Multi-sensor ecological momentary assessment of behavioral and psychosocial predictors of weight loss following bariatric surgery: study protocol for a multicenter prospective longitudinal evaluation

Stephanie P Goldstein, J Graham Thomas, Sivamainthan Vithiananthan, George A Blackburn, Daniel B Jones, Jennifer Webster, Richard Jones, E Whitney Evans, Jody Dushay, Jon Moon, Dale S Bond, Stephanie P Goldstein, J Graham Thomas, Sivamainthan Vithiananthan, George A Blackburn, Daniel B Jones, Jennifer Webster, Richard Jones, E Whitney Evans, Jody Dushay, Jon Moon, Dale S Bond

Abstract

Background: Bariatric surgery is currently the most effective strategy for producing significant and durable weight loss. Yet, not all patients achieve initial weight loss success and some degree of weight regain is very common, sometimes as early as 1-2 years post-surgery. Suboptimal weight loss not fully explained by surgical, demographic, and medical factors has led to greater emphasis on patient behaviors evidenced by clinical guidelines for appropriate eating and physical activity. However, research to inform such guidelines has often relied on imprecise measures or not been specific to bariatric surgery. There is also little understanding of what psychosocial factors and environmental contexts impact outcomes. To address research gaps and measurement limitations, we designed a protocol that innovatively integrates multiple measurement tools to determine which behaviors, environmental contexts, and psychosocial factors are related to outcomes and explore how psychosocial factors/environmental contexts influence weight. This paper provides a detailed description of our study protocol with a focus on developing and deploying a multi-sensor assessment tool to meet our study aims.

Methods: This NIH-funded prospective cohort study evaluates behavioral, psychosocial, and environmental predictors of weight loss after bariatric surgery using a multi-sensor platform that integrates objective sensors and self-report information collected via smartphone in real-time in patients' natural environment. A target sample of 100 adult, bariatric surgery patients (ages 21-70) use this multi-sensor platform at preoperative baseline, as well as 3, 6, and 12 months postoperatively, to assess recommended behaviors (e.g., meal frequency, physical activity), psychosocial indicators with prior evidence of an association with surgical outcomes (e.g., mood/depression), and key environmental factors (e.g., type/quality of food environment). Weight also is measured at each assessment point.

Discussion: This project has the potential to build a more sophisticated and valid understanding of behavioral and psychosocial factors contributing to success and risk after bariatric surgery. This new understanding could directly contribute to improved (i.e., specific, consistent, and validated) guidelines for recommended pre- and postoperative behaviors, which could lead to improved surgical outcomes. These data will also inform behavioral, psychosocial, and environmental targets for adjunctive interventions to improve surgical outcomes.

Trial registration: Registered trial NCT02777177 on 5/19/2016.

Keywords: Bariatric surgery; Diet; Ecological momentary assessment; Obesity; Physical activity; Technology; Weight loss.

Conflict of interest statement

All participants provided written consent to participate in this study. Study procedures and consent were approved by The Miriam Hospital Institutional Review Board in Providence, Rhode Island (board reference number: 211215 45CFR 46.110(4)(7)) and Beth Israel Deaconess Medical Center in Boston, Massachusetts (IRB #2015P000407​).Not applicable.JM is President of MEI Research, Ltd., which is the company that developed the PiLR Health system described in this manuscript. The remainder of the authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study Timeline
Fig. 2
Fig. 2
EMA System and Components

References

    1. Chang S-H, Stoll CR, Song J, Varela JE, Eagon CJ, Colditz GA. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA surgery. 2014;149(3):275–287. doi: 10.1001/jamasurg.2013.3654.
    1. le Roux CW, Heneghan HM. Bariatric surgery for obesity. Med Clin N Am. 2018;102(1):165–182. doi: 10.1016/j.mcna.2017.08.011.
    1. Angrisani L, Santonicola A, Iovino P, Formisano G, Buchwald H, Scopinaro N. Bariatric surgery worldwide 2013. Obes Surg. 2015;25(10):1822–1832. doi: 10.1007/s11695-015-1657-z.
    1. Yarmush ML, D'Alessandro M, Saeidi N. Regulation of energy homeostasis after gastric bypass surgery. Annu Rev Biomed Eng. 2017;19:459–484. doi: 10.1146/annurev-bioeng-071813-105140.
    1. Adams TD, Davidson LE, Litwin SE, Kolotkin RL, LaMonte MJ, Pendleton RC, Strong MB, Vinik R, Wanner NA, Hopkins PN. Health benefits of gastric bypass surgery after 6 years. Jama. 2012;308(11):1122–1131. doi: 10.1001/2012.jama.11164.
    1. Courcoulas AP, King WC, Belle SH, Berk P, Flum DR, Garcia L, Gourash W, Horlick M, Mitchell JE, Pomp A. Seven-year weight trajectories and health outcomes in the longitudinal assessment of bariatric surgery (LABS) study. JAMA surgery. 2018;153.5:427–34.
    1. Adams TD, Davidson LE, Litwin SE, Kim J, Kolotkin RL, Nanjee MN, Gutierrez JM, Frogley SJ, Ibele AR, Brinton EA. Weight and metabolic outcomes 12 years after gastric bypass. N Engl J Med. 2017;377(12):1143–1155. doi: 10.1056/NEJMoa1700459.
    1. Benoit SC, Hunter TD, Francis DM, De La Cruz-Munoz N. Use of bariatric outcomes longitudinal database (BOLD) to study variability in patient success after bariatric surgery. Obes Surg. 2014;24(6):936–943.
    1. Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM, Heinberg LJ, Kushner R, Adams TD, Shikora S. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & bariatric surgery. Surg Obes Relat Dis. 2013;9(2):159–191. doi: 10.1016/j.soard.2012.12.010.
    1. Bond DS, Thomas JG, Unick JL, Raynor HA, Vithiananthan S, Wing RR. Self-reported and objectively measured sedentary behavior in bariatric surgery candidates. Surg Obes Relat Dis. 2013;9(1):123–128. doi: 10.1016/j.soard.2012.09.008.
    1. Bond DS, Jakicic JM, Unick JL, Vithiananthan S, Pohl D, Roye GD, Ryder BA, Sax HC, Wing RR. Pre-to postoperative physical activity changes in bariatric surgery patients: self report vs. Objective Measures Obesity. 2010;18(12):2395–2397. doi: 10.1038/oby.2010.88.
    1. Thomas JG, Bond DS, Sarwer DB, Wing RR. Technology for behavioral assessment and intervention in bariatric surgery. Surg Obes Relat Dis. 2011;7(4):548–557. doi: 10.1016/j.soard.2011.02.009.
    1. Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annu Rev Clin Psychol. 2008;4:1–32. doi: 10.1146/annurev.clinpsy.3.022806.091415.
    1. Engel SG, Crosby RD, Thomas G, Bond D, Lavender JM, Mason T, Steffen KJ, Green DD, Wonderlich SA. Ecological momentary assessment in eating disorder and obesity research: a review of the recent literature. Curr Psychiatry Rep. 2016;18(4):37. doi: 10.1007/s11920-016-0672-7.
    1. Stone, AA, Shiffman, S. Ecological momentary assessment (EMA) in behavorial medicine. Ann Behav Med. 1994;16(3):199–202.
    1. Bond DS, Thomas JG, Ryder BA, Vithiananthan S, Pohl D, Wing RR. Ecological momentary assessment of the relationship between intention and physical activity behavior in bariatric surgery patients. Int J Behav Med. 2013;20(1):82–87. doi: 10.1007/s12529-011-9214-1.
    1. Thomas JG, Bond DS, Ryder BA, Leahey TM, Vithiananthan S, Roye GD, Wing RR. Ecological momentary assessment of recommended postoperative eating and activity behaviors. Surg Obes Relat Dis. 2011;7(2):206–212. doi: 10.1016/j.soard.2010.10.007.
    1. Bond DS, King WC. The role of physical activity in optimizing bariatric surgery outcomes. In: The ASMBS textbook of bariatric surgery. Edn: Springer; New York. 2014. p. 217–29.
    1. Shiffman S. Designing protocols for ecological momentary assessment. The science of real-time data capture: self-reports in health research. New York: Oxford University Press, Inc; 2007. p. 27–53.
    1. Berglind D, Willmer M, Eriksson U, Thorell A, Sundbom M, Uddén J, Raoof M, Hedberg J, Tynelius P, Näslund E. Longitudinal assessment of physical activity in women undergoing roux-en-Y gastric bypass. Obes Surg. 2015;25(1):119–125. doi: 10.1007/s11695-014-1331-x.
    1. Toth LP, Park S, Springer CM, Feyerabend M, Steeves JA, Bassett DR. Video-recorded validation of wearable step counters under free-living conditions. Med Sci Sports Exerc. 2018;50(6):1315–22.
    1. Blackburn GL, Hutter MM, Harvey AM, Apovian CM, Boulton HR, Cummings S, Fallon JA, Greenberg I, Jiser ME, Jones DB. Expert panel on weight loss surgery: executive report update. Obesity. 2009;17(5):842–862. doi: 10.1038/oby.2008.578.
    1. Poirier P, Cornier M-A, Mazzone T, Stiles S, Cummings S, Klein S, McCullough PA, Fielding CR, Franklin BA. Bariatric surgery and cardiovascular risk factors: a scientific statement from the American Heart Association. Circulation. 2011;123(15):1683–1701. doi: 10.1161/CIR.0b013e3182149099.
    1. Haskell WL, Lee I-M, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081. doi: 10.1161/CIRCULATIONAHA.107.185649.
    1. Kim Y, Welk GJ, Braun SI, Kang M. Extracting objective estimates of sedentary behavior from accelerometer data: measurement considerations for surveillance and research applications. PLoS One. 2015;10(2):e0118078. doi: 10.1371/journal.pone.0118078.
    1. Ford ES, Li C, Wheaton AG, Chapman DP, Perry GS, Croft JB. Sleep duration and body mass index and waist circumference among US adults. Obesity. 2014;22(2):598–607. doi: 10.1002/oby.20558.
    1. Scisco JL, Muth ER, Dong Y, Hoover AW. Slowing bite-rate reduces energy intake: an application of the bite counter device. J Am Diet Assoc. 2011;111(8):1231–1235. doi: 10.1016/j.jada.2011.05.005.
    1. Desendorf J, Bassett DR, Jr, Raynor HA, Coe DP. Validity of the bite counter device in a controlled laboratory setting. Eat Behav. 2014;15(3):502–504. doi: 10.1016/j.eatbeh.2014.06.013.
    1. Scisco JL, Muth ER, Hoover AW. Examining the utility of a bite-count–based measure of eating activity in free-living human beings. J Acad Nutr Diet. 2014;114(3):464–469. doi: 10.1016/j.jand.2013.09.017.
    1. Salley JN, Hoover AW, Wilson ML, Muth ER. Comparison between human and bite-based methods of estimating caloric intake. J Acad Nutr Diet. 2016;116(10):1568–1577. doi: 10.1016/j.jand.2016.03.007.
    1. Wilson ML, Kinsella AJ, Muth ER. Proceedings of the human factors and ergonomics society annual meeting: 2015. Los Angeles, CA: SAGE publications Sage CA; 2015. User compliance rates of a wrist-worn eating activity monitor: the bite counter; pp. 902–906.
    1. Lichtman SW, Pisarska K, Berman ER, Pestone M, Dowling H, Offenbacher E, Weisel H, Heshka S, Matthews DE, Heymsfield SB. Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N Engl J Med. 1992;327(27):1893–1898. doi: 10.1056/NEJM199212313272701.
    1. Jasper PW, James MT, Hoover AW, Muth ER. Effects of bite count feedback from a wearable device and goal setting on consumption in young adults. J Acad Nutr Diet. 2016;116(11):1785–1793. doi: 10.1016/j.jand.2016.05.004.
    1. Turner-McGrievy GM, Wilcox S, Boutté A, Hutto BE, Singletary C, Muth ER, Hoover AW. The dietary intervention to enhance tracking with mobile devices (DIET mobile) study: a 6-month randomized weight loss trial. Obesity. 2017;25(8):1336–1342. doi: 10.1002/oby.21889.
    1. Stunkard AJ, Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res. 1985;29(1):71–83. doi: 10.1016/0022-3999(85)90010-8.
    1. Johnson RK, Driscoll P, Goran MI. Comparison of multiple-pass 24-hour recall estimates of energy intake with total energy expenditure determined by the doubly labeled water method in young children. J Am Diet Assoc. 1996;96(11):1140–1144. doi: 10.1016/S0002-8223(96)00293-3.
    1. Overview and Background of the Healthy Eating Index []. Accessed 1 May 2018.
    1. Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser ML, Thompson FE, Potischman N, Guenther PM, Tarasuk V. Addressing current criticism regarding the value of self-report dietary data, 2. J Nutr. 2015;145(12):2639–2645. doi: 10.3945/jn.115.219634.
    1. Van Wormer JJ, French SA, Pereira MA, Welsh EM. The impact of regular self-weighing on weight management: a systematic literature review. Int J Behav Nutr Phys Act. 2008;5(1):54. doi: 10.1186/1479-5868-5-54.
    1. McNair DM, Lorr M, Droppleman LF. Profile of mood states: manual: edits. 1992.
    1. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54(6):1063. doi: 10.1037/0022-3514.54.6.1063.
    1. Brantley PJ, Waggoner CD, Jones GN, Rappaport NB. A daily stress inventory: development, reliability, and validity. J Behav Med. 1987;10(1):61–73. doi: 10.1007/BF00845128.
    1. Wallston KA, Strudler Wallston B, DeVellis R. Development of the multidimensional health locus of control (MHLC) scales. Health Educ Monogr. 1978;6(1):160–170. doi: 10.1177/109019817800600107.
    1. Zimet GD, Dahlem NW, Zimet SG, Farley GK. The multidimensional scale of perceived social support. J Pers Assess. 1988;52(1):30–41. doi: 10.1207/s15327752jpa5201_2.
    1. Thomas JG, Doshi S, Crosby RD, Lowe MR. Ecological momentary assessment of obesogenic eating behavior: combining person-specific and environmental predictors. Obesity. 2011;19(8):1574–1579. doi: 10.1038/oby.2010.335.
    1. Carels RA, Douglass OM, Cacciapaglia HM, O'brien WH. An ecological momentary assessment of relapse crises in dieting. J Consult Clin Psychol. 2004;72(2):341. doi: 10.1037/0022-006X.72.2.341.
    1. Carels RA, Hoffman J, Collins A, Raber AC, Cacciapaglia H, O'Brien WH. Ecological momentary assessment of temptation and lapse in dieting. Eat Behav. 2001;2(4):307–321. doi: 10.1016/S1471-0153(01)00037-X.
    1. Foster GD, Wadden TA, Phelan S, Sarwer DB, Sanderson RS. Obese patients’ perceptions of treatment outcomes and the factors that influence them. Arch Intern Med. 2001;161(17):2133–2139. doi: 10.1001/archinte.161.17.2133.
    1. Foster GD, Wadden TA, Vogt RA, Brewer G. What is a reasonable weight loss? Patients’ expectations and evaluations of obesity treatment outcomes. J Consult Clin Psychol. 1997;65(1):79. doi: 10.1037/0022-006X.65.1.79.
    1. Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure–mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18(2):137. doi: 10.1037/a0031034.
    1. Ware JH, Harrington D, Hunter DJ, D’Agostino RB., Sr . Mass Medical Soc. 2012. Missing data.
    1. Riley WT. Behavioral and social sciences at the National Institutes of Health: adoption of research findings in health research and practice as a scientific priority. Translational behavioral medicine. 2017;7(2):380–384. doi: 10.1007/s13142-017-0474-4.

Source: PubMed

3
Tilaa