Treatment with n-3 polyunsaturated fatty acids overcomes the inverse association of vitamin D deficiency with inflammation in severely obese patients: a randomized controlled trial

Bianca K Itariu, Maximilian Zeyda, Lukas Leitner, Rodrig Marculescu, Thomas M Stulnig, Bianca K Itariu, Maximilian Zeyda, Lukas Leitner, Rodrig Marculescu, Thomas M Stulnig

Abstract

Obesity affects the vitamin D status in humans. Vitamin D and long-chain n-3 polyunsaturated fatty acids (PUFA) provide benefit for the prevention of fractures and cardiovascular events, respectively, and both are involved in controlling inflammatory and immune responses. However, published epidemiological data suggest a potential interference of n-3 PUFA supplementation with vitamin D status. Therefore, we aimed to investigate in a randomized controlled clinical trial whether treatment with long chain n-3 PUFA affects vitamin D status in severely obese patients and potential interrelations of vitamin D and PUFA treatment with inflammatory parameters. Fifty-four severely obese (BMI ≥ 40 kg/m2) non-diabetic patients were treated for eight weeks with either 3.36 g/d EPA and DHA or the same amount of butter fat as control. Changes in serum 25-hydroxy-vitamin D [25(OH)D] concentrations, plasma fatty acid profiles and circulating inflammatory marker concentrations from baseline to end of treatment were assessed. At baseline 43/54 patients were vitamin D deficient (serum 25(OH)D concentration <50 nmol/l). Treatment with n-3 PUFA did not affect vitamin D status (P = 0.91). Serum 25(OH)D concentration correlated negatively with both IL-6 (P = 0.02) and hsCRP serum concentration (P = 0.03) at baseline. Strikingly, the negative correlations of 25(OH)D with IL-6 and hsCRP were lost after n-3 PUFA treatment. In conclusion, vitamin D status of severely obese patients remained unaffected by n-3 PUFA treatment. However, abrogation of the inverse association of 25(OH)D concentration with inflammatory markers indicated that n-3 PUFA treatment could compensate for some detrimental consequences of vitamin D deficiency.

Trial registration: ClinicalTrials.gov NCT00760760.

Conflict of interest statement

Competing Interests: The authors declare Solvay Pharma, Austria, as a commercial funder. The corresponding author had a consultancy agreement with a company that purchased Solvay Pharma. No other authors have any relevant declarations relating to employment, consultancy, patents, products in development or marketed products, etc.. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. CONSORT flowchart, adapted from .
Figure 1. CONSORT flowchart, adapted from .
Figure 2. Vitamin D, n-3 PUFA and…
Figure 2. Vitamin D, n-3 PUFA and inflammation.
A, B. Correlations of serum 25(OH)D concentrations with IL-6 and EPA in severely obese patients at baseline. Serum 25(OH)D concentrations of obese patients (n = 54), plotted against (A) plasma IL-6 concentration and (B) eicosapentaenoic acid (EPA) in plasma phospholipids at baseline. Statistical analysis was performed by Spearman's rank correlation test. C. The effect of long chain n-3 PUFA treatment on serum 25(OH)D concentrations. The difference (Δ) between serum 25(OH)D concentration at the end of treatment vs. its baseline value in both n-3 PUFA treated patients (n = 26) and controls (n = 28) was not statistically significant (P = 0.58 in ANOVA). D, E. Correlation of serum 25(OH)D concentrations with IL-6 in severely obese n-3 PUFA and control treated patients at study end. Serum 25(OH)D concentration of (D) n-3 PUFA treated patients (n = 26) and (E) controls (n = 28) plotted against plasma IL-6 concentration at the end of the intervention. Statistical analysis was performed by Spearman's rank correlation.

References

    1. DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80: 1689S–1696S.
    1. Kannus P, Uusi-Rasi K, Palvanen M, Parkkari J (2005) Non-pharmacological means to prevent fractures among older adults. Ann Med 37: 303–310.
    1. Verstuyf A, Carmeliet G, Bouillon R, Mathieu C (2011) Vitamin D: a pleiotropic hormone. Kidney Int 78: 140–145.
    1. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, et al. (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96: 1911–1930.
    1. Carriere I, Delcourt C, Lacroux A, Gerber M (2007) Nutrient intake in an elderly population in southern France (POLANUT): deficiency in some vitamins, minerals and omega-3 PUFA. Int J Vitam Nutr Res 77: 57–65.
    1. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357: 266–281.
    1. Pearce SH, Cheetham TD (2010) Diagnosis and management of vitamin D deficiency. Bmj 340: b5664.
    1. Bouillon R, van Baelen H, de Moor P (1977) The measurement of the vitamin D-binding protein in human serum. J Clin Endocrinol Metab 45: 225–231.
    1. Song X, Pitkaniemi J, Gao W, Heine RJ, Pyorala K, et al. (2011) Relationship between body mass index and mortality among Europeans. Eur J Clin Nutr 66: 156–165.
    1. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, et al. (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28: 1039–1049.
    1. Zeyda M, Stulnig TM (2009) Obesity, inflammation, and insulin resistance–a mini-review. Gerontology 55: 379–386.
    1. Forouhi NG, Ye Z, Rickard AP, Khaw KT, Luben R, et al. (2012) Circulating 25-hydroxyvitamin D concentration and the risk of type 2 diabetes: results from the European Prospective Investigation into Cancer (EPIC)-Norfolk cohort and updated meta-analysis of prospective studies. Diabetologia 55: 2173–2182.
    1. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444: 860–867.
    1. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, et al. (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378: 804–814.
    1. Mertens PR, Muller R (2010) Vitamin D and cardiovascular risk. Int Urol Nephrol 42: 165–171.
    1. Soni M, Kos K, Lang IA, Jones K, Melzer D, et al. (2012) Vitamin D and cognitive function. Scand J Clin Lab Invest Suppl 243: 79–82.
    1. Holick MF (2004) Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 79: 362–371.
    1. Naesgaard PA, Leon De La Fuente RA, Nilsen ST, Woie L, Aarsland T, et al. (2012) Serum 25(OH)D is a 2-year predictor of all-cause mortality, cardiac death and sudden cardiac death in chest pain patients from Northern Argentina. PLoS One 7: e43228.
    1. Karakas M, Thorand B, Zierer A, Huth C, Meisinger C, et al. (2012) Low Levels of Serum 25-Hydroxyvitamin D Are Associated with Increased Risk of Myocardial Infarction, Especially in Women: Results from the MONICA/KORA Augsburg Case-Cohort Study. J Clin Endocrinol Metab Published online before print November 12, 2012, doi:.
    1. Calder PC (2009) Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie 91: 791–795.
    1. Itariu BK, Zeyda M, Hochbrugger EE, Neuhofer A, Prager G, et al. (2012) Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am J Clin Nutr 96: 1137–1149.
    1. Niramitmahapanya S, Harris SS, Dawson-Hughes B (2011) Type of dietary fat is associated with the 25-hydroxyvitamin D3 increment in response to vitamin D supplementation. J Clin Endocrinol Metab 96: 3170–3174.
    1. Vickers AJ, Altman DG (2001) Statistics notes: Analysing controlled trials with baseline and follow up measurements. Bmj 323: 1123–1124.
    1. Pitroda AP, Harris SS, Dawson-Hughes B (2009) The association of adiposity with parathyroid hormone in healthy older adults. Endocrine 36: 218–223.
    1. Grethen E, McClintock R, Gupta CE, Jones R, Cacucci BM, et al. (2011) Vitamin D and hyperparathyroidism in obesity. J Clin Endocrinol Metab 96: 1320–1326.
    1. Manson JE, Bassuk SS, Lee IM, Cook NR, Albert MA, et al. (2012) The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp Clin Trials 33: 159–171.
    1. Andersen S, Laurberg P, Hvingel B, Kleinschmidt K, Heickendorff L, et al. (2012) Vitamin D status in Greenland is influenced by diet and ethnicity: a population-based survey in an Arctic society in transition. Br J Nutr Published online: 08 June 2012, doi:.
    1. Rousseau JH, Kleppinger A, Kenny AM (2009) Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function. J Am Geriatr Soc 57: 1781–1788.
    1. Vieth R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69: 842–856.
    1. Jablonski KL, Chonchol M, Pierce GL, Walker AE, Seals DR (2011) 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hypertension 57: 63–69.
    1. Bellia A, Garcovich C, D'Adamo M, Lombardo M, Tesauro M, et al. (2011) Serum 25-hydroxyvitamin D levels are inversely associated with systemic inflammation in severe obese subjects. Intern Emerg Med Published online 25 March 2011, doi .
    1. Bakker GC, van Erk MJ, Pellis L, Wopereis S, Rubingh CM, et al. (2010) An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr 91: 1044–1059.
    1. Bouwens M, van de Rest O, Dellschaft N, Bromhaar MG, de Groot LC, et al. (2009) Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr 90: 415–424.

Source: PubMed

3
Tilaa