Transcranial Photobiomodulation For The Management Of Depression: Current Perspectives

Paula Askalsky, Dan V Iosifescu, Paula Askalsky, Dan V Iosifescu

Abstract

Major depressive disorder (MDD) is a prevalent condition associated with high rates of disability, as well as suicidal ideation and behavior. Current treatments for MDD have significant limitations in efficacy and side effect burden. FDA-approved devices for MDD are burdensome (due to repeated in-office procedures) and are most suitable for severely ill subjects. There is a critical need for device-based treatments in MDD that are efficacious, well-tolerated, and easy to use. In this paper, we review a novel neuromodulation strategy, transcranial photobiomodulation (t-PBM) with near-infrared light (NIR). The scope of our review includes the known biological mechanisms of t-PBM, as well as its efficacy in animal models of depression and in patients with MDD. Theoretically, t-PBM penetrates into the cerebral cortex, stimulating the mitochondrial respiratory chain, and also significantly increases cerebral blood flow. Animal and human studies, using a variety of t-PBM settings and experimental models, suggest that t-PBM may have significant efficacy and good tolerability in MDD. In aggregate, these data support the need for large confirmatory studies for t-PBM as a novel, likely safe, and easy-to-administer antidepressant treatment.

Keywords: depression; low-level light therapy; major depressive disorder; near infrared radiation; photobiomodulation.

Conflict of interest statement

Over the last five years, DVI has received consulting fees from Axsome, Alkermes, Centers of Psychiatric Excellence, MyndAnalytics (CNS Response), Jazz, Lundbeck, Precision Neuroscience, Otsuka, and Sundovion; and has received research support (through his academic institutions) from Alkermes, Astra Zeneca, Brainsway, LiteCure, Neosync, Roche, and Shire. The authors report no other conflicts of interest in this work.

© 2019 Askalsky and Iosifescu.

References

    1. Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289(23):3095–3105. doi:10.1001/jama.289.23.3095
    1. Ferrari AJ, Charlson FJ, Norman RE, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 2013;10(11):e1001547. doi:10.1371/journal.pmed.1001547
    1. Rush AJ, Warden D, Wisniewski SR, et al. STAR*D: revising conventional wisdom. CNS Drugs. 2009;23(8):627–647. doi:10.2165/00023210-200923080-00001
    1. Rosa MA, Lisanby SH. Somatic treatments for mood disorders. Neuropsychopharmacology. 2012;37(1):102–116. doi:10.1038/npp.2011.225
    1. Hamblin MR. Shining light on the head: photobiomodulation for brain disorders. BBA Clin. 2016;6:113–124. doi:10.1016/j.bbacli.2016.09.002
    1. Young AE, Germon TJ, Barnett NJ, Manara AR, Nelson RJ. Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy. Br J Anaesth. 2000;84(1):38–42. doi:10.1093/oxfordjournals.bja.a013379
    1. Henderson TA, Morries LD. Near-infrared photonic energy penetration—principles and practice In: Hamblin MR, Ying-Ying H, editors. Photobiomodulation in the Brain. London: Elseveir; 2019:67–88.
    1. Jagdeo JR, Adams LE, Brody NI, Siegel DM. Transcranial red and near infrared light transmission in a cadaveric model. PLoS One. 2012;7(10):e47460. doi:10.1371/journal.pone.0047460
    1. Lapchak PA, Boitano PD, Butte PV, et al. Transcranial Near-Infrared Laser Transmission (NILT) Profiles (800 nm): systematic Comparison in Four Common Research Species. PLoS One. 2015;10(6):e0127580. doi:10.1371/journal.pone.0127580
    1. Tedford CE, DeLapp S, Jacques S, Anders J. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers Surg Med. 2015;47(4):312–322. doi:10.1002/lsm.v47.4
    1. Stolik S, Delgado JA, Pèrez A, Anasagasti L. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J Photochem Photobiol B. 2000;57(2–3):90–93. doi:10.1016/S1011-1344(00)00082-8
    1. Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat. 2015;11:2191–2208. doi:10.2147/NDT
    1. Yue L, Humayun MS. Monte Carlo analysis of the enhanced transcranial penetration using distributed near-infrared emitter array. J Biomed Opt. 2015;20(8):088001. doi:10.1117/1.JBO.20.8.088001
    1. Pitzschke A, Lovisa B, Seydoux O, et al. Red and NIR light dosimetry in the human deep brain. Phys Med Biol. 2015;60(7):2921–2937. doi:10.1088/0031-9155/60/7/2921
    1. van der Bliek AM, Sedensky MM, Morgan PG. Cell Biology of the Mitochondrion. Genetics. 2017;207:843–871. doi:10.1534/genetics.117.300262
    1. Rezin GT, Cardoso MR, Gonçalves CL, et al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int. 2008;53(6–8):395–400. doi:10.1016/j.neuint.2008.09.012
    1. Shumake J, Gonzalez-Lima F. Brain Systems Underlying Susceptibility to Helplessness and Depression. Behav Cogn Neurosci Rev. 2003;2(3):198–221. doi:10.1177/1534582303259057
    1. Harper DG, Jensen JE, Renshaw PR. 31P MRS in psychiatric disorders In: Bottomley PA, Griffiths JR, editors. Handbook of Magnetic Resonance Spectroscopy in Vivo. West Sussex, UK: Wiley; 2016:927–946.
    1. Bessman SP. The creatine phosphate energy shuttle–the molecular asymmetry of a “pool”. Anal Biochem. 1987;161(2):519–523. doi:10.1016/0003-2697(87)90483-0
    1. Harper DG, Joe EB, Jensen JE, Ravichandran C, Forester BP. Brain levels of high-energy phosphate metabolites and executive function in geriatric depression. Int J Geriatr Psychiatry. 2016;31(11):1241–1249. doi:10.1002/gps.v31.11
    1. Renshaw PF, Parow AM, Hirashima F, et al. Multinuclear magnetic resonance spectroscopy studies of brain purines in major depression. Am J Psychiatry. 2001;158(12):2048–2055. doi:10.1176/appi.ajp.158.12.2048
    1. Iosifescu DV, Bolo NR, Nierenberg AA, Jensen JE, Fava M, Renshaw PF. Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol Psychiatry. 2008;63(12):1127–1134. doi:10.1016/j.biopsych.2007.11.020
    1. Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12(6):527–544. doi:10.1016/S0924-977X(02)00102-5
    1. Mayberg HS, Brannan SK, Tekell JL. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry. 2000;48(8):830. doi:10.1016/S0006-3223(00)01036-2
    1. Karabatsiakis A, Böck C, Salinas-Manrique J, et al. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl Psychiatry. 2014;4(6):e397. doi:10.1038/tp.2014.44
    1. Hroudová J, Fišar Z, Kitzlerová E, Zvěřová M, Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13(6):795–800. doi:10.1016/j.mito.2013.05.005
    1. Gardner A, Johansson A, Wibom R, et al. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord. 2003;76(1–3):55–68. doi:10.1016/S0165-0327(02)00067-8
    1. Villa RF, Ferrari F, Gorini A, Brunello N, Tascedda F. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria. Neuroscience. 2016;330:326–334. doi:10.1016/j.neuroscience.2016.05.051
    1. Karu T, Afanas`eva NI. Cytochrome c oxidase acts as a primary photoacceptor in cell cultures subjected to visible and near IR laser irradiation. Dokl Biol Sci. 1995.
    1. Pastore D, Greco M, Passarella S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol. 2000;76(6):863–870. doi:10.1080/09553000050029020
    1. Salehpour F, Ahmadian N, Rasta SH, Farhoudi M, Karimi P, Sadigh-Eteghad S. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol Aging. 2017;58:140–150. doi:10.1016/j.neurobiolaging.2017.06.025
    1. Wang X, Tian F, Reddy DD, et al. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab. 2017;37(12):3789–3802. doi:10.1177/0271678X17691783
    1. Gkotsi D, Begum R, Salt T, et al. Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP. Exp Eye Res. 2014;122:50–53. doi:10.1016/j.exer.2014.02.023
    1. Silveira PC, Streck EL, Pinho RA. Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. J Photochem Photobiol B. 2007;86(3):279–282. doi:10.1016/j.jphotobiol.2006.10.002
    1. Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009;95(2):89–92. doi:10.1016/j.jphotobiol.2009.01.004
    1. Masha RT, Houreld NN, Abrahamse H. Low-Intensity Laser Irradiation at 660 nm Stimulates Transcription of Genes Involved in the Electron Transport Chain. Photomed Laser Surg. 2013;31(2):47–53. doi:10.1089/pho.2012.3369
    1. Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S. An 808-nm Diode Laser with a Flat-Top Handpiece Positively Photobiomodulates Mitochondria Activities. Photomed Laser Surg. 2016;34(11):564–571. doi:10.1089/pho.2015.4035
    1. Giuliani A, Lorenzini L, Alessandri M, et al. In vitro exposure to very low-level laser modifies expression level of extracellular matrix protein RNAs and mitochondria dynamics in mouse embryonic fibroblasts. BMC Complement Altern Med. 2015;15:78. doi:10.1186/s12906-015-0593-8
    1. Mochizuki-Oda N, Kataoka Y, Cui Y, Yamada H, Heya M, Awazu K. Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue. Neurosci Lett. 2002;323(3):207–210. doi:10.1016/S0304-3940(02)00159-3
    1. Begum R, Calaza K, Kam JH, Salt TE, Hogg C, Jeffery G. Near-infrared light increases ATP, extends lifespan and improves mobility in aged Drosophila melanogaster. Biol Lett. 2015;11(3):20150073. doi:10.1098/rsbl.2015.0073
    1. Rojas JC, Bruchey AK, Gonzalez-Lima F. Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimers Dis. 2012;32(3):741–752. doi:10.3233/JAD-2012-120817
    1. Tian F, Hase SN, Gonzalez-Lima F, Liu H. Transcranial laser stimulation improves human cerebral oxygenation. Lasers Surg Med. 2016;48(4):343–349. doi:10.1002/lsm.22471
    1. Yu Z, Liu N, Zhao J, et al. Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation. Metab Brain Dis. 2015;30(2):491–496. doi:10.1007/s11011-014-9515-6
    1. Xu Z, Guo X, Yang Y, et al. Low-level laser irradiation improves depression-like behaviors in mice. Mol Neurobiol. 2017;54(6):4551–4559. doi:10.1007/s12035-016-9983-2
    1. Ferraresi C, Kaippert B, Avci P, et al. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol. 2015;91(2):411–416. doi:10.1111/php.2015.91.issue-2
    1. Mintzopoulos D, Gillis TE, Tedford CE, Kaufman MJ. Effects of near-infrared light on cerebral bioenergetics measured with phosphorus magnetic resonance spectroscopy. Photomed Laser Surg. 2017;35(8):395–400. doi:10.1089/pho.2016.4238
    1. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516–533. doi:10.1007/s10439-011-0454-7
    1. Sanderson TH, Wider JM, Lee I, et al. Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury [published correction appears in Sci Rep. 2018 Apr 25;8(1):6729]. Sci Rep. 2018;8(1):3481. doi:10.1038/s41598-018-21869-x
    1. Oron U, Ilic S, De Taboada L, Streeter J. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg. 2007;25(3):180–182. doi:10.1089/pho.2007.2064
    1. Wu Q, Xuan W, Ando T, et al. Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med. 2012;44(3):218–226. doi:10.1002/lsm.v44.3
    1. Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta Gen Subj. 2017;1861(2):441–449. doi:10.1016/j.bbagen.2016.10.008
    1. Uozumi Y, Nawashiro H, Sato S, Kawauchi S, Shima K, Kikuchi M. Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation. Lasers Surg Med. 2010;42(6):566–576. doi:10.1002/lsm.v42:6
    1. Nawashiro H, Wada K, Nakai K, Sato S. Focal increase in cerebral blood flow after treatment with near-infrared light to the forehead in a patient in a persistent vegetative state. Photomed Laser Surg. 2012;30(4):231–233. doi:10.1089/pho.2011.3044
    1. Salgado AS, Zângaro RA, Parreira RB, Kerppers II. The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. Lasers Med Sci. 2015;30(1):339–346. doi:10.1007/s10103-014-1669-2
    1. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of Vascular Endothelial Growth Factor (VEGF). J Cell Mol Med. 2005;9(4):777–794. doi:10.1111/jcmm.2005.9.issue-4
    1. Dias FJ, Issa JP, Barbosa AP, de Vasconcelos PB, Watanabe IS, Mizusakiiyomasa M. Effects of low-level laser irradiation in ultrastructural morphology, and immunoexpression of VEGF and VEGFR-2 of rat masseter muscle. Micron. 2012;43(2–3):237–244. doi:10.1016/j.micron.2011.08.005
    1. Hamblin MR. The role of nitric oxide in low level light therapy. Proc SPIE, Mechanisms for Low-Light Therapy III; 2008:6846 Avaialble from: Accessed October30, 2019.
    1. Moreno J, Gaspar E, López-Bello G, et al. Increase in nitric oxide levels and mitochondrial membrane potential in platelets of untreated patients with major depression. Psychiatry Res. 2013;209(3):447–452. doi:10.1016/j.psychres.2012.12.024
    1. Zhang R, Mio Y, Pratt PF, et al. Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol. 2009;46(1):4–14. doi:10.1016/j.yjmcc.2008.09.707
    1. Keszler A, Brandal G, Baumgardt S, et al. Far red/near infrared light-induced protection against cardiac ischemia and reperfusion injury remains intact under diabetic conditions and is independent of nitric oxide synthase. Front Physiol. 2014;5:305. doi:10.3389/fphys.2014.00305
    1. Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative–antioxidative systems. Hum Psychopharmacol. 2007;22(2):67–73. doi:10.1002/(ISSN)1099-1077
    1. Chludzińska L, Ananicz E, Jarosławska A, Komorowska M. Near-infrared radiation protects the red cell membrane against oxidation. Blood Cells Mol Dis. 2005;35(1):74–79. doi:10.1016/j.bcmd.2005.04.003
    1. Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics. 2013;6(10):829–838. doi:10.1002/jbio.201200157
    1. Salehpour F, Farajdokht F, Erfani M, et al. Transcranial near-infrared photobiomodulation attenuates memory impairment and hippocampal oxidative stress in sleep-deprived mice. Brain Res. 2018;1682:36–43. doi:10.1016/j.brainres.2017.12.040
    1. Salehpour F, Farajdokht F, Cassano P, et al. Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull. 2019;114:213–222. doi:10.1016/j.brainresbull.2018.10.010
    1. Yin K, Zhu R, Wang S, Zhao RC. Low-level laser effect on proliferation, migration, and antiapoptosis of mesenchymal stem cells. Stem Cells Dev. 2017;26(10):762–775. doi:10.1089/scd.2016.0332
    1. Wang R, Dong Y, Lu Y, Zhang W, Brann DW, Zhang Q. Photobiomodulation for Global Cerebral Ischemia: targeting Mitochondrial Dynamics and Functions. Mol Neurobiol. 2019;56(3):1852–1869. doi:10.1007/s12035-018-1191-9
    1. Yang L, Dong Y, Wu C, et al. Photobiomodulation preconditioning prevents cognitive impairment in a neonatal rat model of hypoxia‐ischemia. J Biophotonics. 2019;12(6):e201800359. doi:10.1002/jbio.2019.12.issue-6
    1. Tanaka Y, Akiyoshi J, Kawahara Y, et al. Infrared radiation has potential antidepressant and anxiolytic effects in animal model of depression and anxiety. Brain Stimul. 2011;4(2):71–76. doi:10.1016/j.brs.2010.04.001
    1. Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics. 2015;8(6):502–511. doi:10.1002/jbio.201400069
    1. Yang L, Tucker D, Dong Y, et al. Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Exp Neurol. 2018;299(Pt A):86–96. doi:10.1016/j.expneurol.2017.10.013
    1. Mohammed HS. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med Sci. 2016;31(8):1651–1656. doi:10.1007/s10103-016-2033-5
    1. Salehpour F, Rasta SH, Mohaddes G, Sadigh-Eteghad S, Salarirad S. Therapeutic effects of 10‐HzPulsed wave lasers in rat depression model: A comparison between near‐infrared and red wavelengths. Lasers Surg Med. 2016;48(7):695–705. doi:10.1002/lsm.v48.7
    1. Salehpour F, Rasta SH, Mohaddes G, Sadigh-Eteghad S, Salarirad S. A comparison between antidepressant effects of transcranial near-infrared laser and citalopram in a rat model of depression. Clin Transl Neurophotonics. 2017;10050 Available from: Accessed October 30, 2019.
    1. Wu X, Alberico SL, Moges H, De Taboada L, Tedford CE. Pulsed light irradiation improves behavioral outcome in a rat model of chronic mild stress. Lasers Surg Med. 2012;44(3):227–232. doi:10.1002/lsm.v44.3
    1. Ando T, Xuan W, Xu T, et al. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One. 2011;6(10). doi:10.1371/journal.pone.0026212.
    1. Schiffer F, Johnston AL, Ravichandran C, et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct. 2009;5:46. doi:10.1186/1744-9081-5-46
    1. Naeser MA, Zafonte R, Krengel MH, et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J Neurotrauma. 2014;31(11):1008–1017. doi:10.1089/neu.2013.3244
    1. Cassano P, Cusin C, Mischoulon D, et al. Near-Infrared Transcranial Radiation for Major Depressive Disorder: proof of Concept Study. Psychiatry J. 2015;2015:352979. doi:10.1155/2015/352979
    1. Morries LD, Cassano P, Henderson TA. Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr Dis Treat. 2015;11:2159–2175. doi:10.2147/NDT.S65809
    1. Henderson TA, Morries LD. Multi-watt near-infrared phototherapy for the treatment of comorbid depression: an open-label single-arm study. Front Psychiatry. 2017;8:187. doi:10.3389/fpsyt.2017.00187
    1. Disner SG, Beevers CG, Gonzalez-Lima F. Transcranial Laser Stimulation as Neuroenhancement for Attention Bias Modification in Adults with Elevated Depression Symptoms. Brain Stimul. 2016;9(5):780–787. doi:10.1016/j.brs.2016.05.009
    1. Yang W, Ding Z, Dai T, Peng F, Zhang JX. Attention Bias Modification training in individuals with depressive symptoms: A randomized controlled trial. J Behav Ther Exp Psychiatry. 2014;49:101–111. doi:10.1016/j.jbtep.2014.08.005
    1. Cassano P, Petrie SR, Mischoulon D, et al. Transcranial Photobiomodulation for the Treatment of Major Depressive Disorder. The ELATED-2 Pilot Trial. Photomed Laser Surg. 2018;36:12. doi:10.1089/pho.2018.4490
    1. Henderson TA, Morries LD. SPECT perfusion imaging demonstrates improvement of traumatic brain injury with transcranial near-infrared laser phototherapy. Adv Mind Body Med. 2015;29(4):27–33.
    1. Caldieraro MA, Sani G, Bui E, Cassano P. Long-Term Near-Infrared Photobiomodulation for Anxious Depression Complicated by Takotsubo Cardiomyopathy. J Clin Psychopharmacol. 2018;38(3):268–270. doi:10.1097/JCP.0000000000000883
    1. Zhang B, Wenyou M, Baoting Z, Shuling L. A control study of clinical therapeutic effects of laser acupuncture on depressive neurosis. World J Acupuncture Moxibustion. 1996;6(2):12–17.
    1. Quah-Smith JI, Tang WM, Russell J. Laser acupuncture for mild to moderate depression in a primary care setting–a randomised controlled trial. Acupunct Med. 2005;23(3):103–111. doi:10.1136/aim.23.3.103
    1. Quah-Smith I, Smith C, Crawford JD, Russell J. Laser acupuncture for depression: a randomised double blind controlled trial using low intensity laser intervention. J Affect Disord. 2013;148(2–3):179–187. doi:10.1016/j.jad.2012.11.058
    1. Gabel CP, Petrie SR, Mischoulon D, et al. A case control series for the effect of photobiomodulation in patients with low back pain and concurrent depression. Laser Ther. 2018;27(3):167–173. doi:10.5978/islsm.27_18-OR-18
    1. Caldieraro MA, Cassano P. Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms. J Affect Disord. 2019;243(15):262–273. doi:10.1016/j.jad.2018.09.048
    1. Huisa BN, Stemer AB, Walker MG, Rapp K, Meyer BC, Zivin JA. Transcranial laser therapy for acute ischemic stroke: a pooled analysis of NEST-1 and NEST-2. Int J Stroke. 2013;8(5):315–320. doi:10.1111/j.1747-4949.2011.00754.x
    1. Lampl Y, Zivin JA, Fisher M, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy. Stroke. 2007;38(6):1843–1849. doi:10.1161/STROKEAHA.106.478230
    1. Hacke W, Schellinger PD, Albers GW. Transcranial laser therapy in acute stroke treatment: results of neurothera effectiveness and safety trial 3, a phase III clinical end point device trial. Stroke. 2014;45(11):3187–3193. doi:10.1161/STROKEAHA.114.005795
    1. Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs light emitting diodes? Photochem Photobiol Sci. 2018;17(8):1003–1017. doi:10.1039/C8PP00176F
    1. Hode L. The importance of the coherency. Photomed Laser Surg. 2005;23(4):431–434. doi:10.1089/pho.2005.23.431
    1. Fixler D, Duadi H, Ankri R, Zalevsky Z. Determination of coherence length in biological tissues. Lasers Surg Med. 2011;43(4):339–343. doi:10.1002/lsm.21047
    1. Leal Junior EC, Lopes-Martins RA, Baroni BM, et al. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. 2009;27(4):617–623. doi:10.1089/pho.2008.2350
    1. Sato K, Watanabe R, Hanaoka H, Nakajima T, Choyke PL, Kobayashi H. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy. Oncotarget. 2016;7(12):14324–14335. doi:10.18632/oncotarget.v7i12
    1. Hashmi JT, Huang YY, Sharma SK, et al. Effect of pulsing in low-level light therapy. Lasers Surg Med. 2010;42(6):450–466. doi:10.1002/lsm.20950
    1. Lapchak PA, Salgado KF, Chao CH, Zivin JA. Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulsed frequency delivery modes. Neuroscience. 2007;148(4):907–914. doi:10.1016/j.neuroscience.2007.07.002
    1. Lapchak PA, De Taboada L. Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5ʹ-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res. 2010;1306:100–105. doi:10.1016/j.brainres.2009.10.022
    1. Ilic S, Leichliter S, Streeter J, Oron A, DeTaboada L, Oron U. Effects of Power Densities, Continuous and Pulse Frequencies, and Number of Sessions of Low-Level Laser Therapy on Intact Rat Brain. Photomed Laser Surg. 2006;24(4):458–466. doi:10.1089/pho.2006.24.458
    1. Gigo-Benato D, Geuna S, de Castro Rodrigues A, et al. Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med Sci. 2004;19(1):57–65. doi:10.1007/s10103-004-0300-3
    1. Brondon P, Stadler I, Lanzafame RJ. Pulsing influences photoradiation outcomes in cell culture. Lasers Surg Med. 2009;41(3):222–226. doi:10.1002/lsm.v41:3
    1. Karu T. Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg. 2010;28(2):159–160. doi:10.1089/pho.2010.2789

Source: PubMed

3
Tilaa