A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action

Lynne Bell, Daniel J Lamport, Laurie T Butler, Claire M Williams, Lynne Bell, Daniel J Lamport, Laurie T Butler, Claire M Williams

Abstract

Flavonoids are polyphenolic compounds found in varying concentrations in many plant-based foods. Recent studies suggest that flavonoids can be beneficial to both cognitive and physiological health. Long term flavonoid supplementation over a period of weeks or months has been extensively investigated and reviewed, particularly with respect to cognitive ageing and neurodegenerative disease. Significantly less focus has been directed towards the short term effects of single doses of flavonoids on cognition. Here, we review 21 such studies with particular emphasis on the subclass and dose of flavonoids administered, the cognitive domains affected by flavonoid supplementation, and the effect size of the response. The emerging evidence suggests that flavonoids may be beneficial to attention, working memory, and psychomotor processing speed in a general population. Episodic memory effects are less well defined and may be restricted to child or older adult populations. The evidence also points towards a dose-dependent effect of flavonoids, but the physiological mechanisms of action remain unclear. Overall, there is encouraging evidence that flavonoid supplementation can benefit cognitive outcomes within an acute time frame of 0-6 h. But larger studies, combining cognitive and physiological measures, are needed to strengthen the evidence base.

Keywords: cognition; effect size; flavonoid; mechanism; polyphenol.

References

    1. Beecher G.R. Role of Flavonoids in the Diet Overview of Dietary Flavonoids: Nomenclature, Occurrence and Intake 1. J. Nutr. 2003;133:3248S–3254S.
    1. Basu A., Du M., Leyva M.J., Sanchez K., Betts N.M., Wu M., Aston C.E., Lyons T.J. Blueberries Decrease Cardiovascular Risk Factors in Obese Men and Women with Metabolic Syndrome. J. Nutr. 2010;140:1582–1587. doi: 10.3945/jn.110.124701.
    1. Novotny J.A., Baer D.J., Khoo C., Gebauer S.K., Charron C.S. Cranberry Juice Consumption Lowers Markers of Cardiometabolic Risk, Including Blood Pressure and Circulating C-Reactive Protein, Triglyceride, and Glucose Concentrations. J. Nutr. 2015;145:1183–1191. doi: 10.3945/jn.114.203190.
    1. Cherniack E.P. A berry thought-provoking idea: The potential role of plant polyphenols in the treatment of age-related cognitive disorders. Br. J. Nutr. 2012;108:794–800. doi: 10.1017/S0007114512000669.
    1. Mecocci P., Tinarelli C., Schulz R.J., Polidori M.C. Nutraceuticals in cognitive impairment and Alzheimer’s disease. Front. Pharmacol. 2014;5 doi: 10.3389/fphar.2014.00147.
    1. Shukitt-Hale B. Blueberries and neuronal aging. Gerontology. 2012;58:518–523. doi: 10.1159/000341101.
    1. Solanki I., Parihar P., Mansuri M.L., Parihar M.S. Flavonoid-Based Therapies in the Early Management of Neurodegenerative Diseases. Adv. Nutr. 2015;6:64–72. doi: 10.3945/an.114.007500.
    1. Williams R.J., Spencer J.P.E. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic. Biol. Med. 2012;52:35–45. doi: 10.1016/j.freeradbiomed.2011.09.010.
    1. Lau F.C., Shukitt-hale B., Joseph J.A. Beneficial effects of berry fruit polyphenols on neuronal and behavioral aging. J. Sci. Food Agric. 2006;86:2251–2255. doi: 10.1002/jsfa.2671.
    1. Lamport D.J., Dye L., Wightman J.D., Lawton C.L., Sciences P., Lane W. The effects of flavonoid and other polyphenol consumption on cognitive performance: A systematic research review of human experimental and epidemiological studies. Nutr. Ageing. 2012;1:5–25.
    1. Macready A.L., Kennedy O.B., Ellis J.A., Williams C.M., Spencer J.P.E., Butler L.T. Flavonoids and cognitive function: A review of human randomized controlled trial studies and recommendations for future studies. Genes Nutr. 2009;4:227–242. doi: 10.1007/s12263-009-0135-4.
    1. Blumberg J.B., Ding E.L., Dixon R., Pasinetti G.M., Villarreal F. The Science of Cocoa Flavanols: Bioavailability, Emerging Evidence, and Proposed Mechanisms. Adv. Nutr. 2014;5:547–549. doi: 10.3945/an.114.006478.
    1. Lamport D.J., Saunders C., Butler L.T., Spencer J.P. Fruits, vegetables, 100% juices, and cognitive function. Nutr. Rev. 2014;72:774–789. doi: 10.1111/nure.12149.
    1. Miller M.G., Shukitt-Hale B. Berry Fruit Enhances Beneficial Signaling in the Brain. J. Agric. Food Chem. 2012;60:5709–5715. doi: 10.1021/jf2036033.
    1. Poulose S.M., Carey A.N., Shukitt-Hale B. Improving brain signaling in aging: Could berries be the answer? Expert Rev. Neurother. 2012;12:887–889. doi: 10.1586/ern.12.86.
    1. Rendeiro C., Guerreiro J.D.T., Williams C., Spencer J. Flavonoids as modulators of memory and learning: Molecular interactions resulting in behavioural effects. Proc. Nutr. Soc. 2012;71:246–262. doi: 10.1017/S0029665112000146.
    1. Scholey A., Owen L. Effects of chocolate on cognitive function and mood: A systematic review. Nutr. Rev. 2013;71:665–681. doi: 10.1111/nure.12065.
    1. Spencer J.P.E. Food for thought: The role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc. Nutr. Soc. 2008;67:238–252. doi: 10.1017/S0029665108007088.
    1. Spencer J.P.E. The impact of fruit flavonoids on memory and cognition. Br. J. Nutr. 2010;104:S40–S47. doi: 10.1017/S0007114510003934.
    1. Vauzour D. Effect of flavonoids on learning, memory and neurocognitive performance: Relevance and potential implications for Alzheimer’s disease pathophysiology. J. Sci. Food Agric. 2014;94:1042–1056. doi: 10.1002/jsfa.6473.
    1. Lamport D.J., Pal D., Macready A.L., Boucas S.B., Fletcher J.M., Williams C.M., Spencer J.P.E., Butler L.T. The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: An acute, randomised, placebo controlled crossover trial in healthy young adults. Psychopharmacology. 2015 submitted for publication.
    1. Lipsey M.W., Wilson D.B. Practical Meta-Analysis. 1st ed. SAGE Publications, Inc.; Thousand Oaks, CA, USA: 2000.
    1. Bhagwat S., Haytowitz D.B., Holden J.M. USDA Database for the Flavonoid Content of Selected Foods, Release 3.1. U.S. Department of Agriculture; Beltsville, MD, USA: 2014.
    1. Clostre F. Ginkgo biloba extract (EGb 761). State of knowledge in the dawn of the year 2000. Ann. Pharm. Fr. 1999;57:1S8–1S88.
    1. Dodd G.F. Ph.D. Thesis. University of Reading; Reading, UK: 2012. The Acute Effects of Flavonoid-Rich Blueberries on Cognitive Function in Healthy Younger and Older Adults.
    1. Whyte A.R., Williams C.M. Effects of a single dose of a flavonoid-rich blueberry drink on memory in 8 to 10 years old children. Nutrition. 2015;31:531–534. doi: 10.1016/j.nut.2014.09.013.
    1. Whyte A.R., Schafer G., Williams C.M. Cognitive effects following acute wild blueberry supplementation on 7- to 10-year-old children. Eur. J. Nutr. 2015 doi: 10.1007/s00394-015-1029-4.
    1. Rodriguez-Mateos A., Cifuentes-Gomez T., Tabatabaee S., Lecras C., Spencer J.P.E. Procyanidin, anthocyanin, and chlorogenic Acid contents of highbush and lowbush blueberries. J. Agric. Food Chem. 2012;60:5772–5778. doi: 10.1021/jf203812w.
    1. Rodriguez-Mateos A., George T., Heiss C., Spencer J. Impact of processing on the bioavailability and vascular effects of blueberry (poly)phenols. FASEB J. 2014;28:1952–1961. doi: 10.1002/mnfr.201400231.
    1. Watson A.W., Haskell-Ramsay C.F., Kennedy D.O., Cooney J.M., Trower T., Scheepens A. Acute supplementation with blackcurrant extracts modulates cognitive functioning and inhibits monoamine oxidase-B in healthy young adults. J. Funct. Foods. 2015;17:524–539. doi: 10.1016/j.jff.2015.06.005.
    1. Hendrickson S.J., Mattes R.D. No acute effects of grape juice on appetite, implicit memory and mood. Food Nutr. Res. 2008;52:1–5. doi: 10.3402/fnr.v52i0.1891.
    1. Caldwell K., Charlton K.E., Roodenrys S., Jenner A. Anthocyanin-rich cherry juice does not improve acute cognitive performance on RAVLT. Nutr. Neurosci. 2015 doi: 10.1179/1476830515Y.0000000005.
    1. Alharbi M.H., Lamport D.J., Dodd G.F., Saunders C., Harkness L., Butler L.T., Spencer J.P.E. Flavonoid rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males. Eur. J. Neurosci. 2015 doi: 10.1007/s00394-015-1016-9.
    1. Bondonno C.P., Downey L.A., Croft K.D., Scholey A., Stough C., Yang X., Considine M.J., Ward N.C., Puddey I.B., Swinny E., et al. The acute effect of flavonoid-rich apples and nitrate-rich spinach on cognitive performance and mood in healthy men and women. Food Funct. 2014;5:849–858. doi: 10.1039/c3fo60590f.
    1. Scholey A.B., French S.J., Morris P.J., Kennedy D.O., Milne A.L., Haskell C.F. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J. Psychopharmacol. 2010;24:1505–1514. doi: 10.1177/0269881109106923.
    1. Pase M.P., Scholey A.B., Pipingas A., Kras M., Nolidin K., Gibbs A., Wesnes K., Stough C. Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. J. Psychopharmacol. 2013;27:451–458. doi: 10.1177/0269881112473791.
    1. Field D.T., Williams C.M., Butler L.T. Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol. Behav. 2011;103:255–260. doi: 10.1016/j.physbeh.2011.02.013.
    1. Wightman E.L., Haskell C.F., Forster J.S., Veasey R.C., Kennedy D.O. Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: A double-blind, placebo-controlled, crossover investigation. Hum. Psychopharmacol. 2012;27:177–186. doi: 10.1002/hup.1263.
    1. Scholey A., Downey L.A., Ciorciari J., Pipingas A., Nolidin K., Finn M., Wines M., Catchlove S., Terrens A., Barlow E., et al. Acute neurocognitive effects of epigallocatechin gallate (EGCG) Appetite. 2012;58:767–770. doi: 10.1016/j.appet.2011.11.016.
    1. Camfield D.A., Stough C., Farrimond J., Scholey A.B. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: A systematic review and meta-analysis. Nutr. Rev. 2014;72:507–522. doi: 10.1111/nure.12120.
    1. Mahadevan S., Park Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J. Food Sci. 2008;73:R14–R19. doi: 10.1111/j.1750-3841.2007.00597.x.
    1. Warot D., Lacomblez L., Danjou P., Weiller E., Payan C., Puech A.J. Comparative effects of ginkgo biloba extracts on psychomotor performances and memory in healthy subjects. Therapie. 1991;46:33–36.
    1. Subhan Z., Hindmarch I. The psychopharmacological effects of Ginkgo biloba extract in normal healthy volunteers. Int. J. Clin. Pharmacol. Res. 1984;4:89–93.
    1. Nathan P.J., Ricketts E., Wesnes K., Mrazek L., Greville W., Stough C. The acute nootropic effects of Ginkgo biloba in healthy older human subjects: A preliminary investigation. Hum. Psychopharmacol. 2002;17:45–49. doi: 10.1002/hup.353.
    1. Kennedy D.O., Scholey A.B., Wesnes K.A. The dose-dependent cognitive effects of acute administration of Ginkgo biloba to healthy young volunteers. Psychopharmacology. 2000;151:416–423. doi: 10.1007/s002130000501.
    1. Kennedy D.O., Scholey A.B., Wesnes K.A. Modulation of cognition and mood following administration of single doses of Ginkgo biloba, ginseng, and a ginkgo/ginseng combination to healthy young adults. Physiol. Behav. 2002;75:739–751. doi: 10.1016/S0031-9384(02)00665-0.
    1. Elsabagh S., Hartley D.E., Ali O., Williamson E.M., File S.E. Differential cognitive effects of Ginkgo biloba after acute and chronic treatment in healthy young volunteers. Psychopharmacology. 2005;179:437–446. doi: 10.1007/s00213-005-2206-6.
    1. Kennedy D.O., Jackson P.A., Haskell C.F., Scholey A.B. Modulation of cognitive performance following single doses of 120 mg Ginkgo biloba extract administered to healthy young volunteers. Hum. Psychopharmacol. 2007;22:559–566. doi: 10.1002/hup.885.
    1. Rodriguez-mateos A., Rendeiro C., Bergillos-meca T., Tabatabaee S., George T.W., Heiss C., Spencer J.P.E. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: A randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am. J. Clin. Nutr. 2013;98:1179–1191. doi: 10.3945/ajcn.113.066639.
    1. Schroeter H., Heiss C., Balzer J., Kleinbongard P., Keen C.L., Hollenberg N.K., Sies H., Kwik-Uribe C., Schmitz H.H., Kelm M. (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA. 2006;103:1024–1029. doi: 10.1073/pnas.0510168103.
    1. Wang J.F., Schramm D.D., Holt R.R., Ensunsa J.L., Fraga C.G., Schmitz H.H., Keen C.L. A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J. Nutr. 2000;130:2115S–2119S.
    1. Holt R.R., Lazarus S.A., Cameron Sullards M., Zhu Q.Y., Schramm D.D., Hammerstone J.F., Fraga C.G., Schmitz H.H., Keen C.L. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J. Clin. Nutr. 2002;76:798–804.
    1. Rein D., Lotito S., Holt R.R., Keen C.L., Schmitz H.H., Fraga C.G. Epicatechin in human plasma: In vivo determination and effect of chocolate consumption on plasma oxidation status. J. Nutr. 2000;130:2109S–2114S.
    1. Graefe E.U., Wittig J., Mueller S., Riethling A.K., Uehleke B., Drewelow B., Pforte H., Jacobasch G., Derendorf H., Veit M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 2001;41:492–499. doi: 10.1177/00912700122010366.
    1. Manach C., Williamson G., Morand C., Scalbet A., Remesy C. Bioavailability and bioefficacy of polyphenols in humans.I.Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005;81:230S–242S.
    1. Dohadwala M.M., Holbrook M., Hamburg N.M., Shenouda S.M., Chung W.B., Titas M., Kluge M.A., Wang N., Palmisano J., Milbury P.E., et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am. J. Clin. Nutr. 2011;93:934–940. doi: 10.3945/ajcn.110.004242.
    1. Monahan K.D., Feehan R.P., Kunselman A.R., Preston A.G., Miller D.L., Lott M.E.J. Dose-dependent increases in flow-mediated dilation following acute cocoa ingestion in healthy older adults. J. Appl. Physiol. 2011;111:1568–1574. doi: 10.1152/japplphysiol.00865.2011.
    1. Alexopoulos N., Vlachopoulos C., Aznaouridis K., Baou K., Vasiliadou C., Pietri P., Xaplanteris P., Stefanadi E., Stefanadis C. The acute effect of green tea consumption on endothelial function in healthy individuals. Eur. J. Cardiovasc. Prev. Rehabil. 2008;15:300–305. doi: 10.1097/HJR.0b013e3282f4832f.
    1. Widlansky M.E., Hamburg N.M., Anter E., Holbrook M., Kahn D.F., Elliott J.G., Keaney J.F., Vita J.A. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J. Am. Coll. Nutr. 2007;26:95–102. doi: 10.1080/07315724.2007.10719590.
    1. Morand C., Dubray C., Milenkovic D., Lioger D., Franc J., Scalbert A. Hesperidin contributes to the vascular protective effects of orange juice: A randomized crossover study in healthy volunteers. Am. J. Clin. Nutr. 2011;93:73–80. doi: 10.3945/ajcn.110.004945.
    1. Francis S.T., Head K., Morris P.G., Macdonals I.A. The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J. Cardiovasc. Pharmacol. 2006;47:S215–S220. doi: 10.1097/00005344-200606001-00018.
    1. Borgwardt S., Hammann F., Scheffler K., Kreuter M., Drewe J., Beglinger C. Neural effects of green tea extract on dorsolateral prefrontal cortex. Eur. J. Clin. Nutr. 2012;66:1187–1192. doi: 10.1038/ejcn.2012.105.
    1. Ruitenberg A., den Heijer T., Bakker S.L.M., van Swieten J.C., Koudstaal P.J., Hofman A., Breteler M.M.B. Cerebral hypoperfusion and clinical onset of dementia: The Rotterdam Study. Ann. Neurol. 2005;57:789–794. doi: 10.1002/ana.20493.
    1. Mozolic J.L., Hayasaka S., Laurienti P.J. A cognitive training intervention increases resting cerebral blood flow in healthy older adults. Front. Hum. Neurosci. 2010;4 doi: 10.3389/neuro.09.016.2010.
    1. Loke W.M., Hodgson J.M., Proudfoot J.M., McKinley A.J., Puddey I.B., Croft K.D. Pure dietary flavonoids quercetin and (−)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr. 2008;88:1018–1025.
    1. Ciani E., Guidi S., Bartesaghi R., Contestabile A. Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: Implication for a survival role of nitric oxide. J. Neurochem. 2002;82:1282–1289. doi: 10.1046/j.1471-4159.2002.01080.x.
    1. Stoclet J.-C., Chataigneau T., Ndiaye M., Oak M.-H., El Bedoui J., Chataigneau M., Schini-Kerth V.B. Vascular protection by dietary polyphenols. Eur. J. Pharmacol. 2004;500:299–313. doi: 10.1016/j.ejphar.2004.07.034.
    1. Chen J., Zacharek A., Zhang C., Jiang H., Li Y., Roberts C., Lu M., Kapke A., Chopp M. Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J. Neurosci. 2005;25:2366–2375. doi: 10.1523/JNEUROSCI.5071-04.2005.
    1. Chung K.K.K., David K.K. Emerging roles of nitric oxide in neurodegeneration. Nitric Oxide. 2010;22:290–295. doi: 10.1016/j.niox.2010.02.002.
    1. Cárdenas A., Moro M.A., Hurtado O., Leza J.C., Lizasoain I. Dual role of nitric oxide in adult neurogenesis. Brain Res. Brain Res. Rev. 2005;50:1–6. doi: 10.1016/j.brainresrev.2005.03.006.
    1. Törrönen R., Sarkkinen E., Tapola N., Hautaniemi E., Kilpi K., Niskanen L. Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br. J. Nutr. 2010;103:1094–1097. doi: 10.1017/S0007114509992868.
    1. Wilson T., Singh A.P., Vorsa N., Goettl C.D., Kittleson K.M., Roe C.M., Kastello G.M., Ragsdale F.R. Human glycemic response and phenolic content of unsweetened cranberry juice. J. Med. Food. 2008;11:46–54. doi: 10.1089/jmf.2007.531.
    1. Benton D., Owens D.S., Parker P.Y. Blood glucose influences memory and attention in young adults. Neuropsychologia. 1994;32:595–607. doi: 10.1016/0028-3932(94)90147-3.
    1. Kennedy D.O., Scholey A.B. Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort. Psychopharmacology. 2000;149:63–71. doi: 10.1007/s002139900335.
    1. Jones E.K., Sünram-Lea S.I., Wesnes K.A. Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults. Biol. Psychol. 2012;89:477–486. doi: 10.1016/j.biopsycho.2011.12.017.
    1. Cox K.H., Pipingas A., Scholey A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol. 2015;29:624–651. doi: 10.1177/0269881114552744.
    1. Jäger A.K., Saaby L. Flavonoids and the CNS. Molecules. 2011;16:1471–1485. doi: 10.3390/molecules16021471.
    1. Spencer J.P.E., Vauzour D., Rendeiro C. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects. Arch. Biochem. Biophys. 2009;492:1–9. doi: 10.1016/j.abb.2009.10.003.
    1. Szuhany K.L., Bugatti M., Otto M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 2015;60:56–64. doi: 10.1016/j.jpsychires.2014.10.003.
    1. Bekinschtein P., Cammarota M., Izquierdo I., Medina J.H. BDNF and memory formation and storage. Neuroscientist. 2008;14:147–156. doi: 10.1177/1073858407305850.
    1. Bramham C.R., Messaoudi E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis. Prog. Neurobiol. 2005;76:99–125. doi: 10.1016/j.pneurobio.2005.06.003.
    1. Kalt W., Hanneken A., Milbury P., Tremblay F. Recent research on polyphenolics in vision and eye health. J. Agric. Food Chem. 2010;58:4001–4007. doi: 10.1021/jf903038r.
    1. Field D.T., Bell L., Mount S.W., Willliams C.M., Butler L.T. Flavonoids and visual function: Observations and hypotheses. In: Preedy V.R., editor. Handbook of Nutrition, Diet, and the Eye. Academic Press; Oxford, UK: 2014. pp. 403–411.
    1. Baltes P.B., Lindenberger U. Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychol. Aging. 1997;12:12–21. doi: 10.1037/0882-7974.12.1.12.

Source: PubMed

3
Tilaa