/s41575-019-0126-x.
    1. Shek D., Read S.A., Nagrial A., Carlino M.S., Gao B., George J., Ahlenstiel G. Immune-checkpoint inhibitors for advanced hepatocellular carcinoma: A synopsis of response rates. Oncologist. 2021;26:e1216–e1225. doi: 10.1002/onco.13776.
    1. Andre T., Shiu K.K., Kim T.W., Jensen B.V., Jensen L.H., Punt C., Smith D., Garcia-Carbonero R., Benavides M., Gibbs P., et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 2020;383:2207–2218. doi: 10.1056/NEJMoa2017699.
    1. Overman M.J., Ernstoff M.S., Morse M.A. Where we stand with immunotherapy in colorectal cancer: Deficient mismatch repair, proficient mismatch repair, and toxicity management. Am. Soc. Clin. Oncol. Educ. Book. 2018;38:239–247. doi: 10.1200/EDBK_200821.
    1. Overman M.J., Lonardi S., Wong K.Y.M., Lenz H.J., Gelsomino F., Aglietta M., Morse M.A., Van Cutsem E., McDermott R., Hill A., et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 2018;36:773–779. doi: 10.1200/JCO.2017.76.9901.
    1. Le D.T., Kim T.W., Van Cutsem E., Geva R., Jager D., Hara H., Burge M., O’Neil B., Kavan P., Yoshino T., et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J. Clin. Oncol. 2020;38:11–19. doi: 10.1200/JCO.19.02107.
    1. Overman M.J., McDermott R., Leach J.L., Lonardi S., Lenz H.J., Morse M.A., Desai J., Hill A., Axelson M., Moss R.A., et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–1191. doi: 10.1016/S1470-2045(17)30422-9.
    1. Hochster H.S., Bendell J.C., Cleary J.M., Foster P., Zhang W., He X., Hernandez G., Iizuka K., Eckhardt S.G. Efficacy and safety of atezolizumab (atezo) and bevacizumab (bev) in a phase Ib study of microsatellite instability (MSI)-high metastatic colorectal cancer (mCRC) J. Clin. Oncol. 2017;35:673. doi: 10.1200/JCO.2017.35.4_suppl.673.
    1. Segal N.H., Wainberg Z.A., Overman M.J., Ascierto P.A., Arkenau H.-T., Butler M.O., Eder J.P., Keilholz U., Kim D.-W., Cunningham D., et al. Safety and clinical activity of durvalumab monotherapy in patients with microsatellite instability–high (MSI-H) tumors. J. Clin. Oncol. 2019;37:670. doi: 10.1200/JCO.2019.37.4_suppl.670.
    1. Mettu N.B., Twohy E., Ou F.S., Halfdanarson T.R., Lenz H.J., Breakstone R., Boland P.M., Crysler O., Wu C., Grothey A., et al. BACCI: A phase II randomized, double-blind, multicenter, placebo-controlled study of capecitabine (C) bevacizumab (B) plus atezolizumab (A) or placebo (P) in refractory metastatic colorectal cancer (mCRC): An ACCRU network study. Ann. Oncol. 2019;30:v203. doi: 10.1093/annonc/mdz246.011.
    1. Fukuoka S., Hara H., Takahashi N., Kojima T., Kawazoe A., Asayama M., Yoshii T., Kotani D., Tamura H., Mikamoto Y., et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: An open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603) J. Clin. Oncol. 2020;38:2053–2061. doi: 10.1200/JCO.19.03296.
    1. Hellmann M.D., Kim T.W., Lee C.B., Goh B.C., Miller W.H., Jr., Oh D.Y., Jamal R., Chee C.E., Chow L.Q.M., Gainor J.F., et al. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann. Oncol. 2019;30:1134–1142. doi: 10.1093/annonc/mdz113.
    1. Kim J.H., Kim S.Y., Baek J.Y., Cha Y.J., Ahn J.B., Kim H.S., Lee K.W., Kim J.W., Kim T.Y., Chang W.J., et al. A phase II study of avelumab monotherapy in patients with mismatch repair-deficient/microsatellite instability-high or POLE-mutated metastatic or unresectable colorectal cancer. Cancer Res. Treat. 2020;52:1135–1144. doi: 10.4143/crt.2020.218.
    1. Eng C., Kim T.W., Bendell J., Argiles G., Tebbutt N.C., Di Bartolomeo M., Falcone A., Fakih M., Kozloff M., Segal N.H., et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019;20:849–861. doi: 10.1016/S1470-2045(19)30027-0.
    1. Martinelli E., Martini G., Troiani T., Pietrantonio F., Avallone A., Normanno N., Nappi A., Maiello E., Falcone A., Santabarbara G., et al. 397O Avelumab plus cetuximab in pre-treated RAS wild type metastatic colorectal cancer patients as a rechallenge strategy: The phase II CAVE (cetuximab-avelumab) mCRC study. Ann. Oncol. 2020;31:S409–S410. doi: 10.1016/j.annonc.2020.08.508.
    1. Chen E.X., Jonker D.J., Loree J.M., Kennecke H.F., Berry S.R., Couture F., Ahmad C.E., Goffin J.R., Kavan P., Harb M., et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: The Canadian cancer trials group CO.26 study. JAMA Oncol. 2020;6:831–838. doi: 10.1001/jamaoncol.2020.0910.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Higgins J.P., Altman D.G., Gotzsche P.C., Juni P., Moher D., Oxman A.D., Savovic J., Schulz K.F., Weeks L., Sterne J.A., et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Sterne J.A.C., Savovic J., Page M.J., Elbers R.G., Blencowe N.S., Boutron I., Cates C.J., Cheng H.Y., Corbett M.S., Eldridge S.M., et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898.
    1. Wells G.S.B., O’Connell D., Peterson J., Welch V., Losos M., Tugwell P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. [(accessed on 22 June 2021)]; Available online: .
    1. Korn R.L., Crowley J.J. Overview: Progression-free survival as an endpoint in clinical trials with solid tumors. Clin. Cancer Res. 2013;19:2607–2612. doi: 10.1158/1078-0432.CCR-12-2934.
    1. U.S. Food & Drug Administration FDA Approves Pembrolizumab for First-Line Treatment of MSI-H/dMMR Colorectal Cancer. [(accessed on 12 July 2021)]; Available online: .
    1. Xie Y.H., Chen Y.X., Fang J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal. Transduct. Target. Ther. 2020;5:22. doi: 10.1038/s41392-020-0116-z.
    1. Mlecnik B., Bindea G., Angell H.K., Maby P., Angelova M., Tougeron D., Church S.E., Lafontaine L., Fischer M., Fredriksen T., et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity. 2016;44:698–711. doi: 10.1016/j.immuni.2016.02.025.
    1. Westra J.L., Plukker J.T., Buys C.H., Hofstra R.M. Genetic alterations in locally advanced stage II/III colon cancer: A search for prognostic markers. Clin. Colorectal. Cancer. 2004;4:252–259. doi: 10.3816/CCC.2004.n.024.
    1. Nosho K., Baba Y., Tanaka N., Shima K., Hayashi M., Meyerhardt J.A., Giovannucci E., Dranoff G., Fuchs C.S., Ogino S. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: Cohort study and literature review. J. Pathol. 2010;222:350–366. doi: 10.1002/path.2774.
    1. Rooney M.S., Shukla S.A., Wu C.J., Getz G., Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160:48–61. doi: 10.1016/j.cell.2014.12.033.
    1. Ou D.L., Chen C.W., Hsu C.L., Chung C.H., Feng Z.R., Lee B.S., Cheng A.L., Yang M.H., Hsu C. Regorafenib enhances antitumor immunity via inhibition of p38 kinase/Creb1/Klf4 axis in tumor-associated macrophages. J. Immunother. Cancer. 2021;9:e001657. doi: 10.1136/jitc-2020-001657.
    1. Lin Y., Xu J., Lan H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019;12:76. doi: 10.1186/s13045-019-0760-3.

Source: PubMed

3
Tilaa