A versatile T cell-based assay to assess therapeutic antigen-specific PD-1-targeted approaches

Maarten Versteven, Johan M J Van den Bergh, Katrijn Broos, Fumihiro Fujiki, Diana Campillo-Davo, Hans De Reu, Soyoko Morimoto, Quentin Lecocq, Marleen Keyaerts, Zwi Berneman, Haruo Sugiyama, Viggo F I Van Tendeloo, Karine Breckpot, Eva Lion, Maarten Versteven, Johan M J Van den Bergh, Katrijn Broos, Fumihiro Fujiki, Diana Campillo-Davo, Hans De Reu, Soyoko Morimoto, Quentin Lecocq, Marleen Keyaerts, Zwi Berneman, Haruo Sugiyama, Viggo F I Van Tendeloo, Karine Breckpot, Eva Lion

Abstract

Blockade of programmed cell death protein 1 (PD-1) immune checkpoint receptor signaling is an established standard treatment for many types of cancer and indications are expanding. Successful clinical trials using monoclonal antibodies targeting PD-1 signaling have boosted preclinical research, encouraging development of novel therapeutics. Standardized assays to evaluate their bioactivity, however, remain restricted. The robust bioassays available all lack antigen-specificity. Here, we developed an antigen-specific, short-term and high-throughput T cell assay with versatile readout possibilities. A genetically modified T cell receptor (TCR)-deficient T cell line was stably transduced with PD-1. Transfection with messenger RNA encoding a TCR of interest and subsequent overnight stimulation with antigen-presenting cells, results in eGFP-positive and granzyme B-producing T cells for single cell or bulk analysis. Control antigen-presenting cells induced reproducible high antigen-specific eGFP and granzyme B expression. Upon PD-1 interaction, ligand-positive antigen-presenting immune or tumor cells elicited significantly lower eGFP and granzyme B expression, which could be restored by anti-PD-(L)1 blocking antibodies. This convenient cell-based assay shows a valuable tool for translational and clinical research on antigen-specific checkpoint-targeted therapy approaches.

Keywords: PD-1/PD-L1 immune checkpoint pathway; antigen-specific; bioassay; flow cytometry; immune checkpoint inhibition.

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

Figures

Figure 1. Efficiency of PD-1 transduction, TCR…
Figure 1. Efficiency of PD-1 transduction, TCR mRNA electroporation and cryopreservation of 2D3 cells
(A) Representative flow cytometry T-cell receptor (TCRαβ) and programmed death-1 (PD-1) protein surface expression profiles and corresponding isotype controls of non-transduced PD-1− 2D3 and PD-1-transduced (PD-1+) 2D3 cells 24 hours after TCR mRNA electroporation (fresh; 10-14 replicates) and after thawing of TCR mRNA-electroporated cells (cryo; 6 replicates). (B) Percentage viability and recovery upon TCR mRNA electroporation of PD-1− and PD-1+ 2D3 cells. Data information: in (B), means are depicted. *P ≤ 0.05 (Student’s t-test). Abbreviations: cryo, transfected effector cells were cryopreserved prior to co-culture; fresh, stimulator cells were co-cultured immediately following transfection; ns, not significant; PD-1, programmed death-1 protein; TCR, T-cell receptor.
Figure 2. Validation of antigen-specific TCR function…
Figure 2. Validation of antigen-specific TCR function of transfected 2D3 and PD-1+ 2D3 cells
(AB) Activation profiles of freshly used or thawed WT1-specific TCR mRNA-electroporated PD-1− and PD-1+ 2D3 cells left unstimulated (-) versus 24 hours co-culture with unloaded (T2-pept) and WT1 peptide-pulsed (T2+pept) stimulator cells at a ratio of 2:1. Comparable results were obtained with gp100 TCR-positive PD-1− and PD-1+ 2D3 cells. (A) Representative example of TCR activation-mediated eGFP expression within the viable CD8+ cell population as assessed with flow cytometry (freshly used WT1 TCR mRNA-electroporated PD-1+ 2D3 cells). (B) The left graph shows the mean percentage (± SEM) WT1-specific TCR activation-mediated eGFP expression from 2–8 replicate experiments. The right panel depicts the mean amount (± SEM) of secreted granzyme B determined with ELISA in cell-free 24-hour culture supernatant of 105 effector cells for 2–4 replicate experiments. Data information: *P ≤ 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA). Abbreviations: cryo, transfected effector cells were cryopreserved prior to co-culture; eGFP, enhanced green fluorescent protein; fresh, stimulator cells were co-cultured immediately following transfection; PD-1, programmed death-1 protein; SEM, standard error of mean; TCR, T-cell receptor; WT1, Wilms’ tumor 1.
Figure 3. TCR + PD-1 + 2D3…
Figure 3. TCR+PD-1+ 2D3 cells as a model assay for evaluation of involvement of PD-1 signaling in cell-mediated antigen-specific T-cell activation
(AC) WT1 (A, B) and gp100 (A, C) specific T-cell activation expressed as percentage viable CD8+ eGFP+ PD-1− and PD-1+ 2D3 cells (± SEM) after 24 hours co-culture with different PD-L1+ stimulator cells. Neutralizing antibody against PD-1 (αPD-1; A, B; 15 µg/mL in WT1 model (A, B), 5 µg/mL in gp100 model (A)) or PD-L1 (αPD-L1; C) was added to cells 1 hour prior to co-culture to verify PD-1-mediated signaling, where indicated. (A) PD-1-dependent stimulating capacity of two differently generated peptide-pulsed mature monocyte-derived dendritic cells (WT1 (4 DC donors tested in two independent experiments); gp100 (4 DC donors in four independent experiments)). (B)Impact of induced PD-L1 expression on peptide-pulsed THP-1 leukemic cells on WT1-specific T-cell activation (6 replicate experiments). (C) gp100-specific PD-1+ T cell-activating capacity of peptide-pulsed wild-type or stably transduced PD-L1+ MCF-7 breast carcinoma cells (4 replicate experiments). Data information: in A, the horizontal line represents the median percentage eGFP expression (n = 4). *P ≤ 0.05, **P < 0.01, ***P < 0.001 (repeated measures one-way ANOVA with Bonferroni post-hoc test). Abbreviations: eGFP, enhanced green fluorescent protein; gp100, glycoprotein 100; PD-1, programmed death 1 protein; PD-L1, programmed death-ligand 1; TCR, T-cell receptor; WT1, Wilms’ tumor 1.

References

    1. Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol. 2016;7:550. doi: 10.3389/fimmu.2016.00550.
    1. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331.
    1. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209:1201–17. doi: 10.1084/jem.20112741.
    1. Wu P, Wu D, Li L, Chai Y, Huang J. PD-L1 and Survival in Solid Tumors: A Meta-Analysis. PLoS One. 2015;10:e0131403. doi: 10.1371/journal.pone.0131403.
    1. Wang Q, Liu F, Liu L. Prognostic significance of PD-L1 in solid tumor: An updated meta-analysis. Medicine (Baltimore) 2017;96:e6369. doi: 10.1097/md.0000000000006369.
    1. Ding Y, Sun C, Li J, Hu L, Li M, Liu J, Pu L, Xiong S. The Prognostic Significance of Soluble Programmed Death Ligand 1 Expression in Cancers: A Systematic Review and Meta-analysis. Scand J Immunol. 2017;86:361–7. doi: 10.1111/sji.12596.
    1. Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Calio A, Cuppone F, Sperduti I, Giannarelli D, Chilosi M, Bronte V, Scarpa A, Bria E, et al. Differential Activity of Nivolumab, Pembrolizumab and MPDL3280A according to the Tumor Expression of Programmed Death-Ligand-1 (PD-L1): Sensitivity Analysis of Trials in Melanoma, Lung and Genitourinary Cancers. PLoS One. 2015;10:e0130142. doi: 10.1371/journal.pone.0130142.
    1. Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther. 2015;14:847–56. doi: 10.1158/1535-7163.mct-14-0983.
    1. Passiglia F, Bronte G, Bazan V, Natoli C, Rizzo S, Galvano A, Listì A, Cicero G, Rolfo C, Santini D, Russo A. PD-L1 expression as predictive biomarker in patients with NSCLC: a pooled analysis. Oncotarget. 2016;7:19738–47. doi: 10.18632/oncotarget.7582.
    1. Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, Hodi FS, Joshua AM, Kefford R, Hersey P, Joseph R, Gangadhar TC, Dronca R, et al. Programmed Death-Ligand 1 Expression and Response to the Anti–Programmed Death 1 Antibody Pembrolizumab in Melanoma. Journal of Clinical Oncology. 2016;34:4102–9. doi: 10.1200/jco.2016.67.2477.
    1. Morrow T. Immunotherapies can’t keep market forces at arm’s length. Manag Care. 2014;23:55–6.
    1. Versteven M, Van den Bergh JMJ, Marcq E, Smits ELJ, Van Tendeloo VFI, Hobo W, Lion E. Dendritic Cells and Programmed Death-1 Blockade: A Joint Venture to Combat Cancer. Front Immunol. 2018;9:394. doi: 10.3389/fimmu.2018.00394.
    1. Chen L, Han X. Anti–PD-1/PD-L1 therapy of human cancer: past, present, and future. The Journal of Clinical Investigation. 2015;125:3384–91. doi: 10.1172/JCI80011.
    1. Wang C, Thudium KB, Han M, Wang XT, Huang H, Feingersh D, Garcia C, Wu Y, Kuhne M, Srinivasan M, Singh S, Wong S, Garner N, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014;2:846–56. doi: 10.1158/2326-6066.CIR-14-0040.
    1. Grenga I, Donahue RN, Lepone LM, Richards J, Schlom J. A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses. Clin Transl Immunology. 2016;5:e83. doi: 10.1038/cti.2016.27.
    1. Burova E, Hermann A, Waite J, Potocky T, Lai V, Hong S, Liu M, Allbritton O, Woodruff A, Wu Q, D’Orvilliers A, Garnova E, Rafique A, et al. Characterization of the Anti-PD-1 Antibody REGN2810 and Its Antitumor Activity in Human PD-1 Knock-In Mice. Mol Cancer Ther. 2017;16:861–70. doi: 10.1158/1535-7163.MCT-16-0665.
    1. Wang L, Yu C, Yang Y, Gao K, Wang J. Development of a robust reporter gene assay to measure the bioactivity of anti-PD-1/anti-PD-L1 therapeutic antibodies. J Pharm Biomed Anal. 2017;145:447–53. doi: 10.1016/j.jpba.2017.05.011.
    1. Zak KM, Grudnik P, Guzik K, Zieba BJ, Musielak B, Dömling A, Dubin G, Holak TA. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1) Oncotarget. 2016;7:30323–35. doi: 10.18632/oncotarget.8730.
    1. Brownlie RJ, Zamoyska R. T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol. 2013;13:257–69. doi: 10.1038/nri3403.
    1. Karwacz K, Bricogne C, MacDonald D, Arce F, Bennett CL, Collins M, Escors D. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol Med. 2011;3:581–92. doi: 10.1002/emmm.201100165.
    1. Arasanz H, Gato-Canas M, Zuazo M, Ibanez-Vea M, Breckpot K, Kochan G, Escors D. PD1 signal transduction pathways in T cells. Oncotarget. 2017;8:51936–45. doi: 10.18632/oncotarget.17232.
    1. Melero I, Berman DM, Aznar MA, Korman AJ, Perez Gracia JL, Haanen J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer. 2015;15:457–72. doi: 10.1038/nrc3973.
    1. Garzon-Muvdi T, Theodros D, Luksik AS, Maxwell R, Kim E, Jackson CM, Belcaid Z, Ganguly S, Tyler B, Brem H, Pardoll DM, Lim M. Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma. Oncotarget. 2018;9:20681–20697. doi: 10.18632/oncotarget.25061.
    1. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, Joyce RM, Wellenstein K, Keefe W, Schickler M, Rotem-Yehudar R, Kufe D, Avigan D. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother. 2011;34:409–18. doi: 10.1097/CJI.0b013e31821ca6ce.
    1. Ge Y, Xi H, Ju S, Zhang X. Blockade of PD-1/PD-L1 immune checkpoint during DC vaccination induces potent protective immunity against breast cancer in hu-SCID mice. Cancer Lett. 2013;336:253–9. doi: 10.1016/j.canlet.2013.03.010.
    1. Pilon-Thomas S, Mackay A, Vohra N, Mule JJ. Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma. J Immunol. 2010;184:3442–9. doi: 10.4049/jimmunol.0904114.
    1. Smits EL, Ponsaerts P, Van de Velde AL, Van Driessche A, Cools N, Lenjou M, Nijs G, Van Bockstaele DR, Berneman ZN, Van Tendeloo VF. Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells. Leukemia. 2007;21:1691–9. doi: 10.1038/sj.leu.2404763.
    1. Van Camp K, Cools N, Stein B, Van de Velde A, Goossens H, Berneman ZN, Van Tendeloo V. Efficient mRNA electroporation of peripheral blood mononuclear cells to detect memory T cell responses for immunomonitoring purposes. J Immunol Methods. 2010;354:1–10. doi: 10.1016/j.jim.2010.01.009.
    1. Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood. 2001;98:49–56. doi: 10.1182/blood.V98.1.49.
    1. Verhoef A. Production of human T-cell clones. Methods Mol Med. 2008;138:43–50. doi: 10.1007/978-1-59745-366-0_4.
    1. Fan Z, Spencer JA, Lu Y, Pitsillides CM, Singh G, Kim P, Yun SH, Toxavidis V, Strom TB, Lin CP, Koulmanda M. In vivo tracking of color-coded effector, natural and induced regulatory T cells in the allograft response. Nature Medicine. 2010;16:718. doi: 10.1038/nm.2155.
    1. Garofalakis A, Zacharakis G, Meyer H, Economou EN, Mamalaki C, Papamatheakis J, Kioussis D, Ntziachristos V, Ripoll J. Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography. Mol Imaging. 2007;6:96–107. doi: 10.2310/7290.2007.00007.
    1. Horlock C, Stott B, Dyson J, Ogg G, McPherson T, Jones L, Sewell AK, Wooldridge L, Cole DK, Stebbing J, Savage P. ELISPOT and functional T cell analyses using HLA mono-specific target cells. J Immunol Methods. 2009;350:150–60. doi: 10.1016/j.jim.2009.08.011.
    1. Griffioen M, Borghi M, Schrier PI, Osanto S. Detection and quantification of CD8(+) T cells specific for HLA-A*0201-binding melanoma and viral peptides by the IFN-gamma-ELISPOT assay. Int J Cancer. 2001;93:549–55. doi: 10.1002/ijc.1361.
    1. Van den Bergh JMJ, Smits E, Berneman ZN, Hutten TJA, De Reu H, Van Tendeloo VFI, Dolstra H, Lion E, Hobo W. Monocyte-Derived Dendritic Cells with Silenced PD-1 Ligands and Transpresenting Interleukin-15 Stimulate Strong Tumor-Reactive T-cell Expansion. Cancer Immunol Res. 2017;5:710–5. doi: 10.1158/2326-6066.cir-16-0336.
    1. van der Waart AB, Fredrix H, van der Voort R, Schaap N, Hobo W, Dolstra H. siRNA silencing of PD-1 ligands on dendritic cell vaccines boosts the expansion of minor histocompatibility antigen-specific CD8(+) T cells in NOD/SCID/IL2Rg(null) mice. Cancer Immunol Immunother. 2015;64:645–54. doi: 10.1007/s00262-015-1668-6.
    1. Schneider T, Hoffmann H, Dienemann H, Schnabel PA, Enk AH, Ring S, Mahnke K. Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3. J Thorac Oncol. 2011;6:1162–8. doi: 10.1097/JTO.0b013e31821c421d.
    1. Ge W, Ma X, Li X, Wang Y, Li C, Meng H, Liu X, Yu Z, You S, Qiu L. B7-H1 up-regulation on dendritic-like leukemia cells suppresses T cell immune function through modulation of IL-10/IL-12 production and generation of Treg cells. Leuk Res. 2009;33:948–57. doi: 10.1016/j.leukres.2009.01.007.
    1. Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170:1257–66. doi: 10.4049/jimmunol.170.3.1257.
    1. Van den Bergh J, Willemen Y, Lion E, Van Acker H, De Reu H, Anguille S, Goossens H, Berneman Z, Van Tendeloo V, Smits E. Transpresentation of interleukin-15 by IL-15/IL-15Ralpha mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget. 2015;6:44123–33. doi: 10.18632/oncotarget.6536.
    1. Van Acker HH, Beretta O, Anguille S, De Caluwe L, Papagna A, Van den Bergh JM, Willemen Y, Goossens H, Berneman ZN, Van Tendeloo VF, Smits EL, Foti M, Lion E. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. Oncotarget. 2017;8:13652–65. doi: 10.18632/oncotarget.14622.
    1. Willemen Y, Van den Bergh JM, Lion E, Anguille S, Roelandts VA, Van Acker HH, Heynderickx SD, Stein BM, Peeters M, Figdor CG, Van Tendeloo VF, de Vries IJ, Adema GJ, et al. Engineering monocyte-derived dendritic cells to secrete interferon-alpha enhances their ability to promote adaptive and innate anti-tumor immune effector functions. Cancer Immunol Immunother. 2015;64:831–42. doi: 10.1007/s00262-015-1688-2.
    1. Vasaturo A, Di Blasio S, Peeters DG, de Koning CC, de Vries JM, Figdor CG, Hato SV. Clinical Implications of Co-Inhibitory Molecule Expression in the Tumor Microenvironment for DC Vaccination: A Game of Stop and Go. Front Immunol. 2013;4:417. doi: 10.3389/fimmu.2013.00417.
    1. Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape. Trends Immunol. 2017;38:577–93. doi: 10.1016/j.it.2017.05.006.
    1. Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. European Journal of Immunology. 2017;47:765–79. doi: 10.1002/eji.201646875.
    1. Rosskopf S, Leitner J, Paster W, Morton LT, Hagedoorn RS, Steinberger P, Heemskerk MHM. A Jurkat 76 based triple parameter reporter system to evaluate TCR functions and adoptive T cell strategies. Oncotarget. 2018;9:17608–19. doi: 10.18632/oncotarget.24807.
    1. Ohtsuka M, Arase H, Takeuchi A, Yamasaki S, Shiina R, Suenaga T, Sakurai D, Yokosuka T, Arase N, Iwashima M, Kitamura T, Moriya H, Saito T. NFAM1, an immunoreceptor tyrosine-based activation motif-bearing molecule that regulates B cell development and signaling. Proc Natl Acad Sci U S A. 2004;101:8126–31. doi: 10.1073/pnas.0401119101.
    1. Pen JJ, Keersmaecker BD, Heirman C, Corthals J, Liechtenstein T, Escors D, Thielemans K, Breckpot K. Interference with PD-L1/PD-1 co-stimulation during antigen presentation enhances the multifunctionality of antigen-specific T cells. Gene Ther. 2014;21:262–71. doi: 10.1038/gt.2013.80.
    1. Breckpot K, Dullaers M, Bonehill A, van Meirvenne S, Heirman C, de Greef C, van der Bruggen P, Thielemans K. Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med. 2003;5:654–67. doi: 10.1002/jgm.400.
    1. Goyvaerts C, Dingemans J, De Groeve K, Heirman C, Van Gulck E, Vanham G, De Baetselier P, Thielemans K, Raes G, Breckpot K. Targeting of human antigen-presenting cell subsets. J Virol. 2013;87:11304–8. doi: 10.1128/jvi.01498-13.
    1. Tuyaerts S, Noppe SM, Corthals J, Breckpot K, Heirman C, De Greef C, Van Riet I, Thielemans K. Generation of large numbers of dendritic cells in a closed system using Cell Factories. J Immunol Methods. 2002;264:135–51. doi: 10.1016/S0022-1759(02)00099-6.
    1. Campillo-Davo D, Fujiki F, Van den Bergh JMJ, Smits EL, Sugiyama H, Van Tendeloo VFI, Berneman ZN. Electroporation of Dicer-Substrate siRNA Duplexes Targeting Endogenous TCR Enhance Tumor Killing Activity of Wilms’ Tumor 1 (WT1)-Specific TCR-Redirected Cytotoxic T Cells. Blood. 2016;128:813.
    1. Schaft N, Willemsen RA, de Vries J, Lankiewicz B, Essers BW, Gratama JW, Figdor CG, Bolhuis RL, Debets R, Adema GJ. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J Immunol. 2003;170:2186–94. doi: 10.4049/jimmunol.170.4.2186.

Source: PubMed

3
Tilaa