Allometric Scaling Approaches for Predicting Human Pharmacokinetic of a Locked Nucleic Acid Oligonucleotide Targeting Cancer-Associated miR-221

Maria Teresa Di Martino, Mariamena Arbitrio, Massimiliano Fonsi, Claudio Alberto Erratico, Francesca Scionti, Daniele Caracciolo, Pierosandro Tagliaferri, Pierfrancesco Tassone, Maria Teresa Di Martino, Mariamena Arbitrio, Massimiliano Fonsi, Claudio Alberto Erratico, Francesca Scionti, Daniele Caracciolo, Pierosandro Tagliaferri, Pierfrancesco Tassone

Abstract

: LNA-i-miR-221 is a novel phosphorothioate backbone 13-mer locked nucleic acid oligonucleotide-targeting microRNA-221 designed for the treatment of human malignancies. To understand the pharmacokinetic properties of this new agent, including unbound/total clearance, we investigated the LNA-i-miR-221 protein binding in three different species, including rat (Sprague-Dawley), monkey (Cynomolgus), and human. To this end, we generated a suitable ultrafiltration method to study the binding of LNA-i-miR-221 to plasma proteins. We identified that the fraction of LNA-i-miR-221 (at concentration of 1 and 10 µM) bound to rat, monkey, and human plasma proteins was high and ranged from 98.2 to 99.05%. This high protein binding of LNA-i-miR-221 to plasma proteins in all the species tested translates into a pharmacokinetic advantage by preventing rapid renal clearance. The integration of these results into multiple allometric interspecies scaling methods was then used to draw inferences about LNA-i-miR-221 pharmacokinetics in humans, thereby providing a framework for definition of safe starting and escalation doses and moving towards a first human clinical trial of LNA-i-miR-221.

Keywords: LNA-i-miR-221; PK; allometric method; first-in-human; locked nucleic acid; oligonucleotide; pharmacokinetic; phosphorothioate; plasma protein binding.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
plasma concentration versus time profiles (sparse sampling) following single intravenous (bolus) administration at 12.5 mg/kg to male and female Sprague-Dawley rats (semi logarithmic scale). Error bars represent standard deviations (n = 3).
Figure 2
Figure 2
plasma concentration versus time profiles following single intravenous (bolus) administration at 8.75 mg/kg to male Cynomolgus Monkey (semi logarithmic scale).
Figure 3
Figure 3
plasma concentration versus time profiles (sparse sampling) following single intravenous (bolus) administration at 25 mg/kg to NOD.SCID mice (semi logarithmic scale). Plasma concentrations at 12h and 24h were below the limit of quantification (LLQ = 25ng/mL). Mouse PK was not used for the allometric extrapolation (see main text for details).
Figure 4
Figure 4
Schematic representation of the methodological approaches and results discussed in the work. Arrows connect the input information used to estimate the corresponding output parameter; references to the applied methods are also cited. Based on the estimated parameters, a short conclusion is reported. Additional details are described in the main text.

References

    1. Di Martino M.T., Rossi M., Caracciolo D., Gulla A., Tagliaferri P., Tassone P. Mir-221/222 are promising targets for innovative anticancer therapy. Expert Opin. Ther. Targets. 2016;20:1099–1108. doi: 10.1517/14728222.2016.1164693.
    1. Gallo Cantafio M.E., Nielsen B.S., Mignogna C., Arbitrio M., Botta C., Frandsen N.M., Rolfo C., Tagliaferri P., Tassone P., Di Martino M.T. Pharmacokinetics and Pharmacodynamics of a 13-mer LNA-inhibitor-miR-221 in Mice and Non-human Primates. Mol. Ther. Nucleic Acids. 2016;5:e326. doi: 10.1038/mtna.2016.36.
    1. Di Martino M.T., Gulla A., Cantafio M.E., Lionetti M., Leone E., Amodio N., Guzzi P.H., Foresta U., Conforti F., Cannataro M., et al. In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma. Oncotarget. 2013;4:242–255. doi: 10.18632/oncotarget.820.
    1. Di Martino M.T., Gulla A., Gallo Cantafio M.E., Altomare E., Amodio N., Leone E., Morelli E., Lio S.G., Caracciolo D., Rossi M., et al. In vitro and in vivo activity of a novel locked nucleic acid (LNA)-inhibitor-miR-221 against multiple myeloma cells. PLoS ONE. 2014;9:e89659. doi: 10.1371/journal.pone.0089659.
    1. Santolla M.F., Lappano R., Cirillo F., Rigiracciolo D.C., Sebastiani A., Abonante S., Tassone P., Tagliaferri P., Di Martino M.T., Maggiolini M., et al. miR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling. J. Exp. Clin. Cancer Res. CR. 2018;37:94. doi: 10.1186/s13046-018-0767-6.
    1. Gulla A., Di Martino M.T., Gallo Cantafio M.E., Morelli E., Amodio N., Botta C., Pitari M.R., Lio S.G., Britti D., Stamato M.A., et al. A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016;22:1222–1233. doi: 10.1158/1078-0432.CCR-15-0489.
    1. Yu R.Z., Grundy J.S., Geary R.S. Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin. Drug Metab. Toxicol. 2013;9:169–182. doi: 10.1517/17425255.2013.737320.
    1. Franzoni S., Vezzelli A., Turtoro A., Solazzo L., Greco A., Tassone P., Di Martino M.T., Breda M. Development and validation of a bioanalytical method for quantification of LNA-i-miR-221, a 13-mer oligonucleotide, in rat plasma using LC-MS/MS. J. Pharm. Biomed. Anal. 2018;150:300–307. doi: 10.1016/j.jpba.2017.12.027.
    1. Geary R.S. Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin. Drug Metab. Toxicol. 2009;5:381–391. doi: 10.1517/17425250902877680.
    1. Huang Q., Riviere J.E. The application of allometric scaling principles to predict pharmacokinetic parameters across species. Expert Opin. Drug Metab. Toxicol. 2014;10:1241–1253. doi: 10.1517/17425255.2014.934671.
    1. Shin J.W., Seol I.C., Son C.G. Interpretation of Animal Dose and Human Equivalent Dose for Drug Development. J. Korean Orient. Med. 2010;31:1–7.
    1. Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J. Pharmacokinet. Biopharm. 1982;10:201–227. doi: 10.1007/BF01062336.
    1. Heimbach T., Lakshminarayana S.B., Hu W., He H. Practical anticipation of human efficacious doses and pharmacokinetics using in vitro and preclinical in vivo data. AAPS J. 2009;11:602–614. doi: 10.1208/s12248-009-9136-x.
    1. Rowland M. Protein binding and drug clearance. Clin. Pharmacokinet. 1984;9:10–17. doi: 10.2165/00003088-198400091-00002.
    1. Mahmood I. Interspecies Pharmacokinetic Scaling: Principles And Application of Allometric Scaling. Hardcover; Danvers, MA, USA: 2005.
    1. Tang H., Hussain A., Leal M., Mayersohn M., Fluhler E. Interspecies prediction of human drug clearance based on scaling data from one or two animal species. Drug Metab. Dispos. Biol. Fate Chem. 2007;35:1886–1893. doi: 10.1124/dmd.107.016188.
    1. Watanabe T.A., Geary R.S., Levin A.A. Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302) Oligonucleotides. 2006;16:169–180. doi: 10.1089/oli.2006.16.169.
    1. Yu R.Z., Kim T.W., Hong A., Watanabe T.A., Gaus H.J., Geary R.S. Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab. Dispos. Biol. Fate Chem. 2007;35:460–468. doi: 10.1124/dmd.106.012401.
    1. Mahmood I. Pharmacokinetic allometric scaling of oligonucleotides. Nucleic Acid Ther. 2011;21:315–321. doi: 10.1089/nat.2011.0299.
    1. FDA . Guidance for Industry “Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers”. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Pharmacology and Toxicology; Rockville, MD, USA: 2005.
    1. Frazier K.S. Antisense oligonucleotide therapies: The promise and the challenges from a toxicologic pathologist’s perspective. Toxicol. Pathol. 2015;43:78–89. doi: 10.1177/0192623314551840.
    1. Geary R.S., Leeds J.M., Henry S.P., Monteith D.K., Levin A.A. Antisense oligonucleotide inhibitors for the treatment of cancer: 1. Pharmacokinetic properties of phosphorothioate oligodeoxynucleotides. Anti-Cancer Drug Des. 1997;12:383–393.
    1. Leeds J.M., Henry S.P., Truong L., Zutshi A., Levin A.A., Kornbrust D. Pharmacokinetics of a potential human cytomegalovirus therapeutic, a phosphorothioate oligonucleotide, after intravitreal injection in the rabbit. Drug Metab. Dispos. Biol. Fate Chem. 1997;25:921–926.
    1. Yu R.Z., Zhang H., Geary R.S., Graham M., Masarjian L., Lemonidis K., Crooke R., Dean N.M., Levin A.A. Pharmacokinetics and pharmacodynamics of an antisense phosphorothioate oligonucleotide targeting Fas mRNA in mice. J. Pharmacol. Exp. Ther. 2001;296:388–395.
    1. Geary R.S., Yu R.Z., Levin A.A. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr. Opin. Investig. Drugs. 2001;2:562–573.
    1. Agrawal S., Tan W., Cai Q., Xie X., Zhang R. In vivo pharmacokinetics of phosphorothioate oligonucleotides containing contiguous guanosines. Antisense Nucleic Acid Drug Dev. 1997;7:245–249. doi: 10.1089/oli.1.1997.7.245.
    1. Phillips J.A., Craig S.J., Bayley D., Christian R.A., Geary R., Nicklin P.L. Pharmacokinetics, metabolism, and elimination of a 20-mer phosphorothioate oligodeoxynucleotide (CGP 69846A) after intravenous and subcutaneous administration. Biochem. Pharmacol. 1997;54:657–668. doi: 10.1016/S0006-2952(97)00190-1.
    1. Cossum P.A., Sasmor H., Dellinger D., Truong L., Cummins L., Owens S.R., Markham P.M., Shea J.P., Crooke S. Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J. Pharmacol. Exp. Ther. 1993;267:1181–1190.
    1. London, UK European Medicines Agency. [(accessed on 19 July 2007)]; Available online:
    1. EMA. Commitee for Medical Products for Human Use (CHMP) Guideline on Strategies to Identify and Mitigate Risks for First-In Human Clinical Trials with Investigational Medical Products. EMEA; CHMP; London, UK: Jul 19, 2007.

Source: PubMed

3
Tilaa