Effect of Incorporating Short-Foot Exercises in the Balance Rehabilitation of Flat Foot: A Randomized Controlled Trial

Dongchul Moon, Juhyeon Jung, Dongchul Moon, Juhyeon Jung

Abstract

Effective balance rehabilitation is essential to address flat foot (pes planus) which is closely associated with reduced postural stability. Although sensorimotor training (SMT) and short-foot exercise (SFE) have been effective for improving postural stability, the combined effects of SMT with SFE have not been evaluated in previous studies. The aim of this study was to compare the lone versus combined effects of SMT with SFE on postural stability among participants with flat foot. This was a single-blinded, randomized controlled trial. A total of 32 flat-footed participants were included in the study (14 males and 18 females) and assigned to the SMT combined with SFE group and SMT alone group. All participants underwent 18 sessions of the SMT program three times a week for six weeks. Static balance, dynamic balance, and the Hmax/Mmax ratio were compared before and after the interventions. Static and dynamic balance significantly increased in the SMT combined with SFE group compared with the SMT alone group. However, the Hmax/Mmax ratio was not significantly different between the two groups. Therefore, this study confirms that the combination of SMT and SFE is superior to SMT alone to improve postural balance control in flat-footed patients in clinical settings.

Keywords: exercise therapy; flat foot; postural balance.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Short-foot exercise.
Figure 2
Figure 2
Flow diagram of study.
Figure 3
Figure 3
Result of post-hoc analysis between both groups. Values are means ± SD. ** Significant difference between groups (p < 0.01). Abbreviations: SMT, sensorimotor training; SFE, short foot exercise; A-P, anterior-posterior; M-L, medial-lateral; ANT, anterior; PM, posteromedial; PL, posterolateral; Hmax, maximal H-reflex; Mmax, maximal M-wave.

References

    1. Neumann D.A. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. 2nd ed. Mosby; Maryland Heights, MO, USA: 2010. pp. 593–595.
    1. Toullec E. Adult flatfoot. Orthop. Traumatol. Surg. Res. 2015;101:11–17. doi: 10.1016/j.otsr.2014.07.030.
    1. Munro B., Steele J. Foot-care awareness. A survey of persons aged 65 years and older. J. Am. Podiatr. Med. Assoc. 1998;88:242–248. doi: 10.7547/87507315-88-5-242.
    1. Otsuka R., Yatsuya H., Miura Y., Murata C., Tamakoshi K., Oshiro K., Nishio N., Ishikawa M., Zhang H.M., Shiozawa M., et al. Association of flatfoot with pain, fatigue and obesity in Japanese over sixties. Nihon Koshu Eisei Zasshi. 2003;50:988–998.
    1. Franco A.H. Pes cavus and pes planus. analyses and treatment. Phys. Ther. 1987;67:688–694. doi: 10.1093/ptj/67.5.688.
    1. Hertel J., Gay M.R., Denegar C.R. Differences in postural control during single-leg stance among healthy individuals with different foot types. J. Athl. Train. 2002;37:129–132.
    1. Tsai L.-C., Yu B., Mercer V.S., Gross M.T. Comparison of different structural foot types for measures of standing postural control. J. Orthop. Sports Phys. Ther. 2006;36:942–953. doi: 10.2519/jospt.2006.2336.
    1. LeDoux W.R., Shofer J.B., Ahroni J.H., Smith D.G., Sangeorzan B.J., Boyko E. Biomechanical differences among pes cavus, neutrally aligned, and pes planus feet in subjects with diabetes. Foot Ankle Int. 2003;24:845–850. doi: 10.1177/107110070302401107.
    1. Williams Iii D.S., McClay I.S., Hamill J. Arch structure and injury patterns in runners. Clin. Biomech. 2001;16:341–347. doi: 10.1016/S0268-0033(01)00005-5.
    1. Loudon J.K., Jenkins W., Loudon K.L. The relationship between static posture and ACL injury in female athletes. J. Orthop. Sports Phys. Ther. 1996;24:91–97. doi: 10.2519/jospt.1996.24.2.91.
    1. Kosashvili Y., Fridman T., Backstein D., Safir O., Bar Ziv Y. The correlation between pes planus and anterior knee or in-termittent low back pain. Foot Ankle Int. 2008;29:910–913. doi: 10.3113/FAI.2008.0910.
    1. Kothari A., Dixon P.C., Stebbins J., Zavatsky A.B., Theologis T. Are flexible flat feet associated with proximal joint problems in children? Gait Post. 2016;45:204–210. doi: 10.1016/j.gaitpost.2016.02.008.
    1. Janda V. Muscles and motor control in low back pain: Assessment and management. In: Twomey L.T., editor. Physical Therapy of the Low Back. Churchill Livingstone; New York, NY, USA: 1987. pp. 253–278.
    1. Madureira M.M., Takayama L., Gallinaro A.L., Caparbo V.F., Costa R.A., Pereira R.M. Balance training program is highly effective in improving functional status and reducing the risk of falls in elderly women with osteoporosis: A randomized con-trolled trial. Osteoporos. Int. 2007;18:419–425. doi: 10.1007/s00198-006-0252-5.
    1. Mckeon P.O., Ingersoll C.D., Kerrigan D.C., Saliba E., Bennett B.C., Hertel J. Balance training improves function and postural control in those with chronic ankle instability. Med. Sci. Sports Exerc. 2008;40:1810–1819. doi: 10.1249/MSS.0b013e31817e0f92.
    1. Paterno M.V., Myer G.D., Ford K.R., Hewett T.E. Neuromuscular training improves single-limb stability in young female athletes. J. Orthop. Sports Phys. Ther. 2004;34:305–316. doi: 10.2519/jospt.2004.34.6.305.
    1. Taube W., Kullmann N., Leukel C., Kurz O., Amtage F., Gollhofer A. Differential reflex adaptations following sensorimotor and strength training in young elite athletes. Int. J. Sports Med. 2007;28:999–1005. doi: 10.1055/s-2007-964996.
    1. Freeman M.A.R., Wyke B. Articular contributions to limb muscle reflexes. The effects of partial neurectomy of the knee-joint on postural reflexes. Br. J. Surg. 2005;53:61–69. doi: 10.1002/bjs.1800530116.
    1. Maki B.E., Perry S.D., Norrie R.G., McIlroy W.E. Effect of facilitation of sensation from plantar foot-surface boundaries on postural stabilization in young and older adults. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 1999;54:281–287. doi: 10.1093/gerona/54.6.M281.
    1. Watanabe I., Okubo J. The role of the plantar mechanoreceptor in equilibrium control. Ann. N. Y. Acad. Sci. 1981;374:855–864. doi: 10.1111/j.1749-6632.1981.tb30926.x.
    1. Brachman A., Kamieniarz A., Michalska J., Pawłowski M., Słomka K.J., Juras G. Balance training programs in athletes—A systematic review. J. Hum. Kinet. 2017;58:45–64. doi: 10.1515/hukin-2017-0088.
    1. Moon D.C., Kim K., Lee S.K. Immediate effect of short-foot exercise on dynamic balance of subjects with excessively pronated feet. J. Phys. Ther. Sci. 2014;26:117–119. doi: 10.1589/jpts.26.117.
    1. Liebenson C. Sensory motor training. J. Bodyw. Mov. Ther. 2001;5:21–27. doi: 10.1054/jbmt.2000.0206.
    1. Jung D.-Y., Kim M.-H., Koh E.-K., Kwon O.-Y., Cynn H.-S., Lee W.-H. A comparison in the muscle activity of the abductor hallucis and the medial longitudinal arch angle during toe curl and short foot exercises. Phys. Ther. Sport. 2011;12:30–35. doi: 10.1016/j.ptsp.2010.08.001.
    1. Jung D.-Y., Koh E.-K., Kwon O.-Y. Effect of foot orthoses and short-foot exercise on the cross-sectional area of the abductor hallucis muscle in subjects with pes planus: A randomized controlled trial1. J. Back Musculoskelet. Rehabil. 2011;24:225–231. doi: 10.3233/BMR-2011-0299.
    1. Prentice W.E. Rehabilitation Techniques for Sports Medicine and Athletic Training. 5th ed. McGraw Hill Higher Education; New York, NY, USA: 2011. pp. 590–597.
    1. Lynn S.K., Padilla R.A., Tsang K.K. Differences in static-and dynamic balance task performance after 4 weeks of intrinsic-foot-muscle training: The short foot exercise versus the towel-curl exercise. J. Sport Rehabil. 2012;21:327–333. doi: 10.1123/jsr.21.4.327.
    1. Mulligan E.P., Cook P.G. Effect of plantar intrinsic muscle training on medial longitudinal arch morphology and dynamic function. Man. Ther. 2013;18:425–430. doi: 10.1016/j.math.2013.02.007.
    1. McKeon P.O., Hertel J., Bramble D., Davis I. The foot core system: A new paradigm for understanding intrinsic foot muscle function. Br. J. Sports Med. 2014;49:290. doi: 10.1136/bjsports-2013-092690.
    1. Mignogna C.A., Welsch L.A., Hoch M.C. The effects of short-foot exercises on postural control: A critically appraised topic. Int. J. Athl. Ther. Train. 2016;21:8–12. doi: 10.1123/ijatt.2016-0049.
    1. Page P. Sensorimotor training: A “global” approach for balance training. J. Body Mov. Ther. 2006;10:77–84. doi: 10.1016/j.jbmt.2005.04.006.
    1. Shinohara J., Gribble P. Five-toed socks decrease static postural control among healthy individuals as measured with time-to-boundary analysis; Proceedings of the American Society of Biomechanics Annual Meeting; State College, PA, USA. 28 August 2009.
    1. Janda V., Vavrova M., Herbenova A., Veverkova M. Sensory motor stimulation. In: Liebenson C., editor. Rehabilitation of the Spine. Lippincott, Williams, & Wilkins; Baltimore, MD, USA: 2007. pp. 513–530.
    1. Michell T.B., Ross S.E., Blackburn J.T., Hirth C.J., Guskiewicz K.M. Functional balance training, with or without exercise sandals, for subjects with stable or unstable ankles. J. Athl. Train. 2007;41:393–398.
    1. Sauer L.D., Saliba S.A., Ingersoll C.D., Kerrigan D.C., Pietrosimone B.P., Hertel J. Effects of rehabilitation incorporating short foot exercises on self-reported function, static and dynamic balance in chronic ankle instability patients. J. Athl. Train. 2010;45:67.
    1. Rothermel S.A., Hale S.A., Hertel J., Denegar C.R. Effect of active foot positioning on the outcome of a balance training program. Phys. Ther. Sport. 2004;5:98–103. doi: 10.1016/S1466-853X(04)00027-6.
    1. McPoil T.G., Cornwall M.W., Medoff L., Vicenzino B., Forsberg K., Hilz D. Arch height change during sit-to-stand: An alternative for the navicular drop test. J. Foot Ankle Res. 2008;1:3. doi: 10.1186/1757-1146-1-3.
    1. Blackburn T., Guskiewicz K.M., Petschauer M.A., Prentice W.E. Balance and joint stability: The relative contributions of proprioception and muscular strength. J. Sport Rehabil. 2000;9:315–328. doi: 10.1123/jsr.9.4.315.
    1. Plisky P.J., Gorman P.P., Butler R.J., Kiesel K.B., Underwood F.B., Elkins B. The reliability of an instrumented device for measuring components of the star excursion balance test. N. Am. J. Sports Phys. 2009;4:92–99.
    1. Hertel J., Miller S.J., Denegar C.R. Intratester and intertester reliability during the star excursion balance tests. J. Sport Rehabil. 2000;9:104–116. doi: 10.1123/jsr.9.2.104.
    1. Gribble P.A., Hertel J. Considerations for normalizing measures of the star excursion balance test. Meas. Phys. Educ. Exerc. Sci. 2003;7:89–100. doi: 10.1207/S15327841MPEE0702_3.
    1. Sefton J.M., Hicks-Little C.A., Koceja D.M., Cordova M.L. Modulation of soleus H-reflex by presynaptic spinal mechanisms during varying surface and ankle brace conditions. Neurophysiol. Clin. Neurophysiol. 2007;37:15–21. doi: 10.1016/j.neucli.2007.01.007.
    1. Trimble M.H., Koceja D.M. Effect of a reduced base of support in standing and balance training on the soleus H-reflex. Int. J. Neurosci. 2001;106:1–20. doi: 10.3109/00207450109149734.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Routledge; New York, NY, USA: 1988. pp. 20–27.
    1. Kavounoudias A., Roll R., Roll J.P. Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation. J. Physiol. 2001;532:869–878. doi: 10.1111/j.1469-7793.2001.0869e.x.
    1. Slobounov S., Newell K.M. Postural dynamics as a function of skill level and task constraints. Gait Posture. 1994;2:85–93. doi: 10.1016/0966-6362(94)90097-3.
    1. Gribble P.A., Hertel J., Plisky P. Using the star excursion balance test to assess dynamic postural-control deficits and out-comes in lower extremity injury: A literature and systematic review. J. Athl. Train. 2012;47:339–357. doi: 10.4085/1062-6050-47.3.08.
    1. Zech A., Hübscher M., Vogt L., Banzer W., Hänsel F., Pfeifer K. Balance training for neuromuscular control and performance enhancement: A systematic review. J. Athl. Train. 2010;45:392–403. doi: 10.4085/1062-6050-45.4.392.
    1. Wong-Yu I.S., Mak M.K. Task-and context-specific balance training program enhances dynamic balance and functional performance in Parkinsonian nonfallers: A randomized controlled trial with six-month follow-up. Arch. Phys. Med. Rehabil. 2015;96:2103–2111. doi: 10.1016/j.apmr.2015.08.409.
    1. Eils E., Rosenbaum D. A multi-station proprioceptive exercise program in patients with ankle instability. Med. Sci. Sports Exerc. 2001;33:1991–1998. doi: 10.1097/00005768-200112000-00003.
    1. Alizadehsaravi L., Bruijn S.M., Maas H., van Dieën J.H. Modulation of soleus muscle H-reflexes and ankle muscle co-contraction with surface compliance during unipedal balancing in young and older adults. Exp. Brain Res. 2020;238:1371–1383. doi: 10.1007/s00221-020-05784-0.
    1. Chen Y.-S., Zhou S. Soleus H-reflex and its relation to static postural control. Gait Posture. 2011;33:169–178. doi: 10.1016/j.gaitpost.2010.12.008.
    1. Gruber M., Taube W., Gollhofer A., Beck S., Amtage F., Schubert M. Training-specific adaptations of h-and stretch reflexes in human soleus muscle. J. Mot. Behav. 2007;39:68–78. doi: 10.3200/JMBR.39.1.68-78.
    1. Taube W. Neurophysiological adaptations in response to balance training. Dtsch. Z. Sportmed. 2012;2012:273–277. doi: 10.5960/dzsm.2012.030.

Source: PubMed

3
Tilaa